Lepton flavour universality tests in rare $b \rightarrow s\ell\ell$ decays

C. Langenbruch¹ on behalf of the LHCb collaboration

Emmy Noether-

Programm

¹RWTH Aachen, Germany

Beauty 2019 September 30th - October 4th, 2019

NEW KING AND

CC BY-SA 3.0, Mihael Grmek

Introduction to Lepton Flavour Universality

AACHEN Lepton Flavour Universality in the SM

- Lepton Flavour Universality: In the Standard Model (SM), the couplings of the charged leptons to the gauge bosons are equal $(g_e = g_\mu = g_\tau)$
- Differences in branching fractions only due to lepton mass differences
- Well established in $Z \to \ell \ell$, $J/\psi \to \ell \ell$, $\tau \to \ell \bar{\nu} \nu$, $\pi \to \ell \bar{\nu}$, $K \to \ell \bar{\nu}$

- Tension in $W \to \ell \nu$: $\frac{2\mathcal{B}(W \to \tau \bar{\nu}_{\tau})}{\mathcal{B}(W \to e \bar{\nu}_e) + \mathcal{B}(W \to \mu \bar{\nu}_{\mu})} = 1.066 \pm 0.025$ (2.6 σ) (but uncertainties large, strong contraints from other measurements)
 - Large number of BSM models with non-universal couplings to third generation quarks and leptons (Charged Higgs, Leptoquarks, ...).

C. Langenbruch (RWTH), Beauty 2019

LFU in $b \rightarrow s\ell\ell$ decays

Pich PPNP 75 (2014) 41-85] [PRD 98 (2018) 030001

Introduction to Lepton Flavour Universality

AACHEN Lepton Flavour Universality in heavy flavour decays

Lepton universality tests in tree-level decays

- Abundant $b \rightarrow c \ell \nu$ transition
- Possible NP coupling mainly to 3rd family
- $R_{D^*} = \frac{\mathcal{B}(B \to D^* \tau \nu)}{\mathcal{B}(B \to D^* \mu \nu)} \text{ from LHCb covered by [M. Tilley]}$

- Lepton universality tests in rare *loop-level* decays
 - $b \rightarrow s\ell\ell$ FCNC

 Sensitive to NP contributions in loops

Determine ratios
$$R_{K^{(*)}} = \frac{\int \frac{\mathrm{d}\Gamma(B \to K^{(*)} \mu^+ \mu^-)}{\mathrm{d}q^2} \mathrm{d}q^2}{\int \mathrm{d}\frac{\Gamma(B \to K^{(*)} \mu^+ \mu^-)}{\mathrm{d}q^2} \mathrm{d}q^2} \stackrel{\mathrm{SM}}{=} 1 \pm \mathcal{O}(10^{-3})$$

- Experimentally clean: cancellation of many systematic uncertainties
- Theoretically clean: cancellation of hadronic uncertainties QED effects $O(10^{-2})$ [Bordone et al., EPJC 76 (2018) 8:440]

C. Langenbruch (RWTH), Beauty 2019

Introduction to Lepton Flavour Universality

RWTH Effective theory and $B \to K^{(*)} \ell \ell$ differential decay rate

4 / 19

 $b \rightarrow s\ell\ell$ transitions described model-ind. in eff. theory (Details: [A. Vicente])

Different $q^2 = m^2(\ell \ell)$ regions probe different operator combinations

RWTH $\stackrel{R_{K'}}{R_{K}}$ and $\stackrel{R_{L'*}}{R_{K'}}$ at LHCb and data samples

- Due to different spin R_K and R_{K^*} probe different combinations of Wilson coefficients
- Published LHCb measurements:

$$\begin{array}{c} q^{2}\text{-region(s)} & \text{data} \\ R_{K} \text{ [PRL 122 (2019) 191801]} & [1.1, 6.0] \text{ GeV}^{2}/c^{4} & \text{Run 1+2015+2016 (5 fb}^{-1}) \\ R_{K^{*}} \text{ [JHEP 08 (2017) 055]} & [0.045, 1.1], [1.1, 6.0] \text{ GeV}^{2}/c^{4} & \text{Run 1 (3 fb}^{-1}) \\ & \Box \rightarrow \langle \Box \rangle \wedge \langle \Xi \rangle \wedge \langle \Xi \rangle \rangle \rangle \approx 20 \\ \end{array}$$

RWTH $\frac{R_{K'}}{\text{Trigger for muon and electron modes}}$

- Trigger signatures for muon and electron modes very different
- Lower p_T thresholds for muons (1.5–1.8 GeV/c) compared to electrons (2.5–3.0 GeV) / hadrons (3.5 GeV/c)
 → lower trigger efficiency for e⁺e⁻ modes
- Combine exclusive trigger categories to improve ϵ for electron modes

< 同 > < 三 > < 三 >

DQC

AACHEN Bremsstrahlung

200

1

- Electrons heavily radiate Bremsstrahlung photons
- Correct electron momentum by adding matching photons $(E_{\rm T} > 75 \, {\rm MeV}/c^2)$ reconstructed in the ECAL
- Bremsstrahlung reconstruction impacts momentum resolution

RWTH $\mathbb{E}_{k \leftarrow and R_{k \leftarrow a}}^{R_{k \leftarrow at LHCb}}$ AACHEN Electron reconstruction and mass resolution (R_K)

- Resolution degraded by energy loss from Bremsstrahlung
 - Recovery of Bremsstrahlung not 100% efficient
 - Recovery of Bremsstrahlung γ in ECAL has limited resolution

$$\frac{\sigma_E}{E} \sim 1\% \otimes \frac{10\%}{\sqrt{E(\text{GeV})}}$$

Contribution from partially reconstructed backgrounds e.g. $B^0 \rightarrow K^{*0} (\rightarrow K^+ \pi^-) \ell^+ \ell^-$ where π^- is not reconstucted

😪 C. Langenbruch (RWTH), Beauty 2019

RWTH $\stackrel{R_{K'} \text{ and } R_{K''}}{\mathsf{Electron}}$ reconstruction and mass resolution (R_K)

- Resolution degraded by energy loss from Bremsstrahlung
 - Recovery of Bremsstrahlung not 100% efficient
 - Recovery of Bremsstrahlung γ in ECAL has limited resolution

 $\frac{\sigma_E}{E} \sim 1\% \otimes \frac{10\%}{\sqrt{E(\text{GeV})}}$

Contribution from partially reconstructed backgrounds

e.g. $B^0\!\to K^{*0}(\to K^+\pi^-)\ell^+\ell^-$ where π^- is not reconstucted

C. Langenbruch (RWTH), Beauty 2019

RWTH Analysis strategy: Double ratio

Analysis strategy: Double ratio of rare $B \to K^{(*)}\ell^+\ell^-$ with resonant mode $B \to K^{(*)}J/\psi (\to \ell^+\ell^-)$:

$$\begin{split} R_{K^{(*)}} &= \frac{\mathcal{B}(B \to K^{(*)}\mu^{+}\mu^{-})}{\mathcal{B}(B \to K^{(*)}J/\psi(\to \mu^{+}\mu^{-}))} \Big/ \frac{\mathcal{B}(B \to K^{(*)}e^{+}e^{-})}{\mathcal{B}(B \to K^{(*)}J/\psi(\to e^{+}e^{-}))} & J/\psi(1S) \\ &= \frac{N_{B \to K^{(*)}\mu^{+}\mu^{-}}}{N_{B \to K^{(*)}J/\psi(\to \mu^{+}\mu^{-})}} \times \frac{\epsilon_{B \to K^{(*)}J/\psi(\to \mu^{+}\mu^{-})}}{\epsilon_{B \to K^{(*)}\mu^{+}\mu^{-}}} & \zeta_{7}^{(\prime)} & \psi(2S) \\ &\times \frac{N_{B \to K^{(*)}J/\psi(\to e^{+}e^{-})}}{N_{B \to K^{(*)}e^{+}e^{-}}} \times \frac{\epsilon_{B \to K^{(*)}g^{+}e^{-}}}{\epsilon_{B \to K^{(*)}J/\psi(\to e^{+}e^{-})}} & \uparrow & \zeta_{7}^{(\prime)}C_{9}^{(\prime)} & \bigcup_{0 \text{ distace contributions from }C_{2}}^{(\prime)} & \psi(2S) \\ &\to & \chi_{1}^{(\prime)} & \chi_{2}^{(\prime)} &$$

Double ratio cancels most experimental systematic effects

Nevertheless crucial to control efficiencies

E = E

200

RWTH Efficiencies and double ratio

- Efficiencies corrected and controled using data-driven techniques
 - Trigger ϵ determined on data using control mode
 - Particle identification from high stat. samples (e.g. $D^{*0} \rightarrow \pi^+ D^-$)
 - B kinematics, mass resolution from control mode
- In lab frame rare and control mode similar due to large boost at LHCb

Systematic effects largely cancel in efficiency ratio

San

RWTH $\overset{_{R_{\, \prime \prime}\, \, m and}\, R_{\, \prime \prime \, m s}}{ m Crosschecks}\,r_{J\!/\psi}$ and $R_{\psi(2S)}$

KKC C. Langenbruch (RWTH), Beauty 2019

LFU in $b \rightarrow s\ell\ell$ decays

DQC

- $R_K(1 < q^2 < 6.0 \,\text{GeV}^2) = 0.846^{+0.060+0.016}_{-0.054-0.014} \text{ [PRL 122 (2019) 191801]}$ $R_K(1 < q^2 < 6.0 \,\text{GeV}^2) = 0.745^{+0.090}_{-0.075} \pm 0.036 \text{ [PRL 113 (2014) 151601]}$
- **2.5** σ tension with SM prediction

< 回 > < 三 > < 三 > -

[JHEP 08 (2017) 055]

Numerical result and compatibility with SM prediction(s):

$$\begin{split} R_{K^*}(0.045 < q^2 < 1.1\,\text{GeV}^2) &= 0.66^{+0.11}_{-0.07} \pm 0.03 & 2.1\text{-}2.3\,\sigma \text{ at low } q^2 \\ R_{K^*}(1.1 < q^2 < 6.0\,\text{GeV}^2) &= 0.69^{+0.11}_{-0.07} \pm 0.05 & 2.4\text{-}2.5\,\sigma \text{ at central } q^2 \end{split}$$

Compatible with Babar and Belle with smaller uncertainties

1

RWTH Global fits AACHEN Combination of LFU observables

- Combine LFU observables in effective theory framework to determine Wilson coefficients (here: eff. Vector- and axialvector coupling C₉ and C₁₀)
- Combination of R_{K^*} and R_K shows tension with clean SM prediction at $3\text{-}4\,\sigma$ [Alguero et al., EPJC 79 (2019) 8:714]
- Inclusion of $b \rightarrow s\mu\mu \mathcal{B}$ and angular obs. (details in talk by [F. Kress]) further increases significance $\gtrsim 5 \sigma$

Ongoing updates of R_K and R_{K*} profit from full LHCb data sample
 Full Run 2 R_K ~ doubles available statistics wrt. [PRL 122 (2019) 191801]
 Full Run 2 R_{K*} ~ quadruples available statistics wrt. [JHEP 08 (2017) 055]

- Additional measurements of R_{pK} , R_{ϕ} , $R_{K\pi\pi}$ soon
- $b \rightarrow se^+e^-$ angular analyses also ongoing
- LHCb Upgrade: $50 \, \text{fb}^{-1}$ of data after LS2 [Framework TDR]
- LHCb Upgrade II with $300 \, {\rm fb}^{-1}$ planned [arXiv:1808.08865]

- Tests of LFU show interesting tensions with clean SM prediction
- Both R_K and R_{K^*} below SM prediction at $\sim 2\,\sigma$
- Combination yields tension of $3-4\sigma$
- Similar anomalies in (less clean) $b \to s\mu^+\mu^- \mathcal{B}$ and angular obs.

- Updates using full Run 2 data sample will clarify picture
- Additional modes (R_{pK} , R_{ϕ} , $R_{K\pi\pi}$,...) in preparation
- Please stay tuned!

CC BY-SA 3.0, Mihael Grmek

RACHEN The LHCb experiment: Optimized for heavy flavour

Large $\sigma_{b\bar{b}}$: $(284 \pm 53) \,\mu\text{b}$ at 7 TeV and $(495 \pm 52) \,\mu\text{b}$ at 13 TeV [PLB 694 (2010) 209-216]

- Excellent IP resolution $\sim 20\, \mathrm{\mu m}$ to identify B decay vertices, $\Delta p/p = 0.5 1\%$
- Particle identification: $\epsilon_{K \to K} \sim 95\%$, $\epsilon_{\pi \to K} \sim 5\%$ and $\epsilon_{\mu \to \mu} \sim 97\%$, $\epsilon_{\pi \to \mu} \sim 1 3\%$
- Low trigger thresholds: $p_{\rm T}(\mu) > 1.8 \,{
 m GeV}$, $E_{\rm T}(e) > 3.0 \,{
 m GeV}$

RACHEN The LHCb experiment: Optimized for heavy flavour

Large $\sigma_{b\bar{b}}$: $(284 \pm 53) \,\mu\text{b}$ at $7 \,\text{TeV}$ and $(495 \pm 52) \,\mu\text{b}$ at $13 \,\text{TeV} \begin{bmatrix} \text{PLB 694} (2010) & 209-216 \\ \text{JHEP 10} (2015) & 172 \end{bmatrix}$

- Excellent IP resolution $\sim 20 \, \mu {
 m m}$ to identify B decay vertices, $\Delta p/p = 0.5 1\%$
- Particle identification: $\epsilon_{K \to K} \sim 95\%$, $\epsilon_{\pi \to K} \sim 5\%$ and $\epsilon_{\mu \to \mu} \sim 97\%$, $\epsilon_{\pi \to \mu} \sim 1 3\%$
- Low trigger thresholds: $p_{\rm T}(\mu) > 1.8 \,{\rm GeV}$, $E_{\rm T}(e) > 3.0 \,{\rm GeV}$

RWTH Branching fractions of rare $b \rightarrow s \mu^+ \mu^-$ decays

- Pattern: Data consistently below SM predictions
- But sizeable hadronic theory uncertainties
- Tensions at $1 3\sigma$ level

C. Langenbruch (RWTH), Beauty 2019

Table 10.1: Summary of prospects for future measurements of selected flavour observables for LHCb, Belle II and Phase-II ATLAS and CMS. The projected LHCb sensitivities take no account of potential detector improvements, apart from in the trigger. The Belle-II sensitivities are taken from Ref. [608].

Observable	Current LHCb	LHCb 2025	Belle II	Upgrade II	ATLAS & CMS
EW Penguins					
$R_K (1 < q^2 < 6 \text{ GeV}^2 c^4)$	0.1 [274]	0.025	0.036	0.007	-
R_{K^*} $(1 < q^2 < 6 \text{ GeV}^2 c^4)$	0.1 [275]	0.031	0.032	0.008	-
$R_{\phi}, R_{pK}, R_{\pi}$	-	0.08,0.06,0.18	-	0.02, 0.02, 0.05	-
CKM tests					
γ , with $B_s^0 \rightarrow D_s^+ K^-$	$\binom{+17}{-22}^{\circ}$ [136]	4°	_	1°	_
γ , all modes	$\binom{+5.0}{-5.8}^{\circ}$ [167]	1.5°	1.5°	0.35°	-
$\sin 2\beta$, with $B^0 \rightarrow J/\psi K_s^0$	0.04 [609]	0.011	0.005	0.003	-
ϕ_s , with $B_s^0 \rightarrow J/\psi \phi$	49 mrad [44]	14 mrad	_	4 mrad	22 mrad [610]
ϕ_s , with $B_s^0 \rightarrow D_s^+ D_s^-$	170 mrad [49]	35 mrad	_	9 mrad	_
$\phi_s^{s\bar{s}s}$, with $B_s^0 \rightarrow \phi \phi$	154 mrad [94]	39 mrad	-	11 mrad	Under study [611]
$a_{\rm sl}^s$	33×10^{-4} [211]	10×10^{-4}	-	3×10^{-4}	-
$ V_{ub} / V_{cb} $	6% [201]	3%	1%	1%	-
$B^0_s, B^0{ ightarrow}\mu^+\mu^-$					
$\overline{\mathcal{B}(B^0 \to \mu^+ \mu^-)}/\mathcal{B}(B^0_s \to \mu^+ \mu^-)$	90% [264]	34%	_	10%	21% [612]
$\tau_{B^0 \rightarrow \mu^+ \mu^-}$	22% [264]	8%	-	2%	-
$S_{\mu\mu}$	-	-	-	0.2	-
$b \rightarrow c \ell^- \bar{\nu}_l$ LUV studies					
$\overline{R(D^*)}$	0.026 [215, 217]	0.0072	0.005	0.002	-
$R(J/\psi)$	0.24 [220]	0.071	_	0.02	
Charm					
$\Delta A_{CP}(KK - \pi\pi)$	8.5×10^{-4} [613]	$1.7 imes 10^{-4}$	5.4×10^{-4}	3.0×10^{-5}	-
$A_{\Gamma} (\approx x \sin \phi)$	2.8×10^{-4} [240]	4.3×10^{-5}	3.5×10^{-4}	1.0×10^{-5}	-
$x \sin \phi$ from $D^0 \rightarrow K^+ \pi^-$	13×10^{-4} [228]	$3.2 imes 10^{-4}$	$4.6 imes 10^{-4}$	8.0×10^{-5}	_
$x \sin \phi$ from multibody decays		$(K3\pi) 4.0 \times 10^{-5}$	$(K_{\rm S}^0 \pi \pi) 1.2 \times 10^{-4}$	$(K3\pi) 8.0 \times 10^{-6}$	

1		· · · .	· · ·	R. [1.6]	-		ı	[Upgrade II Physics case] [Physics of the HL-LHC WG 4]				
	LHCb Upgrade II	-		R. [1.6]				Yield	Run 1 result	$9 {\rm fb}^{-1}$	23fb^{-1}	300fb^{-1}
	Scenario-I			R_{ϕ} [1,6]		$\Delta C_9 = -1.4$		$B^+ \rightarrow K^+ e^+ e^-$	254 ± 29	1120	3300	46000
								$B^0 \rightarrow K^{*0} e^+ e^-$	111 ± 14	490	1400	20000
	LHCb Upgrade II							$B_s^0 \rightarrow \phi e^+ e^-$	-	80	230	3300
	Scenario-II				$\Delta C_9 = -0.7$		$\Lambda_b^0 \rightarrow pKe^+e^-$	-	120	360	5000	
					_	$\Delta C_{10} = +0.7$		$B^+ \rightarrow \pi^+ e^+ e^-$	-	20	70	900
	LHCb Upgrade II				1			R_X precision	Run 1 result	$9 {\rm fb}^{-1}$	$23 {\rm fb}^{-1}$	300 fb ⁻¹
	Scenario-III				-	$\Delta C'_{9} = +0.3$		R_K	$0.745 \pm 0.090 \pm 0.036$	0.043	0.025	0.007
						$\Delta C'_{10} = +0.3$		$R_{K^{*0}}$	$0.69 \pm 0.11 \pm 0.05$	0.052	0.031	0.008
	LHCb Upgrade II Scenario-IV					+		R_{ϕ}	-	0.130	0.076	0.020
						$\Delta C'_9 = +0.3$		R_{pK}	-	0.105	0.061	0.016
						$\Delta C'_{10} = -0.3$		R_{π}	-	0.302	0.176	0.047
	LHCb Run 1		•	-				-				
			<u>г</u>									
0.	4 0.6		0.8		1	1.	.2					
						$R_{\rm v}$						
						A						

- Huge samples of rare electron modes available in Upgrade II $N_{K^+e^+e^-}\sim 46\,000$, $N_{K^{*0}e^+e^-}\sim 20\,000$
- Ultimate precision on R_{K,K^*} will be better than 1%
- Different R_X allow to probe different combinations of Wilson coefficients, separation of NP scenarios with high significance

RWTH Backup AACHEN Angular analyses with electrons

- Differences between angular observables in electrons and muons theoretically clean, simultaneous fit useful
- Sensitivity to additional combinations of Wilson coefficients compared to R_X measurements
- Excellent NP sensitivity unaffected by hadronic contributions