Results and Future Prospects from NA62 and Other Kaon Experiments

Zuzana Kučerová

Comenius University Bratislava

On behalf of the NA62 Collaboration

01/10/2019 BEAUTY 2019, Ljubljana, Slovenia

Туре	Decay mode
Main goal:	$K^+ o \pi^+ u \overline{ u}$
Exotic searches:	
Heavy neutral lepton	$K^+ ightarrow I^+ N$
Dark photon A'	$K^+ ightarrow \pi^+ \pi^0$, $\pi^0 ightarrow A' \gamma$
others	
Forbidden decays:	$K^+ o \pi^- e^+ e^+$
	$K^+ o \pi^- \mu^+ \mu^+$
	others
Rare decays:	$K^+ ightarrow \pi^+ \mu^+ \mu^-$
	${\cal K}^+ o \pi^+ \gamma \gamma$
	others

$K^+ ightarrow \pi^+ u \overline{ u}$ in Standard Model

- FCNC loop process rare meson decay naturally suppressed by the GIM mech.
- Theoretically very clean (no hadronic uncertainties)
- Sensitive to contributions of physics BSM
 - MSSM [Blazek, Matak, Int.J.Mod.Phys. A29 (2014) no.27], [Isidori et al. JHEP 0608 (2006) 064]
 - Custodial Randall-Sundrum [Blanke, Buras, Duling, Gemmler, Gori, JHEP 0903 (2009) 108]
 - Simplified Z, Z' models [Buras, A.J., Buttazzo, D. & Knegjens, R. J. High Energ. Phys. (2015) 2015: 166]
 - Littlest Higgs with T-parity [Blanke, Buras, Recksiegel, Eur.Phys.J. C76 (2016) 182]
 - LFU violation models [Bordone, M., Buttazzo, D., Isidori, G. et al. Eur. Phys. J. C (2017) 77: 618]

• SM prediction

[Brod,Gorbahn,Stamou,Phys.Rev.D 83, 034030(2011)], [Buras.et.al., JHEP11(2015) 033]: $\mathcal{B}_{SM}(K^+ \to \pi^+ \nu \overline{\nu}) = (8.4 \pm 1.0) \times 10^{-11}$

• Uncertainty coming mostly from CKM parameters (γ , $|V_{cb}|$)

$K^+ \rightarrow \pi^+ \nu \overline{\nu}$ Experimental Status

NA62 Experiment at CERN

MAIN GOAL: measure $\mathcal{B}(K^+ \to \pi^+ \nu \overline{\nu})$ with precision better than 10% Requirements: $10^{13}K$ decays, Signal acceptance $\mathcal{O}(10\%)$, Bckg rejection $\mathcal{O}(10^{12})$

Other physics program: LFV/LNV searches, Exotic searches, Rare decays, π^0 decays

• \sim 200 participants, 31 institutes

NA62:

- 2014: Pilot run
- 2015: Commissioning run
- September 2016: full detector installation completed
- September-October 2016: first physics run
- May-October 2017: second physics run
- April-November 2018: third physics run

NA62 Beam and Detector

Beam:

- Primary (SPS) proton beam with momentum 400 GeV/*c*
- 2×10^{12} protons per 3.5s spill
- Beryllium target
- \bullet Secondary positive beam with momentum \sim 75 GeV/c
- Secondary beam content: *K*⁺ (6%), π⁺ (70%), p (24%)
- 2017 Intensity: 450 MHz @ GTK3
- Kaon decay rate \sim 3 MHz

- KTAG Cherenkov det. for K^+ tagging
- GTK beam spectrometer
- Decay region 60 m long, in vacuum
- STRAW downstream spectrometer
- CHOD charged particle hodoscope
- LAV, IRC, SAC photon veto
- RICH, LKr Cherenkov detector and calorimeter for PID
- MUV3 muon veto

[JINST 12(2017) P05025] Recent Results in Kaon Physics

$K^+ \rightarrow \pi^+ \nu \overline{\nu}$ Measurement Strategy

Measurement strategy:

- $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ signature: one K^+ in the initial state, one π^+ and missing energy (neutrinos) in the final state
- Two kinematic signal regions
- Blind analysis
- Trigger streams (HW+SW): PNN and Control (minimum bias)

Main background processes:

Process	BR
$K^+ o \mu^+ \nu(\gamma)$	0.6356
$K^+ \to \pi^+ \pi^0(\gamma)$	0.2067
$K^+ ightarrow \pi^+ \pi^+ \pi^-$	0.0558

Keystones:

- O(100 ps) timing between subdetectors
- $\sim \mathcal{O}(10^3)$ kinematic background suppression
- PID background suppression (μ^+ and $\pi^0) > 10^7$

Main kinematic variable:

$$\mathsf{m}^2_{\mathsf{miss}} = (\mathsf{P}_{\mathsf{K}^+} - \mathsf{P}_{\pi^+})^2$$

Zuzana Kučerová

$K^+ \rightarrow \pi^+ \nu \overline{\nu}$ Events Selection

Signal selection:

- Single track topology
- K^+ and π^+ momentum reconstruction (GTK, STRAW)
- $K^+ \pi^+$ matching
- K^+ decays in the fiducial region
- π^+ identification ($\epsilon_{\pi^+} \sim$ 64%)
- $\bullet ~\gamma$ rejection
- Multi-track event rejection
- Upstream background suppression
- 15 GeV $< \mathsf{P}_{\pi^+} <$ 35 GeV
- Signal regions defined by $m^2_{miss}(\pi^+)$

Reconstructed m_{miss}^2 (assuming π^+ mass) as a function of the track momentum for control data before PID and γ and multi-track rejection. [Phys.Lett.B 791, 156-166(2019)]

Data After Signal Selection (2017 Dataset)

- Validation regions dedicated to background validation
- Signal and validation regions blinded

Single Event Sensitivity (SES) (2017 Dataset)

$$\mathsf{N}_{\pi\nu\nu}^{\mathsf{exp}} \approx \mathsf{N}_{\pi\pi} \epsilon_{trig} \epsilon_{RV} \frac{A_{\pi\nu\nu}}{A_{\pi\pi}} \frac{\mathcal{B}(\pi\nu\nu)}{\mathcal{B}(\pi\pi)} \quad \Rightarrow \quad \mathsf{SES} = \frac{\mathcal{B}(\pi\nu\nu)}{\mathsf{N}_{\pi\nu\nu}^{\mathsf{exp}}}$$

- $N_{\pi\nu\nu}^{exp} = expected$ number of $K^+ \to \pi^+ \nu \overline{\nu}$ events
- $N_{\pi\pi} =$ Number of $\pi^+\pi^0$ events from Control sample with $\pi\nu\nu$ -like selection without γ /multiplicity rejection
- $\epsilon_{trig} = efficiency of PNN trigger$
- $\epsilon_{RV} = K^+ \rightarrow \pi^+ \nu \overline{\nu}$ loss due to γ /multi-track rejection bc of random activity
- $A_{\pi\nu\nu,\pi\pi} = MC$ acceptances for $K^+ \to \pi^+ \nu \overline{\nu}$ (~3%) and $K^+ \to \pi^+ \pi^0$ (~8.5%)
- $\mathcal{B}(\pi\pi) = \mathsf{PDG}$ branching ratio for $\mathcal{K}^+ \to \pi^+ \pi^0$
- $\mathcal{B}(\pi\nu\nu) = \mathsf{SM}$ branching ratio for $K^+ \to \pi^+\nu\overline{\nu}$
- Ratio of acceptances allows for cancellation of systematic effects
- $\bullet\,$ Computation in bins of π^+ momentum and instantaneous beam intensity

Measured single event sensitivity:

 $SES = (3.89 \pm 0.21) \times 10^{-11}$ (Preliminary)

Expected number of $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ events in both signal regions combined:

 $N_{\pi\nu\nu}^{exp} = 2.16 \pm 0.12 \pm 0.26_{ext}$ (Preliminary)

External error coming from $\mathcal{B}(\pi\nu\nu)$.

$K^+ \rightarrow \pi^+ \pi^0$ Background

$N_{\pi\pi}^{exp}(region) = N(\pi^+\pi^0) \cdot f^{kin}(region)$

• $N_{\pi\pi}^{exp}(region) = Expected \ K^+ \rightarrow \pi^+ \pi^0$ events in signal region after PNN selection

- $N(\pi^+\pi^0) = Data$ in $\pi^+\pi^0$ peak after PNN selection
- $f^{kin}(region) =$ Fraction of $K^+ o \pi^+ \pi^0$ in signal region measured on Control data

By-product: $\mathcal{B}(\pi^0
ightarrow ext{invisible}) < 4.4 imes 10^{-9}$ 90% CL

Zuzana Kučerová

Upstream Background

Normal decay of K^+ :

Upstream Background

Normal decay of K^+ :

Sketches from G. Ruggiero

Zuzana Kučerová

Upstream Background

Normal decay of K^+ :

- *K*⁺ decays/interacts in the achromat
- Secondary π^+ downstream
- Beam elements block additional particles
- π⁺ scattering in Straw Chamber 1
- Pileup beam particle tagged as *K*⁺

Zuzana Kučerová

Background Summary (2017 Dataset)

Expected number of events in both signal regions combined (Preliminary):

Process	Expected events
$K^+ \to \pi^+ \nu \overline{\nu} \ (SM)$	$2.16 \pm 0.12_{stat} \pm 0.26_{ext}$
$K^+ \to \pi^+ \pi^0(\gamma)$ IB	$0.29 \pm 0.03_{stat} \pm 0.03_{syst}$
$K^+ \to \mu^+ \nu_\mu(\gamma)$ IB	$0.11 \pm 0.02_{stat} \pm 0.03_{syst}$
$K^+ \to \mu^+ \nu_\mu (\mu^+ \to e^+ \text{decay})$	$0.04 \pm 0.02_{syst}$
$K^+ \to \pi^+ \pi^- e^+ \nu_e$	$0.12 \pm 0.05_{stat} \pm 0.03_{syst}$
$K^+ \to \pi^+\pi^-\pi^+$	$0.02 \pm 0.02_{syst}$
$K^+ \to \pi^+ \gamma \gamma$	$0.005\pm0.005_{syst}$
$K^+ \to l^+ \pi^0 \nu_l$	negligible
Upstream background	$0.9 \pm 0.2_{stat} \pm 0.2_{syst}$
Total background	$1.5 \pm 0.2_{stat} \pm 0.2_{syst}$

 $K^+ \to \pi^+ \pi^0(\gamma)$, $K^+ \to \mu^+ \nu(\gamma)$, $K^+ \to \pi^+ \pi^- \pi^+$ and upstream backgrounds estimated from Control data and validated using the validation regions. Other backgrounds estimated from the MC simulations validated on data.

Opening the Boxes (2017 Dataset)

Opening the Boxes (2017 Dataset)

Preliminary Results from the 2016+2017 Datasets

Single event sensitivity	$(0.346 \pm 0.017) imes 10^{-10}$
Expected number of background events	1.65 ± 0.31
Observed number of events	3

Observed upper limits:

•
$$\mathcal{B}(K^+ o \pi^+
u \overline{
u}) < 1.85 imes 10^{-10}$$
 @ 90% CL (Preliminary)

• $\mathcal{B}(K^+ \to \pi^+ \nu \overline{\nu}) < 2.44 \times 10^{-10}$ @ 95% CL (Preliminary)

Grossman-Nir limit: $\mathcal{B}(K_L \to \pi^0 \nu \overline{\nu}) < 8.14 \times 10^{-10}$ @ 90% CL (Preliminary)

Zuzana Kučerová

Forbidden Decays (LNV) at NA62

- Study of $K^+ \to \pi^- \mu^+ \mu^+$ and $K^+ \to \pi^- e^+ e^+$ ($\Delta L_I = 2$)
- Processes in BSM with massive Majorana neutrinos U [JHEP 0905 (2009) 030], [Phys. Lett. B491(2000) 285]
- Signal selection using $|M(\pi^{-}l^{+}l^{+}) M(K^{+})|$ and PID
- 2017 results [Phys. Lett. B797 (2019) 134794]
 - \longrightarrow improvement by factor 2-3 wrt previous result:
 - $\mathcal{B}(K^+ \to \pi^- e^+ e^+) < 2.2 \times 10^{-10}$ @ 90% CL
 - $\mathcal{B}(K^+ o \pi^- \mu^+ \mu^+) < 4.2 imes 10^{-11}$ @ 90% CL

Hidden Sector Searches: Heavy Neutral Leptons (HNL)

- Study of $K^+ \rightarrow l^+ N$ $(l=e,\mu)$ production search
- ν MSM mixing of three massive sterile neutrinos (HNL) with the three ordinary active neutrinos fermion portal to a hidden sector
- \bullet Kinematic variable: squared missing mass $m^2_{miss} = (P_{\mathcal{K}} P_{\it I})^2$
- Signal: a spike above continuous missing mass spectrum
- $\bullet\,$ Mass scan in the range of 141–462 (220–383) MeV/ c^2 in the $e^+~(\mu^+)$ case
- Last published results: 2015 dataset [Phys. Lett. B778 (2018)]
- Preliminary 2016+2017 results \longrightarrow new upper limit on mixing parameter $|U_{I4}|^2$ [Goudzovski, KAON 2019]
- Improvement by less than a factor of 2 with full dataset (2016-2018)
- Intention to collect data in beam-dump mode in 2021-2023 for HNL decay (and other) searches

Hidden Sector Searches: Dark Photon A'

- Search for dark photon using $K^+ \to \pi^+ \pi^0$, $\pi^0 \to A' \gamma$, decay chain with A' decaying to invisibles vector portal to a hidden sector
- $\bullet\,$ SM extension new vector field A' mixing with the SM γ
- $\bullet\,$ Signal signature: π^0 decay, one γ and missing energy, no additional activity
- Kinematic variable: squared missing mass $m^2_{miss} = (P_{\mathcal{K}} P_{\pi^+} P_{\gamma})^2$
- Signal: a spike above continuous missing mass spectrum
- Mass scan in range 30–130 MeV/ c^2 of M_{A^\prime}
- 2016 results \longrightarrow no statistically significant excess identified \longrightarrow new upper limit on ϵ^2 coupling of A' to γ [JHEP 05 (2019) 182]
- $\bullet~\text{Expected}~{\sim}100{\times}$ more statistics from full 2016–2018 dataset

Prospects for NA62

All physics analyses ongoing (2017 and/or 2018 datasets):

- 2018 $K^+
 ightarrow \pi^+ \nu \overline{
 u}$ dataset
 - Analysis ongoing
 - $\bullet~2\times$ more data than in 2017
 - Optimization studies to increase signal efficiency
 - New collimator installed increased signal acceptance

NA62 After 2021 (LHC Run 3):

- Plans to modify the beamline setup in order to strongly suppress upstream background
- Add 4th GTK station to reduce $K^+ \pi^+$ mistagging probability
- Plans for new vetoes in the beamline to detect extra particles
- Plans for data-taking:
 - ${\cal K}^+
 ightarrow \pi^+
 u \overline{
 u}$ at nominal beam intensity
 - Rare decays + Exotics
 - NA62++:
 - Beam dump experiment (closed TAX) with 10¹⁸ POT
 - Decays of exotic particles
 - New ANTIO detector under construction to veto muons produced in the TAX
 - Studies to increase proton beam intensity by 20-50% above nominal

NA62 has initiated feasibility study for running at considerably higher intensity...

- Physics goals:
 - NA62×4 improve precision on $K^+ \rightarrow \pi^+ \nu \overline{\nu}$
 - KLEVER measure $\mathcal{B}(K_L \to \pi^0 \nu \overline{\nu})$, complementary to NA62 and KOTO
- $4 \times$ higher intensity in K^+ mode, $6 \times$ higher intensity in K_L mode
 - Challenging for tracking and beam detectors (K^+ mode)
 - Challenging for calorimetry and photon detection (K_L mode)
- Large commonality in terms of upgrades required (hardware, readout)

KOTO Experiment, J-PARC Center, Japan

- Search for new physics with CP-violating (and highly suppressed FCNC) process $K_L \to \pi^0 \nu \overline{\nu}$
- SM prediction for branching ratio is $\mathcal{B}_{SM} = (3.0 \pm 0.3) \times 10^{-11}$ [Buras.et.al., JHEP11(2015) 033]
- $\bullet~{\sim}50$ people from 16 institutes
- First physics run in 2013
- 2015 dataset:
 - Results published in Physical Review Letters [PRL.122.021802 (2019)]
 - \bullet Measured SES: $(1.30\pm0.01_{stat}\pm0.14_{syst})\times10^{-9}$
 - $\bullet\,$ Expected number of background events in the signal region: 0.42 ± 0.18
 - No signal candidate events were observed
 - New upper limit for ${\cal B}({\cal K}_L o \pi^0
 u \overline{
 u}) < 3.0 imes 10^{-9}$ at 90% C.L.
 - \longrightarrow 10x improvement wrt prev. limit from KEK E391a $_{\rm [Phys.Rev.D \ 81, \ 072004, \ 2010]}$
- Current status of 2016-2018 data analysis presented at KAON 2019
- Future major upgrades planned for KOTO Step-2 [Nomura, KAON 2019]

$K_{I} \rightarrow \pi^{0} \nu \overline{\nu}$ at KOTO, J-PARC Center, Japan

- 30 GeV/c proton beam hitting a gold target
- Secondary neutral beam (neutrons, photons, K_I) produced at an angle and transported to the decay region via neutral beamline
- Peak K_l momentum 1.4 GeV/c
- Calorimeter and hermetic veto counters for neutral and charged particles around decay region in vacuum
- Signature: two photons + missing energy

$K_L ightarrow \pi^0 u \overline{ u}$ at KOTO, J-PARC Center, Japan

2016-2018 dataset:

- $1.4 \times$ more statistics
- New veto counters
- Current status presented at KAON 2019 → [Shinohara, KAON 2019]:
 - Measured SES = 6.9×10^{-10}
 - Expected number of background events in the signal region: 0.05 ± 0.02
 - 4 events found in signal region

Stay tuned...

More results from Kaon experiments coming soon...

For more Kaon related searches see presentations at KAON 2019 [KAON 2019, Perugia]

- Intensity:
 - 2016: 40% of nominal
 - 2017: 55% of nominal
 - 2018: 65% of nominal
- Kaon decays:
 - 2017: $2 \times 10^{12} \ K^+$ decays
 - 2016+2017+2018: $6\times 10^{12}~{\it K}^+$ decays
- 2017 signal acceptance: 1.34% (including random veto, trigger and total detector efficiency)
- Rolke-Lopez 68% confidence interval: $\mathcal{B}(K^+ \to \pi^+ \nu \overline{\nu}) = (0.47 \pm^{+0.72}_{-0.47}) \times 10^{-10}$ (for comparison with BNL)

π^0 rejection and search for $\pi^0 \rightarrow$ invisible

A-priori evaluation of π^0 rejection in $K^+ \rightarrow \pi^+ \pi^0$ ($0.015 < m_{miss}^2 < 0.021$ GeV²/c⁴)

- Same selection, and trigger stream as $K^+ \rightarrow \pi^+ \nu \bar{\nu}$, about 1/3 of the data used for $\pi \nu \nu$
- Single- γ detection efficiency from data minimum-bias $K^+ \rightarrow \pi^+ \pi^0$ (Tag & Probe)
- + π^0 rejection evaluated from convolution with MC $K^+ \rightarrow \pi^+ \pi^0(\gamma)$
- Validation: side-bands with expected rejection $\mathcal{O}(10^{-7})$ where $\pi^0 \rightarrow \text{invisible excluded}$
- π^0 rejection expected: $(2.8^{+5.0}_{-2.1}) \times 10^{-9}$ (π^+ momentum 25-40 GeV/c)

Result

- BR($\pi^0 \rightarrow$ invisible) normalized to $\pi^0 \rightarrow \gamma \gamma$
- Background expected: 10^{+22}_{-8} ($K^+ \rightarrow \pi^+ \pi^0$)
- Events observed: 12

 $BR(\pi^0 \rightarrow invisible) < 4.4 \times 10^{-9} @ 90\% CL$ UL 60 times stronger than past measurement

Zuzana Kučerová	Recent Results in Kaon Physics	01/10/2019	3 /
10/09/2019	Giuseppe Ruggiero - Kaon 2019	16	

$\pi\nu\nu$ Single Event Sensitivity

Intensity measured event-by-event using Gigatracker time sidebands

Zuzana Kučerová	Recent Results in Kaon Physics	01/10/2019	5/(
10/09/2019	Giuseppe Ruggiero - Kaon 2019	19	

$\pi\nu\nu$ S.E.S: Results

- Integrated over beam intensity and π^+ momentum

 $S.E.S. = (0.389 \pm 0.021) \times 10^{-10}$

 $N_{\pi\nu\nu}^{exp} = 2.16 \pm 0.12 \pm 0.26_{ext}$

• Error budget (S.E.S.)

Source	${\rm Uncertainty}{\times}10^{-10}$
Le trigger	± 0.015
Acceptance	± 0.012
Random veto	± 0.008
L1 trigger	± 0.003
Normalization background	negligible

• External error on $N_{\pi\nu\nu}^{exp}$ from $Br(\pi\nu\nu) = (0.84 \pm 0.10) \times 10^{-10}$

10/09/20	19
----------	----

Giuseppe Ruggiero - Kaon 2019

20