CP Violation & Rare Decays in the Kaon System

Antonio Pich IFIC, Univ. Valencia – CSIC

Physics contributions from different scales

 $\log{(M/\mu)}$

Direc CP violation in $K \rightarrow \pi \pi$

 $\log(\nu_{\gamma}/M_{\pi})$

OPE.

 χPT

Energy Scale	Fields	Effective Theory
M _W	W, Z, γ, g $ au, \mu, e, u_i$ t, b, c, s, d, u	Standard Model
	OPE	
$\lesssim m_c$	$\gamma, \mathbf{g} ; \mu, \mathbf{e}, \nu_i$ $\mathbf{s}, \mathbf{d}, \mathbf{u}$	$\mathcal{L}_{ ext{QCD}}^{(n_f=3)}$, $\mathcal{L}_{ ext{eff}}^{\Delta S=1,2}$
	$\bigvee N_C \to \circ$	×
M_K	γ ; μ , e , $ u_i$ π , K , η	χ PT

Direc CP violation in $K\to\pi\pi$

$$Q_{1} = (\overline{s}_{\alpha} u_{\beta})_{V-A} (\overline{u}_{\beta} d_{\alpha})_{V-A} \qquad Q_{2} = (\overline{s}u)_{V-A} (\overline{u}_{d})_{V-A}$$

$$Q_{3,5} = (\overline{s}d)_{V-A} \sum_{q} (\overline{q}q)_{V\mp A} \qquad Q_{4} = (\overline{s}_{\alpha} d_{\beta})_{V-A} \sum_{q} (\overline{q}_{\beta} q_{\alpha})_{V-A}$$

$$Q_{7,9} = \frac{3}{2} (\overline{s}d)_{V-A} \sum_{q} e_{q} (\overline{q}q)_{V\pm A} \qquad Q_{10} = \frac{3}{2} (\overline{s}_{\alpha} d_{\beta})_{V-A} \sum_{q} e_{q} (\overline{q}_{\beta} q_{\alpha})_{V-A}$$

$$Q_{6} = -8 \sum_{q} (\overline{s}_{L} q_{R}) (\overline{q}_{R} d_{L}) \qquad Q_{8} = -12 \sum_{q} e_{q} (\overline{s}_{L} q_{R}) (\overline{q}_{R} d_{L})$$

$$Q_{11,12} = (\overline{s}d)_{V-A} \sum_{\ell} (\overline{\ell}\ell)_{V,A} \qquad Q_{13} = (\overline{s}d)_{V-A} \sum_{\nu} (\overline{\nu}\nu)_{V-A}$$

• $q > \mu$: $C_j(\mu) = z_j(\mu) - y_j(\mu) \left(V_{td} V_{ts}^* / V_{ud} V_{us}^* \right)$ NLO: $O(\alpha_s^n t^n)$, $O(\alpha_s^{n+1} t^n)$ $[t \equiv \log (M/m)]$ Munich / Rome, 1992-1993 NNLO: $\sim Q_{7-10,13}$ Buras et al, Q_{1-6} ongoing calculation M. Cerdà-Sevilla et al

• $q < \mu$: $\langle \pi \pi | Q_j(\mu) | K \rangle$? Physics does not depend on μ A. Pich Direc CP violation in $K \to \pi\pi$

CHIRAL PERTURBATION THEORY (χ PT)

- Expansion in powers of p^2/Λ_{χ}^2 : $\mathcal{A} = \sum_n \mathcal{A}^{(n)}$ ($\Lambda_{\chi} \sim 4\pi F_{\pi} \sim 1.2 \text{ GeV}$)
- Amplitude structure fixed by chiral symmetry $SU(3)_L \otimes SU(3)_R \ \rightarrow \ SU(3)_V$
- Short-distance dynamics encoded in Low-Energy Couplings
- $O(p^2)$ χPT : Goldstone interactions (π, K, η) $\Phi \equiv \frac{1}{\sqrt{2}} \vec{\lambda} \vec{\varphi}$

$$\mathcal{L}_{2}^{\Delta S=1} = G_{8} F^{4} \operatorname{Tr}(\lambda L_{\mu} L^{\mu}) + G_{27} F^{4} \left(L_{\mu 23} L_{11}^{\mu} + \frac{2}{3} L_{\mu 21} L_{13}^{\mu} \right)$$

$$G_{R} \equiv -\frac{G_{F}}{\sqrt{2}} V_{ud} V_{us}^{*} g_{R} \quad ; \quad L_{\mu} = -iU^{\dagger} D_{\mu} U \quad ; \quad \lambda \equiv \frac{1}{2} \lambda_{6-i7} \quad ; \quad U \equiv \exp\left\{ i\sqrt{2} \Phi/F \right\}$$

- Loop corrections (χ PT logarithms) unambiguously predicted
- LECs can be determined at $N_C \rightarrow \infty$ (matching)
- $O(p^2)$ LECs (G_8, G_{27}) can be phenomenologically determined

$O\left[p^4, \left(m_u-m_d\right)p^2, e^2p^0, e^2p^2\right] ~~\chi \text{PT}$

• Nonleptonic weak Lagrangian: $O(G_F p^4)$

$$\mathcal{L}_{\text{weak}}^{(4)} = \sum_{i} G_8 N_i F^2 O_i^8 + \sum_{i} G_{27} D_i F^2 O_i^{27} + \text{h.c.}$$

• Electroweak Lagrangian: $O(G_F e^2 p^{0,2})$

 $\mathcal{L}_{\rm EW} \; = \; e^2 F^6 G_8 \, g_{ew} \, \operatorname{Tr} (\lambda U^\dagger \mathcal{Q} U) \; + \; e^2 \sum_i \; G_8 \; Z_i \; F^4 \; O_i^{EW} \; + \; {\rm h.c.}$

• $\mathcal{O}(e^2 p^{0,2})$ Electromagnetic + $\mathcal{O}(p^4)$ Strong: Z, K_i, L_i

Energy Scale	Fields	Effective Theory
M_W	W, Z, γ, g $ au, \mu, e, u_i$ t, b, c, s, d, u	Standard Model
	OPE	
$\stackrel{<}{_\sim} m_c$	$\gamma, g; \mu, e, u_i$ s, d, u	$\mathcal{L}_{ ext{QCD}}^{(n_f=3)}$, $\mathcal{L}_{ ext{eff}}^{\Delta S=1,2}$
	\bigvee $N_C \rightarrow c$	∞
M_K	γ ; μ, e, u_i π, K, η	χ PT

Direc CP violation in $K\to\pi\pi$

CP Violation in $K \rightarrow \pi \pi$

$$\eta_{00} \equiv \frac{\mathcal{M}(K_{L}^{0} \to \pi^{0}\pi^{0})}{\mathcal{M}(K_{S}^{0} \to \pi^{0}\pi^{0})} \equiv \varepsilon - 2\varepsilon' \qquad , \qquad \eta_{+-} \equiv \frac{\mathcal{M}(K_{L}^{0} \to \pi^{+}\pi^{-})}{\mathcal{M}(K_{S}^{0} \to \pi^{+}\pi^{-})} \equiv \varepsilon + \varepsilon'$$

- Indirect CP: $|\varepsilon| = \frac{1}{3} |\eta_{00} + 2\eta_{+-}| = (2.228 \pm 0.011) \cdot 10^{-3}$ Direct CP: $\operatorname{Re}(\varepsilon'/\varepsilon) = \frac{1}{3} \left(1 \left|\frac{\eta_{00}}{\eta_{+-}}\right|\right) = (16.6 \pm 2.3) \cdot 10^{-4}$ First evidence in 1988 by NA31

Time evolution of ε'/ε predictions: 10^{-3} units

- 1983	SD (Q ₆), LO	~ 2	Gilman-Hagelin
- 1990-2000	SD, large m_t (Q_8), NLO	$\sim { m few} \cdot 10^{-1}$	Munich, Rome
	+ models of LD contributions	$\sim {\cal O}(1)$	Dortmund, Trieste
- 1999-2001	$SD + LD (\chi PT)$ at NLO	1.7 ± 0.9	Scimemi-Pallante-Pich
- 2000-2003	models of LD contributions	$\sim \mathcal{O}(1)$	Lund, Marseille
- 2003	Isospin breaking in χ PT	1.9 ± 1.0	Cirigliano-Ecker-Neufeld-Pich
- 2015	Lattice	0.14 ± 0.70	RBC-UKQCD
- 2015-2017	Dual QCD, Lattice input	0.19 ± 0.45	Munich
- 2017	χ PT re-analysis	1.5 ± 0.7	Gisbert-Pich
- 2019	$\chi {\sf PT}$ re-analysis of IB	$1.3 {}^{+ 0.6}_{- 0.7}$	Cirigliano-Gisbert-Pich-Rodríguez
	B1 6B 11		

$K \rightarrow 2\pi$ Isospin Amplitudes

$$\begin{aligned} A[K^{0} \to \pi^{+}\pi^{-}] &\equiv A_{0} e^{i\chi_{0}} + \frac{1}{\sqrt{2}} A_{2} e^{i\chi_{2}} \\ A[K^{0} \to \pi^{0}\pi^{0}] &\equiv A_{0} e^{i\chi_{0}} - \sqrt{2} A_{2} e^{i\chi_{2}} \\ A[K^{+} \to \pi^{+}\pi^{0}] &\equiv \frac{3}{2} A_{2}^{+} e^{i\chi_{2}^{+}} \end{aligned}$$

1)
$$\Delta l = 1/2$$
 Rule: $\omega \equiv \frac{\operatorname{Re}(A_2)}{\operatorname{Re}(A_0)} \approx \frac{1}{22}$

2) Strong Final State Interactions: $\chi_0 - \chi_2 \approx \delta_0 - \delta_2 \approx 45^{\circ}$

$$\varepsilon_{\kappa}' = \frac{-i}{\sqrt{2}} e^{i(\chi_2 - \chi_0)} \omega \left\{ \frac{\operatorname{Im}(A_0)}{\operatorname{Re}(A_0)} - \frac{\operatorname{Im}(A_2)}{\operatorname{Re}(A_2)} \right\}$$

$K \rightarrow 2\pi$ Isospin Amplitudes

$$\begin{aligned} &A[K^{0} \to \pi^{+}\pi^{-}] \equiv A_{0} e^{i\chi_{0}} + \frac{1}{\sqrt{2}} A_{2} e^{i\chi_{2}} \\ &A[K^{0} \to \pi^{0}\pi^{0}] \equiv A_{0} e^{i\chi_{0}} - \sqrt{2} A_{2} e^{i\chi_{2}} \\ &A[K^{+} \to \pi^{+}\pi^{0}] \equiv \frac{3}{2} A_{2}^{+} e^{i\chi_{2}^{+}} \end{aligned}$$

$$\begin{array}{rcl} A_0 \ {\rm e}^{i \, \chi_0} & = & \mathcal{A}_{1/2} \\ \\ A_2 \ {\rm e}^{i \, \chi_2} & = & \mathcal{A}_{3/2} \, + \, \mathcal{A}_{5/2} \\ \\ \mathcal{A}_2^+ \ {\rm e}^{i \, \chi_2^+} & = & \mathcal{A}_{3/2} \, - \, \frac{2}{3} \, \mathcal{A}_{5/2} \end{array}$$

1) $\Delta l = 1/2$ Rule: $\omega \equiv \frac{\operatorname{Re}(A_2)}{\operatorname{Re}(A_0)} \approx \frac{1}{22}$

2) Strong Final State Interactions: $\chi_0 - \chi_2 \approx \delta_0 - \delta_2 \approx 45^\circ$

$$\varepsilon_{\kappa}' = \frac{-i}{\sqrt{2}} e^{i(\chi_2 - \chi_0)} \omega \left\{ \frac{\operatorname{Im}(A_0)}{\operatorname{Re}(A_0)} - \frac{\operatorname{Im}(A_2)}{\operatorname{Re}(A_2)} \right\}$$

Implications of a Large Phase Shift

 $\mathcal{A}_{I} \equiv \mathcal{A}_{I} e^{i\delta_{I}} = \mathrm{Dis}\left(\mathcal{A}_{I}\right) + i \mathrm{Abs}\left(\mathcal{A}_{I}\right)$

1 Unitarity: $\delta_0(M_K) = (39.2 \pm 1.5)^\circ \implies A_0 \approx 1.3 \times \text{Dis}(\mathcal{A}_0)$

$$\tan \delta_{l} = \frac{\operatorname{Abs}(\mathcal{A}_{l})}{\operatorname{Dis}(\mathcal{A}_{l})}$$
$$\mathcal{A}_{l} = \operatorname{Dis}(\mathcal{A}_{l})\sqrt{1 + \tan^{2}\delta_{l}}$$

2 Analyticity: $\Delta \operatorname{Dis}(\mathcal{A}_l)[s] = \frac{1}{\pi} \int dt \frac{\operatorname{Abs}(\mathcal{A}_l)[t]}{t-s-i\epsilon} + \text{subtractions}$

Large $\delta_0 \longrightarrow \text{Large Abs}(\mathcal{A}_0) \longrightarrow \text{Large correction to } \text{Dis}(\mathcal{A}_0)$

Absorptive amplitude: on-shell intermediate $\pi\pi$ state

- Finite 1-loop absorptive amplitude (model independent)
- Universal correction (only depends on $\pi\pi$ quantum numbers): Abs $(A_0)/A_0^{\text{tree}} = 0.47$, Abs $(A_2)/A_2^{\text{tree}} = -0.21$
- Any (SM or NP) short-distance contribution leads to $\Delta A_l^{\text{tree}} \sim g_l^{\text{SD}} \mathcal{O}_l$
- Same correction for $\operatorname{Re}(g_l^{SD})$ (*CP* conserving) and $\operatorname{Im}(g_l^{SD})$ (*CP*)

2015 Lattice Results

Isospin limit:

RBC-UKQCD 1505.07863, 1502.00263

$$\begin{split} \sqrt{\frac{3}{2}} \operatorname{Re} A_2 &= (1.50 \pm 0.04 \pm 0.14) \cdot 10^{-8} \operatorname{GeV} & \exp : 1.482 \, (2) \cdot 10^{-8} \operatorname{GeV}_{0.1 \sigma} \\ \sqrt{\frac{3}{2}} \operatorname{Im} A_2 &= -(6.99 \pm 0.20 \pm 0.84) \cdot 10^{-13} \operatorname{GeV} \\ \sqrt{\frac{3}{2}} \operatorname{Re} A_0 &= (4.66 \pm 1.00 \pm 1.26) \cdot 10^{-7} \operatorname{GeV} & \exp : 3.112 \, (1) \cdot 10^{-7} \operatorname{GeV}_{1.0 \sigma} \\ \sqrt{\frac{3}{2}} \operatorname{Im} A_0 &= -(1.90 \pm 1.23 \pm 1.08) \cdot 10^{-11} \operatorname{GeV} \\ \operatorname{Re} \left(\varepsilon' / \varepsilon \right) &= (1.38 \pm 5.15 \pm 4.59) \cdot 10^{-4} & \exp : (16.8 \pm 1.4) \cdot 10^{-4} \\ & 2.2 \sigma \\ \delta_0 &= (23.8 \pm 4.9 \pm 1.2)^{\circ} & \exp : (39.2 \pm 1.5)^{\circ} & 2.9 \sigma \\ \delta_2 &= -(11.6 \pm 2.5 \pm 1.2)^{\circ} & \exp : -(8.5 \pm 1.5)^{\circ} & 1.0 \sigma \end{split}$$

2015 Lattice Results

Isospin limit:

RBC-UKQCD 1505.07863, 1502.00263

$$\begin{split} \sqrt{\frac{3}{2}} \operatorname{Re} A_2 &= (1.50 \pm 0.04 \pm 0.14) \cdot 10^{-8} \operatorname{GeV} & \exp : 1.482 \, (2) \cdot 10^{-8} \operatorname{GeV}_{0.1 \, \sigma} \\ \sqrt{\frac{3}{2}} \operatorname{Im} A_2 &= -(6.99 \pm 0.20 \pm 0.84) \cdot 10^{-13} \operatorname{GeV} \\ \sqrt{\frac{3}{2}} \operatorname{Re} A_0 &= (4.66 \pm 1.00 \pm 1.26) \cdot 10^{-7} \operatorname{GeV} & \exp : 3.112 \, (1) \cdot 10^{-7} \operatorname{GeV}_{1.0 \, \sigma} \\ \sqrt{\frac{3}{2}} \operatorname{Im} A_0 &= -(1.90 \pm 1.23 \pm 1.08) \cdot 10^{-11} \operatorname{GeV} \\ \operatorname{Re} \left(\varepsilon' / \varepsilon \right) &= (1.38 \pm 5.15 \pm 4.59) \cdot 10^{-4} & \exp : (16.8 \pm 1.4) \cdot 10^{-4} \\ \varepsilon_2 \circ \\ \delta_0 &= (23.8 \pm 4.9 \pm 1.2)^\circ & \exp : (39.2 \pm 1.5)^\circ \\ \delta_2 &= -(11.6 \pm 2.5 \pm 1.2)^\circ & \exp : -(8.5 \pm 1.5)^\circ \\ 1.0 \, \sigma \end{split}$$

Simplified Estimate

- **CP violation** → Penguin operators
 Chirality → Enhanced (V A) ⊗ (V + A) operators
 Q₆ = -8 ∑_q ($\bar{s}_L q_R$) ($\bar{q}_R d_L$)
 Q₈ = -12 ∑_q e_q ($\bar{s}_L q_R$) ($\bar{q}_R d_L$)
- **3** Large-N_C: $\langle J \cdot J \rangle = \langle J \rangle \langle J \rangle \{1 + \mathcal{O}(1/N_c)\}$

 $\mathcal{M}_{LL} \equiv \langle \pi^{+}\pi^{-} | (\bar{s}_{L}\gamma^{\mu}u_{L})(\bar{u}_{L}\gamma_{\mu}d_{L})|K^{0}\rangle = \langle \pi^{+} | \bar{u}_{L}\gamma_{\mu}d_{L} | 0 \rangle \langle \pi^{-} | \bar{s}_{L}\gamma^{\mu}u_{L} | K^{0}\rangle = \frac{i\sqrt{2}}{4} F_{\pi} \left(\frac{M_{K}^{2} - M_{\pi}^{2}}{m_{d}(\mu) + m_{s}(\mu)} \right)^{2}$ $\mathcal{M}_{LR}(\mu) \equiv \langle \pi^{+}\pi^{-} | (\bar{s}_{L}u_{R})(\bar{u}_{R}d_{L})|K^{0}\rangle = \langle \pi^{+} | \bar{u}_{R}d_{L} | 0 \rangle \langle \pi^{-} | \bar{s}_{L}u_{R} | K^{0}\rangle = \frac{i\sqrt{2}}{4} F_{\pi} \left[\frac{M_{K}^{2}}{m_{d}(\mu) + m_{s}(\mu)} \right]^{2}$

At $\mu = 1$ GeV, $\mathcal{M}_{LR}(\mu)/\mathcal{M}_{LL} \sim M_K^2/[m_s(\mu) + m_d(\mu)]^2 \sim 14$

$$\begin{array}{c} \blacktriangleright \\ Re(\varepsilon'/\varepsilon) \approx 2.2 \cdot 10^{-3} \left\{ B_6^{(1/2)} \left(1 - \Omega_{eff} \right) - 0.48 B_8^{(3/2)} \right\} \\ B_6^{(1/2)} = B_8^{(3/2)} = 1, \\ B_6^{(1/2)} = B_8^{(3/2)} = 1, \\ B_6^{(1/2)} = 0.57, \\ B_8^{(3/2)} = 0.76, \\ B_8^{(1/2)} = 0.15 \\ B_8^{(1/2)} = 0.57, \\ B_8^{(1/2)} = 0.76, \\ B_8^{(1/2)} = 0.15 \\ B_8^{(1/2)} = 0.57, \\ B_8^{(1/2)} = 0.76, \\ B_8^{(1/2)} = 0.15 \\ B_8^{(1/2)} = 0.57, \\ B_8^{(1/2)} = 0.76, \\ B_8^{(1/2)} = 0.15 \\ B_8^{(1/2)} = 0.57, \\ B_8^{(1/2)} = 0.76, \\ B_8^{(1/2)} = 0.15 \\ B_8^{(1/2)} = 0.57, \\ B_8^{(1/2)} = 0.76, \\ B_8^{(1/2)} = 0.15 \\ B_8^{(1/2)} = 0.57, \\ B_8^{(1/2)} = 0.76, \\ B_8^{(1/2)} = 0.15 \\ B_8^{(1/2)} = 0.57, \\ B_8^{(1/2)} = 0.76, \\ B_8^{(1/2)} = 0.15 \\ B_8^{(1/2)} = 0.57, \\ B_8^{(1/2)} = 0.76, \\ B_8^{(1/2)} = 0.15 \\ B_8^{(1/2)} = 0.57, \\ B_8^{(1/2)} = 0.76, \\ B_8^{(1/2)} = 0.15 \\ B_8^{(1/2)} = 0.57, \\ B_8^{(1/2)} = 0.76, \\ B_8^{(1/2)} = 0.57, \\ B_8^$$

Anatomy of ε'/ε calculation

$$\operatorname{Re}\left(\frac{\varepsilon'}{\varepsilon}\right) = -\frac{\omega_{+}}{\sqrt{2}|\varepsilon|} \left\{ \frac{\operatorname{Im} A_{0}^{(0)}}{\operatorname{Re} A_{0}^{(0)}} \left(1 - \Omega_{\text{eff}}\right) - \frac{\operatorname{Im} A_{2}^{\text{emp}}}{\operatorname{Re} A_{2}^{(0)}} \right\}$$

 $\mathcal{A}_n^{(X)} = a_n^{(X)} \left[1 + \Delta_L \mathcal{A}_n^{(X)} + \Delta_C \mathcal{A}_n^{(X)} \right]$

Cirigliano-Gisbert-Pich-Rodríguez 2019

1 $O(p^4) \chi PT$ Loops: Large correction (NLO in $1/N_c$) FSI $\Delta_L \mathcal{A}_{1/2}^{(8)} = 0.27 + 0.47 i$; $\Delta_L \mathcal{A}_{3/2}^{(g)} = -0.50 - 0.21 i$ **2** $O(p^4)$ LECs fixed at $N_C \rightarrow \infty$: Small correction $\Delta_{\mathcal{C}} \, [\mathcal{A}^{(8)}_{1/2}]^- = \, 0.11 \pm 0.05 \qquad ; \qquad \Delta_{\mathcal{C}} \, [\mathcal{A}^{(g)}_{3/2}]^- = \, -0.19 \pm 0.19$ **3** Isospin Breaking $O[(m_u - m_d)p^2, e^2p^2]$: Sizeable correction $\Omega_{\rm off} = 0.12 \pm 0.09$ Re(g₈), Re(g₂₇), $\chi_0 - \chi_2$ fitted to data 4

SM Prediction of ε'/ε

$$\operatorname{\mathsf{Re}}\left(arepsilon'/arepsilon
ight)_{\mathrm{SM}}\ =\ \left(13\,^{+\,6}_{-\,7}
ight)\cdot10^{-4}$$

Cirigliano, Gisbert, Pich, Rodríguez-Sánchez

 $\mathsf{Re}\left(\varepsilon'/\varepsilon\right)_{\mathrm{SM}} = \left(13.1 \pm 0.4_{m_{s}} \frac{+2.2}{-4.0} \frac{+3.0}{\mu - 3.2\nu_{\chi}} \pm 1.2_{\gamma_{5}} \pm 4.3_{L_{5,8}} \pm 1.1_{L_{7}} \pm 0.2_{K_{i}} \pm 0.3_{X_{i}}\right) \cdot 10^{-4}$

Large uncertainty but no anomalies!

A. Pich

Direc CP violation in $K \rightarrow \pi \pi$

Rare K Decays

• Very suppressed in the SM

Cirigliano et al., 1107.6001

- Sensitive to heavy mass scales, LFV, LNV...
- Excellent experimental sensitivity

Strong constraints on New Physics Superb probe of flavour dynamics and CP

- Interesting interplay of short and long distances
- Excellent testing ground of χ PT dynamics

Precise control of QCD needed when SM sensitivity is reached

 $ightarrow \gamma \gamma$

Long-distance dynamics

 $K^{U} \rightarrow \ell^{+} \ell^{-}$

$$K_S \rightarrow \ell^+ \ell^-$$

Long-distance dynamics

Finite 2-loop amplitude:

Ecker-Pich

$${
m Br}(K_S o e^+ e^-)_{\scriptscriptstyle
m LO} = 2.1 \cdot 10^{-14}$$

 $Br(K_S \rightarrow \mu^+ \mu^-)_{LO} = 5.1 \cdot 10^{-12}$

 $\operatorname{Br}(K_S \to e^+ e^-)_{exp} < 9 \cdot 10^{-9}$

$${
m Br}({
m \it K_S}
ightarrow\mu^+\mu^-)_{
m exp}< 8\cdot10^{-10}$$
 LHCE (90% CL)

 $K_{I} \rightarrow \ell^{+}\ell^{-}$

 $Br(K_L \to \mu^+ \mu^-) = (6.84 \pm 0.11) \cdot 10^{-9}$ Br($K_L \rightarrow e^+ e^-$) = (9⁺⁶/₄) · 10⁻¹²

Saturated by absorptive contrib.

LD extracted from $\pi^0, \eta \to \ell^+ \ell^-$

Gomez-Dumm, Pich

Fitted SD contrib. agrees with SM

Longitudinal Polarization:

Ecker-Pich

 $|\mathcal{P}_L| = (2.6 \pm 0.4) \cdot 10^{-3}$

Kaon constraints on scalar leptoquarks

Mandal-Pich, 1908.11155

 $S_1(\bar{3}, 1, 1/3), \ \tilde{S}_1(\bar{3}, 1, 4/3), \ R_2(\bar{3}, 2, 7/6), \ \tilde{R}_2(\bar{3}, 2, 1/6), \ S_3(\bar{3}, 3, 1/3)$

 $\mathcal{L}_{\mathrm{LQ}} \doteq y_{R_2}^{ij} \; \overline{\ell}_R^{\dagger} R_2^{\dagger} Q^j - y_{\tilde{R}_2}^{ij} \; \overline{d}_R^{i} \tilde{R}_2^T i \tau_2 L^j + y_{\tilde{S}_1}^{ij} \; \overline{d_R^{c^i}} \ell_R^j \tilde{S}_1 + y_{\tilde{S}_3}^{ij} \; \overline{Q^{c^i}} i \tau_2 \vec{\tau} \cdot \vec{S}_3 L^j + \mathrm{h.c.}$

$$a_{e\mu} = \left(\frac{1 \text{ TeV}}{M_{LQ}}\right)^2 \times y_{21}y_{12}^* \qquad . \qquad b_{e\mu} = \left(\frac{1 \text{ TeV}}{M_{LQ}}\right)^2 \times \begin{cases} y_{22}y_{11}^* & (R_2) \\ y_{22}^*y_{11}^* & (\tilde{R}_2, \tilde{S}_1, 4 \times S_3) \end{cases}$$

Direc CP violation in $K \to \pi\pi$

A. Pich

 $K \longrightarrow \pi \nu \overline{\nu}$ $T \sim F\left(V_{is}^* V_{id}, \frac{m_L^2}{M_W^2}\right) \left(\overline{\nu}_L \gamma_\mu \nu_L\right) \langle \pi | \, \overline{s}_L \gamma^\mu d_L | K \rangle$

Negligible long-distance contribution

$$\begin{split} & \text{Br}(\mathcal{K}^+ \to \pi^+ \nu \bar{\nu}) = (8.5 \pm 0.6) \cdot 10^{-11} \sim \mathcal{A}^4 \left[\eta^2 + (1.4 - \rho)^2 \right] \\ & \text{Br}(\mathcal{K}_L \to \pi^0 \nu \bar{\nu}) = (2.9 \pm 0.3) \cdot 10^{-11} \sim \mathcal{A}^4 \eta^2 \end{split}$$

$$\mathcal{A}(K_L \to \pi^0 \nu \bar{\nu}) \neq 0$$
 \longrightarrow Direct \mathcal{CP} (mixing-decay interference)

NA62 2019:	${ m Br}(K^+ o \pi^+ \nu \bar{ u})$	$< 1.85 \cdot 10^{-1}$	⁰ (90% CL)
КОТО 2015:	${ m Br}(K_L \rightarrow \pi^0 \nu \bar{\nu})$	$< 3.0 \cdot 10^{-9}$	(90% CL)

al al

$K \rightarrow \pi \nu \bar{\nu}$ constraints on scalar leptoquarks

Mandal-Pich, 1908.11155

 $\mathcal{L}_{\mathrm{LQ}} \doteq -y_{\tilde{R}_2}^{ij} \ \bar{d}_R^i \frac{\tilde{R}_2^T}{2} i \tau_2 L^j + y_{S_1}^{ij} \ \overline{Q^{c^i}} i \tau_2 L^j S_1 + y_{S_3}^{ij} \ \overline{Q^{c^i}} i \tau_2 \vec{\tau} \cdot \vec{S_3} L^j + \mathrm{h.c.}$

$$s_{\nu} = \left(\frac{1 \text{ TeV}}{M_{LQ}}\right)^2 \times \left(y_{LQ} U_{PMNS}\right)_{1\ell} \left(y_{LQ} U_{PMNS}\right)^*_{2\ell} \qquad , \qquad s_{LQ} = (-1)^{2 \text{ I}_{LQ}}$$

A. Pich

 $\phi_{\scriptscriptstyle LQ}$

Direc CP violation in $K \rightarrow \pi \pi$

KOTO 2019 (prel.):

4 events, exp. bkg. $= 0.05 \pm 0.02$, 1 evt suspected upstream bkg

S.E.S. = $6.9 \cdot 10^{-10}$ \rightarrow Br($K_L \rightarrow \pi^0 \nu \bar{\nu}$) $\sim 2 \cdot 10^{-9}$

Kaons are a wonderful laboratory to test the SM

- Interesting interplay of short and long-distances
- Sensitive to heavy mass scales. New Physics?
- Superb probe of flavour dynamics and CP
- Excellent testing ground of χ PT dynamics

Increased sensitivities at ongoing experiments $(K \rightarrow \pi \nu \bar{\nu})$

Theoretical challenge: precise control of QCD effects

Successful SM prediction for ε'/ε

Cirigliano, Gisbert, Pich, Rodríguez-Sánchez

$$\operatorname{Re}\left(\varepsilon'/\varepsilon
ight)_{\mathrm{SM}}\ =\ \left(13^{+6}_{-7}
ight)\cdot10^{-4}$$

$$\operatorname{Re}(\varepsilon'/\varepsilon)_{\exp} = \frac{1}{3} \left(1 - \left| \frac{\eta_{00}}{\eta_{+-}} \right| \right) = (16.6 \pm 2.3) \cdot 10^{-4}$$

Large uncertainty but no anomalies!

Backup

Outlook: Needed Improvements

 Wilson coefficients at NNLO Cerda et al • Updated value of $\Omega_{\rm eff}$ \checkmark Cirigliano et al • $g_8 g_{ew}$ at NLO in $1/N_C$ Rodríguez-Sánchez, A.P. • g₈ and higher-order LECs at NLO New ideas needed • χ PT logarithms at NNLO Feasible Improved lattice input Eagerly expected Difficult, but worth while enterprise Best strategy: χPT (amplitudes) + Lattice (LECs)

$O(p^2) \quad \chi PT$

$$\mathcal{L}_{2}^{\Delta S=1} = G_{8} F^{4} \langle \lambda L_{\mu} L^{\mu} \rangle + G_{27} F^{4} \left(L_{\mu 23} L_{11}^{\mu} + \frac{2}{3} L_{\mu 21} L_{13}^{\mu} \right)$$

 $G_{R} \equiv -\frac{G_{F}}{\sqrt{2}} V_{ud} V_{us}^{*} g_{R} \quad ; \quad L_{\mu} = -iU^{\dagger} D_{\mu} U \quad ; \quad \lambda \equiv \frac{1}{2} \lambda_{6-i7} \quad ; \quad U \equiv \exp\left\{i\sqrt{2} \Phi/F\right\}$

$$\mathcal{A}_{1/2} = \sqrt{2} F_{\pi} \left(G_8 + \frac{1}{9} G_{27} \right) \left(M_K^2 - M_{\pi}^2 \right)$$
$$\mathcal{A}_{3/2} = \frac{10}{9} F_{\pi} G_{27} \left(M_K^2 - M_{\pi}^2 \right)$$
$$\mathcal{A}_{5/2} = 0 \qquad ; \qquad \delta_0 = \delta_2 = 0$$

 $[\Gamma(K \to 2\pi) + \delta_I]_{\rm Exp}$

 $|g_8| \approx 5.0$; $|g_{27}| \approx 0.29$

Direc CP violation in $K \rightarrow \pi \pi$

$O\left(p^2,e^2p^0\right) \quad \chi PT \qquad \qquad \mathcal{Q} = \operatorname{diag}\left(\tfrac{2}{3},-\tfrac{1}{3},-\tfrac{1}{3}\right)$

$$\mathcal{L}_{2}^{\Delta S=1} = G_{8} F^{4} \langle \lambda L_{\mu} L^{\mu} \rangle + G_{27} F^{4} \left(L_{\mu 23} L_{11}^{\mu} + \frac{2}{3} L_{\mu 21} L_{13}^{\mu} \right)$$

+ $e^{2} F^{6} G_{8} g_{ew} \langle \lambda U^{\dagger} Q U \rangle$

$$\mathcal{A}_{1/2} = \sqrt{2} F_{\pi} \left\{ G_8 \left[(M_K^2 - M_{\pi}^2) \left(1 - \frac{2}{3\sqrt{3}} \varepsilon^{(2)} \right) - \frac{2}{3} F_{\pi}^2 e^2 \left(g_{ew} + 2 Z \right) \right] \right. \\ \left. + \frac{1}{9} G_{27} \left(M_K^2 - M_{\pi}^2 \right) \right\} \\ \mathcal{A}_{3/2} = \frac{2}{3} F_{\pi} \left\{ \left(\frac{5}{3} G_{27} + \frac{2}{\sqrt{3}} \varepsilon^{(2)} G_8 \right) \left(M_K^2 - M_{\pi}^2 \right) - F_{\pi}^2 e^2 G_8 \left(g_{ew} + 2 Z \right) \right\} \\ \left. \mathcal{A}_{5/2} = 0 \qquad ; \qquad \delta_0 = \delta_2 = 0$$

 $\varepsilon^{(2)} = (\sqrt{3}/4) (m_d - m_u)/(m_s - \hat{m}) \approx 0.011 \qquad ; \qquad Z \approx (M_{\pi^{\pm}}^2 - M_{\pi^0}^2)/(2 e^2 F_{\pi}^2) \approx 0.8$

Weak Currents Factorize at Large N_C

$$A[K^0 \to \pi^0 \pi^0] = 0 \implies A_0 = \sqrt{2} A_2$$

No $\Delta I = \frac{1}{2}$ enhancement at leading order in $1/N_C$

Weak Currents Factorize at Large Nc кφξ ΚØ Κ¢ $O(N_c^2)$ $O(N_C)$ O(1) $A[K^0 \to \pi^0 \pi^0] = 0 \implies A_0 = \sqrt{2} A_2$ No $\Delta I = \frac{1}{2}$ enhancement at leading order in $1/N_C$ $\frac{1}{N_c} \log \left(\frac{M_W}{\mu}\right) \sim \frac{1}{3} \times 4$ • Multiscale problem: OPE Short-distance logarithms must be summed $\frac{1}{N_c} \log \left(\frac{\nu_{\chi}}{M_{\pi}} \right) \sim \frac{1}{3} \times 2$ • Large χ PT logarithms: FSI

Infrared logarithms must also be included $[\delta_l \sim O(1/N_c), \delta_0 - \delta_2 \approx 45^\circ]$

Multi-Scale Problem: Summation of logarithms needed

A large $log(M_1/M_2)$ compensates a $1/N_C$ suppression

1 Short-distance: $\frac{1}{N_c} \log (M_W/\mu)$

Bardeen-Buras-Gerard

$$\Rightarrow \begin{cases} g_8^{\infty} = 1.15^{+0.14}_{-0.17\mu} \pm 0.04_{L_{5,8}} \pm 0.01_{m_s} \\ g_{27}^{\infty} = 0.46 \pm 0.02_{\mu} \end{cases}$$

Cirigliano et al, Pallante et al

2 Long-distance (χPT) : $\frac{1}{N_c} \log (\mu/m_{\pi})$

Kambor et al, Pallante et al

$$g_8^{\text{LO}} = 5.0$$
 \longrightarrow $g_8^{\text{NLO}} = 3.6$
 $g_{27}^{\text{LO}} = 0.286$ \implies $g_{27}^{\text{NLO}} = 0.288$

Cirigliano et al

3 Isospin Violation:

$$g_{27}^{\rm NLO} = 0.296$$

Cirigliano et al

Direc CP violation in $K \rightarrow \pi \pi$

$$N_C \to \infty$$

$$g_{8} = \left(\frac{3}{5}C_{2} - \frac{2}{5}C_{1} + C_{4}\right) - 16 L_{5} \left(\frac{\langle \bar{q} q \rangle(\mu)}{F_{\pi}^{3}}\right)^{2} C_{6}(\mu)$$
$$g_{27} = \frac{3}{5} (C_{2} + C_{1})$$
$$e^{2} g_{8} g_{ew} = -3 \left(\frac{\langle \bar{q} q \rangle(\mu)}{F_{\pi}^{3}}\right)^{2} \left[C_{8}(\mu) + \frac{16}{9} C_{6}(\mu) e^{2} (K_{9} - 2 K_{10})\right]$$

$$\frac{\langle \bar{q} q \rangle(\mu)}{F_{\pi}^{3}} = \frac{M_{K^{0}}^{2}}{(m_{s} + m_{d})(\mu) F_{\pi}} \left\{ 1 - \frac{8M_{K^{0}}^{2}}{F_{\pi}^{2}} (2L_{8} - L_{5}) + \frac{4M_{\pi^{0}}^{2}}{F_{\pi}^{2}} L_{5} \right\}$$

- Equivalent to standard calculations of B_i
- μ dependence only captured for $Q_{6,8}$

Anomalous Dimension Matrix

Only γ_{66} and γ_{88} survive the large-N_C limit

Isospin Breaking in ε'/ε

$$\varepsilon' \sim \omega_{+} \left\{ \frac{\operatorname{Im} A_{0}^{(0)}}{\operatorname{Re} A_{0}^{(0)}} \left(1 + \Delta_{0} + f_{5/2} \right) - \frac{\operatorname{Im} A_{2}}{\operatorname{Re} A_{2}^{(0)}} \right\}$$
$$\sim \omega_{+} \left\{ \frac{\operatorname{Im} A_{0}^{(0)}}{\operatorname{Re} A_{0}^{(0)}} \left(1 - \Omega_{\text{eff}} \right) - \frac{\operatorname{Im} A_{2}^{\text{emp}}}{\operatorname{Re} A_{2}^{(0)}} \right\}$$

$$\omega \equiv \frac{\text{Re} A_2}{\text{Re} A_0} = \omega_+ (1 + f_{5/2}) \quad ; \quad \omega_+ \equiv \frac{\text{Re} A_2^+}{\text{Re} A_0} \quad , \quad \Omega_{IB} = \frac{\text{Re} A_0^{(0)}}{\text{Re} A_2^{(0)}} \cdot \frac{\text{Im} A_2^{\text{non-emp}}}{\text{Im} A_0^{(0)}}$$

Cirigliano, Gisbert, Pich, Rodríguez-Sánchez, 2019

(Cirigliano et al 2003)

×	$\alpha = 0$		$\alpha \neq 0$	
10^{-2}	LO	NLO	LO	NLO
Ω_{IB}	13.7	$17.1^{+8.4}_{-8.3}$	19.6 ± 4.8	26.0 ± 8.2
Δ_0	-0.002	-0.51 ± 0.12	5.6 ± 1.6	$5.7^{+1.7}_{-1.6}$
<i>f</i> _{5/2}	0	0	0	$8.2^{+2.4}_{-2.5}$
$\Omega_{ m eff}$	13.7	$17.6^{+8.5}_{-8.4}$	14.0 ± 4.0	$12.1^{+9.0}_{-8.8}$

 $egin{aligned} \Omega_{
m eff} &= 0.12 \pm 0.09 \ &\equiv \Omega_{IB} - \Delta_0 - f_{5/2} \end{aligned}$

Phenomenological $K \rightarrow \pi \pi$ Fit

	LO-IC	LO-IB	NLO-IC	NLO-IB
Re g ₈	4.99	5.00	3.60 ± 0.14	$3.58^{+0.15}_{-0.14}$
Re g ₂₇	0.286	0.251	0.288 ± 0.014	$0.296 {}^{+ 0.010}_{- 0.003}$
$\chi_0 - \chi_2$	44.8°	48.0°	$(44.8 \pm 1.0)^{\circ}$	$(51.4 \pm 1.3)^{\circ}$

Cirigliano, Gisbert, Pich, Rodríguez-Sánchez, 2019

 $\mathsf{IC} \;\equiv\; [m_u - m_d = lpha = 0]$; $\mathsf{IB} \;\equiv\; [m_u - m_d \neq 0 \;,\; lpha \neq 0]$

 $\pi\pi \to \pi\pi$: $\delta_0 - \delta_2 = (47.7 \pm 1.5)^\circ$

Colangelo-Gasser-Leutwyler '01

A. Pich

Direc CP violation in $K \rightarrow \pi \pi$

Modelling (some) non-factorizable 1/N_C corrections

Buras-Gérard, 1507.06326

$$\begin{split} B_6^{(1/2)} &= 1 - \frac{3}{2} \left[\frac{F_\pi}{F_K - F_\pi} \right] \frac{(m_K^2 - m_\pi^2)}{(4\pi F_\pi)^2} \ln(1 + \frac{\Lambda^2}{\tilde{m}_6^2}) = 1 - 0.66 \,\ln(1 + \frac{\Lambda^2}{\tilde{m}_6^2}) \\ B_8^{(1/2)} &= 1 + \frac{(m_K^2 - m_\pi^2)}{(4\pi F_\pi)^2} \ln(1 + \frac{\Lambda^2}{\tilde{m}_8^2}) = 1 + 0.08 \,\ln(1 + \frac{\Lambda^2}{\tilde{m}_8^2}) \\ B_8^{(3/2)} &= 1 - 2 \frac{(m_K^2 - m_\pi^2)}{(4\pi F_\pi)^2} \ln(1 + \frac{\Lambda^2}{\tilde{m}_8^2}) = 1 - 0.17 \,\ln(1 + \frac{\Lambda^2}{\tilde{m}_8^2}) \end{split}$$

 \longrightarrow $B_6^{(1/2)} \leq B_8^{(3/2)} < 1$

Modelling (some) non-factorizable $1/N_{C}$ corrections

Buras-Gérard, 1507.06326

$$B_6^{(1/2)} = 1 - \frac{3}{2} \left[\frac{F_\pi}{F_K - F_\pi} \right] \frac{(m_K^2 - m_\pi^2)}{(4\pi F_\pi)^2} \ln(1 + \frac{\Lambda^2}{\tilde{m}_6^2}) = 1 - 0.66 \ln(1 + \frac{\Lambda^2}{\tilde{m}_6^2})$$
$$B_8^{(1/2)} = 1 + \frac{(m_K^2 - m_\pi^2)}{(4\pi F_\pi)^2} \ln(1 + \frac{\Lambda^2}{\tilde{m}_8^2}) = 1 + 0.08 \ln(1 + \frac{\Lambda^2}{\tilde{m}_8^2})$$
$$B_8^{(3/2)} = 1 - 2\frac{(m_K^2 - m_\pi^2)}{(4\pi F_\pi)^2} \ln(1 + \frac{\Lambda^2}{\tilde{m}_8^2}) = 1 - 0.17 \ln(1 + \frac{\Lambda^2}{\tilde{m}_8^2})$$

 \rightarrow $B_6^{(1/2)} \leq B_8^{(3/2)} < 1$

- FSI $(1/N_C)$ not included $\rightarrow \delta_I = 0$
- Part of 1-loop χ PT corrections (?)
- Difficult to account in a matching calculation

Modelling (some) non-factorizable $1/N_{C}$ corrections

Buras-Gérard, 1507.06326

$$B_{6}^{(1/2)} = 1 - \frac{3}{2} \left[\frac{F_{\pi}}{F_{K} - F_{\pi}} \right] \frac{(m_{K}^{2} - m_{\pi}^{2})}{(4\pi F_{\pi})^{2}} \ln(1 + \frac{\Lambda^{2}}{\tilde{m}_{6}^{2}}) = 1 - 0.66 \ln(1 + \frac{\Lambda^{2}}{\tilde{m}_{6}^{2}})$$

$$B_{8}^{(1/2)} = 1 + \frac{(m_{K}^{2} - m_{\pi}^{2})}{(4\pi F_{\pi})^{2}} \ln(1 + \frac{\Lambda^{2}}{\tilde{m}_{8}^{2}}) = 1 + 0.08 \ln(1 + \frac{\Lambda^{2}}{\tilde{m}_{8}^{2}})$$

$$B_{8}^{(3/2)} = 1 - 2\frac{(m_{K}^{2} - m_{\pi}^{2})}{(4\pi F_{\pi})^{2}} \ln(1 + \frac{\Lambda^{2}}{\tilde{m}_{8}^{2}}) = 1 - 0.17 \ln(1 + \frac{\Lambda^{2}}{\tilde{m}_{8}^{2}})$$

$$\implies B_{6}^{(1/2)} \leq B_{8}^{(3/2)} < 1$$
Not true in QCD

- FSI $(1/N_C)$ not included $\rightarrow \delta_I = 0$
- Part of 1-loop χ PT corrections (?)
- Difficult to account in a matching calculation

BBG Model

37

$$\mathcal{L}_{\text{eff}} = \frac{f_{\pi}^2}{4} \left\{ \langle D_{\mu} U^{\dagger} D^{\mu} U \rangle + r \langle m (U + U^{\dagger}) \rangle - \frac{r}{\Lambda_{\chi}^2} \langle m (D^2 U + D^2 U^{\dagger}) \rangle \right\}$$

- **1** Equivalent to $\mathcal{O}(p^2) \chi PT + L_5$ term $(L_i = 0, i \neq 5)$ Most L_i are leading in $N_C \rightarrow \mathcal{L}_{eff}$ does not represent large-N_C QCD
- **2** Cut-off loop regularization: $M \sim (0.8 0.9) \text{ GeV}$ $f_{\pi}^2(M^2) = F_{\pi}^2 + 2 l_2(m_{\pi}^2) + l_2(m_K^2)$, $l_2(m_i^2) = \frac{1}{16\pi^2} \left[M^2 - m_i^2 \log\left(1 + \frac{M^2}{m_i^2}\right) \right]$
- **③** Large-N_C factorization assumed to hold in the IR ($\mu = 0$): $\langle J \cdot J \rangle = \langle J \rangle \langle J \rangle$
- **4** M identified with SD renormalization scale μ : $C_i(\mu)$ running Meson evolution \iff Quark evolution
- **5** Vector meson loops included through Hidden U(3) Gauge Symmetry Could partially account for $L_{1,2,3,9,10}$ L_8 still missing $\rightarrow \langle \bar{q}q \rangle$, $Q_{6,8}$ not quite correct even at large-N_C

(b) $\pi\pi$ re-scattering completely missing $\rightarrow \delta_{0,2} = 0$, FSI absent A. Pich Direc CP violation in $K \rightarrow \pi\pi$

