CP violation and mixing in charm decays at LHCb

Maxime Schubiger On behalf of the LHCb collaboration

Beauty 2019 - Ljubljana, Slovenia 3 October 2019

Maxime Schubiger

3 October 2019

CP violation and mixing in charm decays at LHCb

- In the Standard Model (SM), charge-parity violation (CPV) in the quark sector comes only from the complex phase in the CKM matrix
- Order of magnitudes too small to explain our matter dominated universe
- $\rightarrow\,$ Look for other sources in New Physics (NP) processes that enhance CPV

- CPV in the decay
 - Difference of decay rate between two CP conjugated states

$$|\mathbf{A}(i \to f)|^2 \neq \left|\mathbf{A}(\bar{i} \to \bar{f})\right|^2$$

- CPV in mixing
 - Difference of transition rate between two flavour eigenstates

$$\left|A(i\rightarrow\bar{i})\right|^{2}\neq\left|A(\bar{i}\rightarrow i)\right|^{2}$$

- CPV in the interference between mixing and decay
 - Interference between the decay with and without mixing

$$|\mathbf{A}(i \to f)|^2 \neq |\mathbf{A}(i \to \bar{i} \to f)|^2$$

CP violation in charm

Why look for CPV in charm ?

- Prediction of CPV in charm from the SM are small
 - $\rightarrow~$ Lots of room for NP enhancement
- Only way to probe for CPV in up-type hadrons
 - \rightarrow Complementary to other searches in *B* or *K*

Why look for CPV in charm at LHCb ?

- Largest sample of charm decays
 - Large *cc* cross-section:

 $\sigma(\textit{pp}
ightarrow \textit{ccX}) = (2369 \pm 3 \pm 152 \pm 118) \, \mu b$,

at 13 TeV and for $p_{\rm T} < 8\,{\rm GeV}/\,c, 2.0 < y < 4.5$ [JHEP 03 (2016) 159]

- \rightarrow Large charm yields ($\mathcal{O}(100 \text{ M}) D^0 \rightarrow K^- \pi^+$ tagged decays)
- Good momentum resolution (0.5 1%)
- Good tracking efficiency (over 95%) [Int. J. Mod. Phys A30 (2015) 1530022]
- Excellent vertex resolution (IP resolution (15 + 29/ p_T) μ m)

Observation of *CP* violation in charm decays

[Phys. Rev. Lett. 122 (2019) 211803]

Maxime Schubiger

3 October 2019

CP violation and mixing in charm decays at LHCb

Observation of CPV in charm

- Dataset : 5.9 fb⁻¹, Run 2
- Comparison between 2 Cabibbo-suppressed decays :

[PRL 122 (2019) 211803]

2 independent tagging methods are used :

Observation of CPV in charm

The experimental observable is not directly A_{CP} , but A_{raw} :

$$A_{\rm raw} \approx A_{CP} + A_P + A_D + A_{\rm tag}$$

- The production asymmetry A_P : Potential asymmetry between the production of D^{*+} (B⁺) and D^{*-} (B⁻)
- The detection asymmetry A_D: Mesons and anti-mesons have different behaviours in matter (= 0 in symmetric final states such as K⁺K⁻ and π⁺π⁻)
- The tagging asymmetry *A*_{tag} : The tagging particle also has different behaviour in matter according to its charge
- The *CP* asymmetry A_{CP} : The interesting physical quantity

$$\mathbf{A}_{CP} = \frac{\Gamma(D^0 \to f) - \Gamma(\overline{D}{}^0 \to \overline{f})}{\Gamma(D^0 \to f) + \Gamma(\overline{D}{}^0 \to \overline{f})}$$

- Experimental asymmetries are difficult to measure
- They can be made independent of the D^0 decay by equalising the K^+K^- and $\pi^+\pi^-$ kinematics
- ightarrow They can be subtracted

$$\begin{split} \Delta A_{CP} &= A_{\rm raw}(D^0 \to K^+ K^-) - A_{\rm raw}(D^0 \to \pi^+ \pi^-) \\ &= A_{CP}(D^0 \to K^+ K^-) + A_P(D^{*+}) + A_{\rm tag}(\pi^+) \\ &- A_{CP}(D^0 \to \pi^+ \pi^-) - A_P(D^{*+}) - A_{\rm tag}(\pi^+) \\ &= A_{CP}(D^0 \to K^+ K^-) - A_{CP}(D^0 \to \pi^+ \pi^-) \end{split}$$

Similarly for the semileptonic sample

Results of this analysis

•
$$\Delta A_{CP}^{prompt} = [-18.2 \pm 3.2 \pm 0.9] \times 10^{-4}$$

• $\Delta A_{CP}^{SL} = [-9 \pm 8 \pm 5] \times 10^{-4}$

Combination of the two, plus previous Run 1 analyses :

•
$$\Delta A_{C\!P} = [-15.4 \pm 2.9] imes 10^{-4}$$

\Rightarrow First observation of *CP* violation in charm at 5.3 σ !

Search for time-dependent *CP* violation in $D^0 \rightarrow K^+K^-$ and $D^0 \rightarrow \pi^+\pi^-$ decays

Preliminary results [LHCb-CONF-2019-001] [LHCb-PAPER-2019-032] Prompt analysis [LHCb-CONF-2019-001]

- Dataset : 1.9 fb⁻¹, 2015-2016
- Production mode : $D^{*+} \rightarrow D^0 \pi^+$
- Yields : 17 M $D^0 \rightarrow K^+ K^-$, 5 M $D^0 \rightarrow \pi^+ \pi^-$

Semileptonic analysis [LHCb-PAPER-2019-032]

- Dataset : 5.4 fb⁻¹, 2016-2018
- Production mode : $B^- \rightarrow D^0 \mu X^-$
- Yields : 9 M $D^0 \rightarrow K^+ K^-$, 3 M $D^0 \rightarrow \pi^+ \pi^-$

Time-dependent CPV [LHCb-CONF-2019-001] [LHCb-PAPER-2019-032]

Formalism

$$\mathbf{A}_{CP} = \frac{\Gamma(\mathbf{D}^{0} \to f) - \Gamma(\overline{\mathbf{D}}^{0} \to \overline{f})}{\Gamma(\mathbf{D}^{0} \to f) + \Gamma(\overline{\mathbf{D}}^{0} \to \overline{f})} \approx \mathbf{A}_{CP}^{\text{dir}} - \mathbf{A}_{\Gamma} \frac{t}{\tau}$$

 $A_{\text{raw}}(D^0 \to f; t) \approx A_{CP}(D^0 \to f; t) + A_P(B(D^*)) + A_D(\mu(\pi))$

Control channel : $D^0
ightarrow K^- \pi^+$

 A_{Γ} expected to be well below experimental sensitivity

Time-dependent CPV [LHCb-CONF-2019-001] [LHCb-PAPER-2019-032]

Prompt results :

$$A_{\Gamma}(D^0 \to K^+ K^-) = (1.3 \pm 3.5 \pm 0.7) \times 10^{-4}$$

 $A_{\Gamma}(D^0 \to \pi^+ \pi^-) = (11.3 \pm 6.9 \pm 0.8) \times 10^{-4}$
Semileptonic results :
 $A_{\Gamma}(D^0 \to K^+ K^-) = (-4.3 \pm 3.6 \pm 0.5) \times 10^{-4}$

$$A_{\Gamma}(D^0
ightarrow \pi^+ \pi^-) = (2.2 \pm 7.0 \pm 0.8) imes 10^{-4}$$

Prompt combination :

$$A_{\Gamma}(K^+K^-+\pi^+\pi^-)=(0.9\pm2.1\pm0.7) imes10^{-4}$$

Semileptonic combination

$$A_{\Gamma}(K^+K^- + \pi^+\pi^-) = (-2.9 \pm 2.0 \pm 0.6) \times 10^{-4}$$

SM prediction [A. Cerri et al., arxiv:1812.07638]

$$A_{\Gamma} \approx 3 imes 10^{-5}$$

Search for *CP* violation in $D_s^+ \rightarrow K_s^0 \pi^+$, $D^+ \rightarrow K_s^0 K^+$ and $D^+ \rightarrow \phi \pi^+$ decays

[Phys. Rev. Lett. 122 (2019) 191803]

3 October 2019

Search for CPV in D_s^+ and D^+ decays [PRL 122 (2019) 191803]

- Dataset : 3.8 fb⁻¹. 2015-2017
- 3 decay modes
 - $D_{\rm s}^+ \to K_{\rm s}^0 \pi^+$: 600 k • $D^{+} \rightarrow K^{0}_{s}K^{+}$: 5.1 M • $D^+ \rightarrow \phi \pi^+$: 53.3 M
- 3 CF control samples
 - $D^+ \to K_{\rm s}^0 \pi^+$: 30.5 M • $D_s^+ \rightarrow K_s^0 K^+$: 6.5 M

Candidates per 0.5 MeV/c²

180 ^{×10}

160

140 -Fit

120 100 80

> 60 40

20

1800

LHCb

+ Data

Bkg.

1850

1900

1950

2000

 $m(K_{s}^{0}K^{+})$ [MeV/c²]

CP violation and mixing in charm decays at LHCb

Search for CPV in D_s^+ and D^+ decays [PRL 122 (2019) 191803]

• CP asymmetry measured from raw asymmetry

$$\mathbf{A}_{\mathrm{raw}}(\mathbf{D}^+_{(s)} \to \mathbf{f}^+) \approx \mathbf{A}_{C\!P}(\mathbf{D}^+_{(s)} \to \mathbf{f}^+) + \mathbf{A}_{P}(\mathbf{D}^+_{(s)}) + \mathbf{A}_{D}(\mathbf{f}^+)$$

Assume no CPV in CF control samples

$$\begin{split} \mathbf{A}_{C\!P}(\mathbf{D}_{s}^{+} \to \mathbf{K}_{s}^{0}\pi^{+}) &\approx \mathbf{A}_{\mathrm{raw}}(\mathbf{D}_{s}^{+} \to \mathbf{K}_{s}^{0}\pi^{+}) - \mathbf{A}_{\mathrm{raw}}(\mathbf{D}_{s}^{+} \to \phi\pi^{+}) - \mathbf{A}_{D}(\overline{K}^{0}) \\ \mathbf{A}_{C\!P}(\mathbf{D}^{+} \to \mathbf{K}_{s}^{0}\mathbf{K}^{+}) &\approx \mathbf{A}_{\mathrm{raw}}(\mathbf{D}^{+} \to \mathbf{K}_{s}^{0}\mathbf{K}^{+}) - \mathbf{A}_{\mathrm{raw}}(\mathbf{D}^{+} \to \mathbf{K}_{s}^{0}\pi^{+}) \\ &- \mathbf{A}_{\mathrm{raw}}(\mathbf{D}_{s}^{+} \to \mathbf{K}_{s}^{0}\mathbf{K}^{+}) + \mathbf{A}_{\mathrm{raw}}(\mathbf{D}_{s}^{+} \to \phi\pi^{+}) - \mathbf{A}_{D}(\overline{K}^{0}) \\ \mathbf{A}_{C\!P}(\mathbf{D}^{+} \to \phi\pi^{+}) &\approx \mathbf{A}_{\mathrm{raw}}(\mathbf{D}^{+} \to \phi\pi^{+}) - \mathbf{A}_{\mathrm{raw}}(\mathbf{D}^{+} \to \mathbf{K}_{s}^{0}\pi^{+}) \end{split}$$

Results

$$\begin{split} & A_{CP}(D_s^+ \to K_s^0 \pi^+) = (1.6 \pm 1.7 \pm 0.5) \times 10^{-3} \\ & A_{CP}(D^+ \to K_s^0 K^+) = (-0.04 \pm 0.61 \pm 0.45) \times 10^{-3} \\ & A_{CP}(D^+ \to \phi \pi^+) = (0.03 \pm 0.40 \pm 0.29) \times 10^{-3} \end{split}$$

 \rightarrow Compatible with *CP* conservation

Search for *CP* violation through an amplitude analysis of $D^0 \rightarrow K^+ K^- \pi^+ \pi^-$ decays

[JHEP 02 (2019) 126]

$D^0 ightarrow K^+ K^- \pi^+ \pi^-$ amplitude analysis [JHEP 02 (2019) 126]

- Dataset : 3.0 fb⁻¹, Run 1
- Production mode : $B^- \rightarrow D^0 \mu^- \overline{\nu}_{\mu} X$
- Yield : 160 k signal candidates
- Large number of interfering amplitudes could enhance CPV
- $\bullet\,$ 4-body spinless decay $\rightarrow\,$ 5D phase space
 - $m(K^+K^-), m(\pi^+\pi^-), \cos(\theta_K), \cos(\theta_\pi), \phi_{KK,\pi\pi}$

$D^0 ightarrow K^+ K^- \pi^+ \pi^-$ amplitude analysis [JHEP 02 (2019) 126]

Use the isobar model to describe the signal PDF

The signal PDF

$$a(\boldsymbol{x};\boldsymbol{c}) = \frac{\epsilon_{s}(\boldsymbol{x})S(\boldsymbol{x};\boldsymbol{c})\mathcal{R}_{4}(\boldsymbol{x})}{\int \epsilon_{s}(\boldsymbol{x})S(\boldsymbol{x};\boldsymbol{c})\mathcal{R}_{4}(\boldsymbol{x})d^{5}\boldsymbol{x}} \quad \text{with} \quad S(\boldsymbol{x};\boldsymbol{c}) = \left|\sum_{k}c_{k}A_{k}(\boldsymbol{x})\right|^{2}$$

The background PDF

 $b(\mathbf{x})$ is taken from the D^0 mass sidebands

. 0

Model Building Method

- Create a list of all possible amplitudes
- Start with following minimal model :
 - $D^0 \to \phi(1020)^0 [K^+, K^-] (\rho \omega)^0 [\pi^+, \pi^-]$ in S,P & D waves
 - $D^0 \to K^*(892)^0[K^+, \pi^-]\overline{K}^*(892)^0[K^-, \pi^+]$ in S,P & D waves
- Fit model + 1 new amplitude from the list
- 3 Add to the model the amplitude that produces the largest decrease in $-2\ln(\mathcal{L})$
- Iterate steps 3 & 4

Stopping criteria

- Goodness of fit : χ^2
- Sum of fit fractions : interference

$D^0 ightarrow K^+ K^- \pi^+ \pi^-$ amplitude analysis [JHEP 02 (2019) 126]

26 amplitudes have been selected to describe the signal

$D^0 ightarrow K^+ K^- \pi^+ \pi^-$ amplitude analysis [JHEP 02 (2019) 126]

- Simultaneous fit of D^0 and \overline{D}^0 decays
- CPV parametrisation :

$$\overline{|c_k|} = \frac{|c_k|_{D^0} + |c_k|_{\overline{D}^0}}{2} \qquad \qquad A_{|c_k|} = \frac{|c_k|_{D^0} - |c_k|_{\overline{D}^0}}{|c_k|_{D^0} + |c_k|_{\overline{D}^0}}$$
$$\overline{\operatorname{arg}(c_k)} = \frac{\operatorname{arg}(c_k)_{D^0} + \operatorname{arg}(c_k)_{\overline{D}^0}}{2} \qquad \Delta \operatorname{arg}(c_k) = \frac{\operatorname{arg}(c_k)_{D^0} - \operatorname{arg}(c_k)_{\overline{D}^0}}{2}$$

• Fit fraction asymmetry:

$$\boldsymbol{A}_{\mathcal{F}_{k}} = \frac{\mathcal{F}_{k}^{D^{0}} - \mathcal{F}_{k}^{\bar{D}^{0}}}{\mathcal{F}_{k}^{D^{0}} + \mathcal{F}_{k}^{\bar{D}^{0}}}$$

 Consistent with CP conservation with a sensitivity ranging from 1% to 15%

Measurement of the mass difference between neutral charm-meson eigenstates in $D^0 \rightarrow K^0_{ m s} \pi^+ \pi^-$ decays

[Phys. Rev. Lett. 122 (2019) 231802]

Mass difference in $D^0 \rightarrow K^0_{\rm s} \pi^+ \pi^-$

[PRL 122 (2019) 231802]

- Dataset : 3.0 fb⁻¹, Run 1
- Production modes :
 - $D^{*+} \rightarrow D^0 \pi^+$: 1.3 M signal candidates
 - $B \rightarrow D^0 \mu^- X$: 1 M signal candidates

Mass eigenstates

$$|D_{1,2}
angle \equiv
ho |D^0
angle \pm q |\overline{D}^0
angle$$

Mixing parameters

$$x \equiv rac{m_1 - m_2}{\Gamma}$$
, $y \equiv rac{\Gamma_1 - \Gamma_2}{2\Gamma}$, with $\Gamma = rac{\Gamma_1 + \Gamma_2}{2}$

• CPV parametrisation

$$\begin{aligned} x_{CP} &\equiv -\operatorname{Im}(z_{CP}), & y_{CP} &\equiv -\operatorname{Re}(z_{CP}) \\ \Delta x &\equiv -\operatorname{Im}(\Delta z), & \Delta y &\equiv -\operatorname{Re}(\Delta z) \\ & \text{with} \quad z_{CP} \pm \Delta z &\equiv -(q/p)^{\pm 1}(y + ix) \end{aligned}$$

Mass difference in $D^0 \rightarrow K^0_{ m s} \pi^+ \pi^-$

The bin-flip method [A. Di Canto et al., PRD 99 (2019) 012007]

- Description of the phase space
- Bins of nearly constant strong-phase difference between D^0 & \overline{D}^0
- Simultaneous least-square fit of yields in all phase space and decay time bins

Mass difference in $D^0 \rightarrow K^0_{ m s} \pi^+ \pi^-$

[PRL 122 (2019) 231802]

Results of *CP* parameters

$$\begin{aligned} x_{CP} &= [2.7 \pm 1.6 \pm 0.4] \times 10^{-3} \\ \Delta x &= [-0.53 \pm 0.70 \pm 0.22] \times 10^{-3} \\ y_{CP} &= [7.4 \pm 3.6 \pm 1.1] \times 10^{-3} \\ \Delta y &= [0.6 \pm 1.6 \pm 0.3] \times 10^{-3} \end{aligned}$$

Derived mixing parameters

Parameter	Value	$95.5\%~\mathrm{CL}$ interval
$x [10^{-2}]$	$0.27 {}^{+0.17}_{-0.15}$	[-0.05, 0.60]
$y [10^{-2}]$	0.74 ± 0.37 1.05 $^{+0.22}_{-0.22}$	$\begin{bmatrix} 0.00, 1.50 \end{bmatrix}$ $\begin{bmatrix} 0.55 & 2.15 \end{bmatrix}$
ϕ	$-0.09^{+0.17}_{-0.16}$	[-0.73, 0.29]

Combination with world average on x

 $x = (3.9^{+1.1}_{-1.2}) \times 10^{-3} \quad \rightarrow \quad$ first evidence for mass difference !

Conclusion

- Highlight of recent analyses from LHCb
- CPV has been observed for the first time in charm decays
- Many other analyses ongoing to complete the picture
- Working hard on Run 2 analyses and towards the upgrade for even better results

Artwork by Sandbox Studio, Chicago with Ana Kova

BACKUP

Maxime Schubiger

3 October 2019

CP violation and mixing in charm decays at LHCb

The LHCb detector

Maxime Schubiger

3 October 2019

Detection asymmetry

- Detection asymmetry reduced by flipping magnet polarity regularly
- Residual detection asymmetry due to intrinsic different cross-section between particles of opposite charge when interacting with the detector's material

$$a(\boldsymbol{x};\boldsymbol{c}) = \frac{\epsilon_{\boldsymbol{s}}(\boldsymbol{x})S(\boldsymbol{x};\boldsymbol{c})\mathcal{R}_{4}(\boldsymbol{x})}{\int \epsilon_{\boldsymbol{s}}(\boldsymbol{x})S(\boldsymbol{x};\boldsymbol{c})\mathcal{R}_{4}(\boldsymbol{x})d^{5}\boldsymbol{x}} \quad \text{with} \quad S(\boldsymbol{x};\boldsymbol{c}) = \left|\sum_{k}c_{k}A_{k}(\boldsymbol{x})\right|^{2}$$

- The normalisation integral is done by summing over a MC sample
- The efficiencies are taken care of by using a fully-simulated MC sample that has been reconstructed like the data sample
- Breit-Wigner, Flatté and K-matrix formalisms for the lineshapes
- Covariant formalism used for the spin factors

$D^0 \rightarrow K^+ K^- \pi^+ \pi^-$ signal model

Amplitude	$ c_k $	$arg(c_k)$ [rad]	Fit fraction [%]	σ
$D^0 \rightarrow \phi(1020)^0(ho-\omega)^0$	1	0	$23.82 \pm 0.38 \pm 0.50$	> 40
$D^0 \to K_1(1400)^+ K^-$	$0.614 \pm 0.011 \pm 0.031$	$1.05 \pm 0.02 \pm 0.05$	$19.08 \pm 0.60 \pm 1.46$	> 40
$D^0 \rightarrow [K^- \pi^+]_{L=0} [K^+ \pi^-]_{L=0}$	$0.282 \pm 0.004 \pm 0.008$	$-0.60\pm 0.02\pm 0.10$	$18.46 \pm 0.35 \pm 0.94$	> 40
$D^0 \to K_1(1270)^+ K^-$	$0.452 \pm 0.011 \pm 0.017$	$2.02 \pm 0.03 \pm 0.05$	$18.05 \pm 0.52 \pm 0.98$	> 40
$D^0 o K^*(892)^0 \overline{K}^*(892)^0$	$0.259 \pm 0.004 \pm 0.018$	$-0.27\pm 0.02\pm 0.03$	$9.18 \pm 0.21 \pm 0.28$	> 40
$D^0 \to K^* (1680)^0 [K^- \pi^+]_{L=0}$	$2.359 \pm 0.036 \pm 0.624$	$0.44 \pm 0.02 \pm 0.03$	$6.61 \pm 0.15 \pm 0.37$	> 40
$D^0 \rightarrow [K^*(892)^0 \overline{K}^*(892)^0]_{L=1}$	$0.249 \pm 0.005 \pm 0.017$	$1.22\pm 0.02\pm 0.03$	$4.90 \pm 0.16 \pm 0.18$	> 40
$D^0 \to K_1(1270)^- K^+$	$0.220 \pm 0.006 \pm 0.011$	$2.09 \pm 0.03 \pm 0.07$	$4.29 \pm 0.18 \pm 0.41$	> 40
$D^0 \rightarrow [K^+K^-]_{L=0}[\pi^+\pi^-]_{L=0}$	$0.120 \pm 0.003 \pm 0.018$	$-2.49 \pm 0.03 \pm 0.16$	$3.14 \pm 0.17 \pm 0.72$	37
$D^0 \to K_1(1400)^- K^+$	$0.236 \pm 0.008 \pm 0.018$	$0.04 \pm 0.04 \pm 0.09$	$2.82 \pm 0.19 \pm 0.39$	33
$D^0 ightarrow K^* (1680)^0 \overline{K}^* (892)^0$	$0.823 \pm 0.023 \pm 0.218$	$2.99 \pm 0.03 \pm 0.05$	$2.75 \pm 0.15 \pm 0.19$	37
$D^0 \rightarrow [\overline{K}^*(1680)^0 K^*(892)^0]_{L=1}$	$1.009 \pm 0.022 \pm 0.276$	$-2.76 \pm 0.02 \pm 0.03$	$2.70 \pm 0.11 \pm 0.09$	> 40
$D^0 \to \overline{K}^*(1680)^0 [K^+ \pi^-]_{I=0}$	$1.379 \pm 0.029 \pm 0.373$	$1.06 \pm 0.02 \pm 0.03$	$2.41 \pm 0.09 \pm 0.27$	> 40
$D^0 \rightarrow [\phi(1020)^0(\rho - \omega)^0]_{L=2}$	$1.311 \pm 0.031 \pm 0.018$	$0.54 \pm 0.02 \pm 0.02$	$2.29 \pm 0.08 \pm 0.08$	> 40
$D^0 \rightarrow [K^*(892)^0 \overline{K}^*(892)^0]_{L=2}$	$0.652 \pm 0.018 \pm 0.043$	$2.85 \pm 0.03 \pm 0.04$	$1.85 \pm 0.09 \pm 0.10$	> 40
$D^0 \rightarrow \phi(1020)^0 [\pi^+\pi^-]_{L=0}$	$0.049 \pm 0.001 \pm 0.004$	$-1.71 \pm 0.04 \pm 0.37$	$1.49 \pm 0.09 \pm 0.33$	30
$D^0 \rightarrow [K^*(1680)^0 \overline{K}^*(892)^0]_{I=1}$	$0.747 \pm 0.021 \pm 0.203$	$0.14 \pm 0.03 \pm 0.04$	$1.48 \pm 0.08 \pm 0.10$	> 40
$D^0 \rightarrow [\phi(1020)^0 \rho(1450)^0]_{L=1}$	$0.762 \pm 0.035 \pm 0.068$	$1.17 \pm 0.04 \pm 0.04$	$0.98 \pm 0.09 \pm 0.05$	24
$D^0 \rightarrow a_0(980)^0 f_2(1270)^0$	$1.524 \pm 0.058 \pm 0.189$	$0.21 \pm 0.04 \pm 0.19$	$0.70 \pm 0.05 \pm 0.08$	27
$D^0 ightarrow a_1(1260)^+ \pi^-$	$0.189 \pm 0.011 \pm 0.042$	$-2.84 \pm 0.07 \pm 0.38$	$0.46 \pm 0.05 \pm 0.22$	17
$D^0 ightarrow a_1(1260)^- \pi^+$	$0.188 \pm 0.014 \pm 0.031$	$0.18 \pm 0.06 \pm 0.43$	$0.45 \pm 0.06 \pm 0.16$	14
$D^0 \to [\phi(1020)^0(ho - \omega)^0]_{L=1}$	$0.160 \pm 0.011 \pm 0.005$	$0.28 \pm 0.07 \pm 0.03$	$0.43 \pm 0.05 \pm 0.03$	18
$D^0 \rightarrow [K^*(1680)^0 \overline{K}^*(892)^0]_{L=2}$	$1.218 \pm 0.089 \pm 0.354$	$-2.44 \pm 0.08 \pm 0.15$	$0.33 \pm 0.05 \pm 0.06$	14
$D^0 \rightarrow [K^+K^-]_{L=0}(\rho-\omega)^0$	$0.195 \pm 0.015 \pm 0.035$	$2.95 \pm 0.08 \pm 0.29$	$0.27 \pm 0.04 \pm 0.05$	15
$D^0 o \phi(1020)^0 f_2(1270)^0$	$1.388 \pm 0.095 \pm 0.257$	$1.71 \pm 0.06 \pm 0.37$	$0.18 \pm 0.02 \pm 0.07$	14
$D^0 ightarrow K^*(892)^0 \overline{K}_2^*(1430)^0$	$1.530 \pm 0.086 \pm 0.131$	$2.01 \pm 0.07 \pm 0.09$	$0.18 \pm 0.02 \pm 0.02$	20
		Sum of fit fractions	$129.32 \pm 1.09 \pm 2.38$	
		χ^2/ndf	9242/8121 = 1.14	

Mass difference measurement details

$$\begin{split} \chi^2 &\equiv \sum_{\rm pr,\, sl} \sum_{\rm l,\, d} \sum_{\rm +,-} \sum_{b,j} \frac{(N_{-bj}^{\pm} - N_{+bj}^{\pm} R_{\pm bj}^{\pm})^2}{(\sigma_{-bj}^{\pm})^2 + (\sigma_{+bj}^{\pm} R_{\pm bj}^{\pm})^2} \\ &+ \sum_{b,b'} \left(X_b^{\rm CLEO} - X_b \right) \left(V_{\rm CLEO}^{-1} \right)_{bb'} \left(X_{b'}^{\rm CLEO} - X_{b'} \right) . \end{split}$$
$$R_{bj}^{\pm} \approx \frac{r_b + \frac{1}{4} r_b \langle t^2 \rangle_j \operatorname{Re}(z_{CP}^2 - \Delta z^2) + \frac{1}{4} \langle t^2 \rangle_j \left| z_{CP} \pm \Delta z \right|^2 + \sqrt{r_b} \langle t \rangle_j \operatorname{Re}[X_b^*(z_{CP} \pm \Delta z)]}{1 + \frac{1}{4} \langle t^2 \rangle_j \operatorname{Re}(z_{CP}^2 - \Delta z^2) + r_b \frac{1}{4} \langle t^2 \rangle_j \left| z_{CP} \pm \Delta z \right|^2 + \sqrt{r_b} \langle t \rangle_j \operatorname{Re}[X_b(z_{CP} \pm \Delta z)]}. \end{split}$$

N are the yields and σ are the yields uncertainties. X_b are the strong phase difference in each phase space bin and r_b are the yields ratios in these bins.

