Experimental status of the muon g-2 (and prospects for CLFV measurements)

Dinko Počanić, (for the Muon g-2 Collaboration)

University of Virginia

18th Int'l. Conf. on B-physics BEAUTY 2019 Ljubljana, Slovenia 30 Sep. – 4 Oct. 2019

Lepton magnetic dipole moments

We recall *g*, the g-factor (or dimensionless gyromagnetic ratio):

$$\vec{\mu} = \mathbf{g} \frac{e}{2m} \vec{S}$$
.

- Dirac theory gives $g \equiv 2$ for a point particle.
- Quantum fluctuations give rise to the anomalous magnetic moments:

$$a=\frac{g-2}{2}\neq 0.$$

Lepton magnetic dipole moments

We recall *g*, the g-factor (or dimensionless gyromagnetic ratio):

$$\vec{\mu} = \mathbf{g} \frac{\mathbf{e}}{2m} \vec{S} \,.$$

- Dirac theory gives $g \equiv 2$ for a point particle.
- Quantum fluctuations give rise to the anomalous magnetic moments:

$$a=rac{g-2}{2}
eq 0$$

E.g., electron anomaly is extremely well reproduced by QED:

 $\begin{array}{l} a_{\rm e} = 0.001\,159\,652\,181\,61\,(23)\,\left[{\rm SM},\,\left(\alpha/\pi\right)^5\,\,{\rm order}\right]^* \\ a_{\rm e} = 0.001\,159\,652\,181\,28\,(18)\,\left[{\rm experiment},\,0.15\,{\rm ppb}\right]^\dagger \end{array} \right\} \ \, {\rm agreement}: \ \, \sim 1.1\sigma$

insensitive to massive particle loops ($\Rightarrow a_e$ provides an alternative measurement of α_{em}) But, a_{μ} is much more sensitive than $a_{\rm e}$ to massive loops as: $(m_{\mu}/m_{\rm e})^2 \approx 43,000$.

* Aovama, Kinoshita & Nio, Atoms 7 (2019) 1.

[†] Mohr et al., CODATA 2018, posted online 20 May 2019, to be published.

D. Počanić (UVa)

Muon anomalous magnetic moment (status mid-2019)

3 / 21

Term	Value ($ imes 10^{-11}$)
$QED\;(\gamma+\ell)^*$	116584718.95 ± 0.08
HVP(lo) [Davier et al 19]	6939 ± 40
HVP(nlo) [Davier et al 19]	-98.7 ± 0.9
HVP(nnlo) [Kurz et al 14]	12.4 ± 0.1
HLbL [Prades et al 09]	105 ± 26
EW [Gnendinger et al 13]	154 ± 1
Total SM [Davier et al 19]	$116591829\pm49_{tot}$

* Kinoshita et al 04-12, Kurz et al 16, Kataev 06, Passera 05

Muon g-2 (and CLFV):

Motivation and goals

Example of new physics reach of a_{μ} : Supersymmetry

SUSY contributions to a_{μ} for select parameter sets [after C. Adam et al., EPJ C 171 (2011) 1520, and M. Alexander et al., arXiv:0802.3672].

Muon g-2 (and CLFV):

Motivation and goals

Experiment: use properties of $\mu^+ ightarrow e^+ u_e \bar{ u}_\mu$ decay

high energy positrons versus time

courtesy D. Hertzog

Measurement principles

Experiment: use properties of $\mu^+ ightarrow e^+ u_e \bar{ u}_\mu$ decay

Muon g-2 (and CLFV):

Measurement principles

Measuring ω_a through correlation with p_μ

• If g = 2, difference of spin precession and cyclotron frequencies is zero

Measuring ω_a through correlation with p_{μ}

D. Počanić (UVa)

E-field vertical focusing allowed at p = 3.1 GeV (higher-order au contribution cancelled)

courtesv D. Flav

3-Oct-19/

Muon g-2 (and CLFV): Measurement principles

Muon g - 2: experimental status

Dominated by results of BNL E821: $a_{\mu}^{\exp} = 116592089(54)_{stat}(33)_{syst} \times 10^{-11}$, or $a_{\mu}^{\exp} = 116592089(63)_{tot} \times 10^{-11}$, i.e., a

0.54 ppm result : statistical uncertainty dominates .

How to improve this result?

Muon g - 2: experimental status

Dominated by results of BNL E821: $a_{\mu}^{\exp} = 116592089(54)_{stat}(33)_{syst} \times 10^{-11}$, or $a_{\mu}^{\exp} = 116592089(63)_{tot} \times 10^{-11}$, i.e., a

0.54 ppm result : statistical uncertainty dominates .

How to improve this result?

- \blacktriangleright Use a more intense beam at Fermilab: 21 \times statistics of BNL E821,
- improve a number of contributing systematics factors.

Muon g - 2: experimental status

Dominated by results of BNL E821: $a_{\mu}^{\exp} = 116592089(54)_{stat}(33)_{syst} \times 10^{-11}$, or $a_{\mu}^{\exp} = 116592089(63)_{tot} \times 10^{-11}$, i.e., a

0.54 ppm result : statistical uncertainty dominates .

How to improve this result?

- ▶ Use a more intense beam at Fermilab: 21 × statistics of BNL E821,
- improve a number of contributing systematics factors.

Goal for Fermilab E989:

▶ obtain overall 4× reduction in uncertainty, i.e., 0.14 ppm (total).

8 / 21

3-Oct-19/

Muon g-2 (and CLFV):

Measurement principles

Determining a_{μ}

9 / 21

Muon g-2 (and CLFV):

Experimental method

3-Oct-19/

Determining a_{μ}

🛄 D. Počanić (UVa)

Muon g-2 (and CLFV):

Experimental method

3-Oct-19/

9 / 21

Muon beam and storage

- Inflector magnet nullifies the storage ring field for incoming muons
- Muons that pass through the inflector are off central orbit
- Kicker magnets move the orbit to the centre of the storage ring
- Muons focussed vertically with electrostatic quadrupoles

Kickers

Magnet

anatomy

D. Počanić (UVa)

B = 1.4513 T (~5200 A)

· Non-persistent current: fine-tuning of field in real time

12 C-shaped yokes

- 3 poles per voke
- 72 total poles

Shimming knobs

- · Poles: shape field
- Top hats (30 deg.dipole)
- Wedges (10 deg, dipole, quadrupole)
- Edge shims (360 deg, guadrupole, sextupole)
- Laminations (360 deg, dipole, guadrupole, sextupole)

Muon g-2 (and CLFV):

Main systems

Surface coils (360 deg, guadrupole, sextupole....)

g-2 Magnet in Cross Section

Azimuthally-Averaged Map

3-Oct-19/

D. Počanić (UVa)

Muon g-2 (and CLFV):

Main systems

Calorimeters (ω_a measurement)

D. Počanić (UVa)

Individual positrons from muon decays are detected in 24 calorimeters; E and t extracted from waveforms. Each calo. segmented into 6 × 9 channels: Each PbF₂ crystal is read out by a Geiger-mode avalanche photodiode (SiPM).

Muon g-2 (and CLFV):

Main systems

3-Oct-19/ 2019

D. Počanić (UVa)

Muon g-2 (and CLFV):

Muon g-2 (and CLFV):

Main systems

Present status of the experiment:

- Finished Run-1 and Run-2; analyzing data!
- After DQC we expect:
 - $\sim 1.4 imes$ BNL for Run-1,
 - $\sim 1.8 \times {\rm BNL}$ for Run-2.
- Currently ending shutdown & preparing for Run-3.
- Goal: publish results of Run-1 by end of 2019.

Current results

Current status and plans

D. Počanić (UVa)

р <u>д-2</u>

- FNAL E989 is on track to improve the BNL E821 a_µ precision 4-fold: from 0.54 to ~0.14 ppm.
- Run-3 starts 3-Oct-19, ends 15-May-20.
- Run-4 will share beam with Mu2e commissioning: 6 months for Muon g - 2, 3 months for Mu2e.
- ► Goal to publish Run-1 result by end of 2019:

J-PARC Muon g - 2 and EDM experiment

Different approach: reaccelerated low-emittance muon beam and MRI-type storage ring

Fermilab E989
$$p = 3.1 \text{ GeV}/c$$
 J-PARC sets $E \equiv 0$.
 $\vec{\omega} = -\frac{e}{m} \left[a_{\mu} \vec{B} - \underbrace{a_{\mu} - \frac{1}{\gamma^2 - 1}}_{(g-2)_{\mu}} \vec{\beta} \times \vec{E} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} - \underbrace{\vec{E}}_{c} \right) \right]$

Status and plans:

2019 continuing R&D; funding request; 2020-23 construction;

2023 commissioning;

2024-26 data run.

Goal uncertainties: similar to Fermilab E989, but very different systematics and likely higher sensitivity to muon EDM.

3-Oct-19/

Muon g - 2 in relation to CLFV

CLFV processes are highly suppressed in the SM. Muon g-2 and LFV processes share some of the same physics:

Current and planned experiments:

- MEG and MEG II at PSI: $\mu \rightarrow e\gamma$ search;
- Mu2e at Fermilab and COMET at J-PARC: μ to e conversion search;
- Mu3e at PSI: $\mu^+ \rightarrow e^+ e^- e^+$ search.

D. Počanić (UVa)

Examples of CLFV BSM processes for $\mu^- N \rightarrow e^- N$

 κ ... relative coupling strength; Λ ... effective mass scale.

Muon g-2 (and CLFV): CLFV

Mu2e Mu2e-II with PIP-II **μ−N → e−N** (7 x 10⁻¹³) **COMET Phase-I COMET Phase-II** PRISM → 10⁻¹⁵ **10⁻¹⁷** 10⁻¹⁸ 10⁻¹⁹ Sensitivity: Mu3e Phase-I (1×10^{-12}) **10⁻¹⁵** 10⁻¹⁴ 10⁻¹⁶ 10⁻¹⁷ or smaller Sensitivity: $\mu^+ \rightarrow e^+ \gamma$ MEG II Pursue options for a follow-up experiment (4.2 x 10⁻¹³) 10⁻¹⁴ 10⁻¹⁵ or smaller Sensitivity: 2035 2025 2030 2020 Data Taking **Proposed Future Running** (Approved Experiments)

Searches for Charged-Lepton Flavor Violation in Experiments using Intense Muon Beams

Muon g-2 (and CLFV): CLFV

Extra slides

Key points of the experimental method

- 1. Large quantity of highly polarized muons stored in storage ring: 97 % polarized \Rightarrow forward decays,
- 2. Muon spin precession in magnetic field, ω_a is determined by $g_\mu 2$,
- 3. Magic momentum: $p_{\mu} = 3.09 \text{ GeV}/c$ No effect of \vec{E} on precession when $\gamma_{\mu} = 29.3$,
- 4. EW chiral symmetry breaking (PV) gives lab access to average muon spin direction Number of high energy positrons modulated by ω_a (wiggle plot):

5. To interpret ω_a in terms of g_{μ} , an independent precise measurement of muon beam averaged $\langle B \rangle$ is critical.

The accelerator complex:

- ▶ 8 GeV *p* batch into Recycler,
- split into 4 bunches,
- extract 1 by 1 to strike target,
- ► long FODO channel (alternating focusing and defocusing quads) to collect $\pi \rightarrow \mu\nu$,
- p/π/μ beam enters DR; protons kicked out; π's decay away,
- μ enter storage ring.

D. Počanić (UVa)

Muon g-2 (and CLFV):

Extra slides

3-Oct-19/ 2019

24 / 21

Magnet shimming

Shimming cart

- Lattice of 25 NMR probes (field measurements)
- 4 capacitive gap sensors (pole-pole alignment/ separation), 70-nm resolution
- 4 corner-cube retroreflectors (position), ~25 µm resolution

Laser tracker

• Cart position (r, ϕ , z)

Magnetic field monitoring

- Map *B* at regular intervals (about every two days), with NMR probe trolley: 17 proton NMR probes,
- monitor *B* during DAQ with 378 pNMR fixed probes in 72 stations;
- pulsed pNMR measure B with
 < 10 ppb single shot precision.
- BNL E821 result:
 - 1 ppm (azimuth average)
 - 100 ppm (local variations)

- ► FNAL E989 goal:
 - 1 ppm (azimuth average)
 - 50 ppm (local variations)

V): Extra slides

Laser calibration system

D. Počanić (UVa)

Sends trains of laser pulses of known intensity synchronously on all calo. channels; provides:

- absolute calibration of the SiPMs response,
- short and long term calibration of the of the SiPM gain function,
- debugging of Calo and DAQ systems,
- additional synchronization signals.

Extra slides

Muon g-2 (and CLFV):

3-Oct-19/

Laser calibration system performance

р <u>дородо</u>

Auxilliary detectors:

Fiber harps:

2 locations, 2-axis,

- monitor the muon beam entrance position and angle during commissioning,
- periodically measure betatron oscillations during data taking runs.

Inflector beam monitoring system (IBMS):

2 det's with 2 planes/each (scint-iber), upstream of inflector; 1 vertical plane (x) downstram of inflector (retracted during data taking):

- primary diagnostic tool to develop & verify beam optics tune at injection,
- give relative intensity of each fill,
- timing of the fill (resolution \ll 150 ns, cyclotron period)

Extra slides

Data acquisition system

- Calorimeters, trackers and the laser monitoring system are read out by custom 800 MSPS waveform digitizers.
- ► The DAQ produces a deadtime-free record of each 700 µs muon fill. We get 12 fills per second, for a total data rate of 20 GB/s.
- Data from each calorimeter processed by an NVidia Tesla K40 GPU, which processes 33M threads per event.
- Data are sorted by T-method (chopped islands) and Q-method (current integrated) data, from which timing info can be extracted.
- The DAQ software is MIDAS based.

Muon g-2 (and CLFV):

Extra slides

Subprojects not discussed here in detail—each presenting great challenges, with a huge effort invested to solve them:

- Beam transport, optics and optimization through the accelerator complex (enormous and impressive effort by FNAL accelerator group);
- Inflector magnet optimization (a new one has been built);
- Kicker system improvements;
- Electrostatic quadrupole system improvements;
- Beam dynamics analysis;
- many more . . .

Run-1 ω_a analysis:

- data are hardware blinded (clock tick frequencies known only to 2 external people);
- Each analysis has own private software frequency offset.
- Run-1 has 4 primary data subsets with different Kicker & el-stat Quad settings;
- 6 groups fitting the frequency with multiple methods;
- 3 independent event reconstruction efforts;
- data are corrected for gain & pile-up, binned, and randomized with respect to the cyclotron frequency;
- \blacktriangleright full fit functional forms are producing excellent χ^2 and clean residuals.

Sample fit fn.:

 $N(t) = N_0 \Lambda(t) N_{\text{cbo}}(t) N_{\text{vw}} e^{-t/\tau} \left\{ 1 + A_0 \cdot A_{\text{cbo}}(t) \cos \left[\omega_a(R) \cdot t + \phi_0 + \phi_{\text{cbo}}(t) \right] \right\}$

🔟 D. Počanić (UVa)

Muon g-2 (and CLFV):

Extra slides

3-Oct-19/ 201

Run-1 $\langle \omega_p \rangle$ (*B*-field) analysis

- Fixed probes provide continuous data (outside of muon storage ring volume, SRV) for interpolation between trolley runs.
- Trolley probe measurements (every ~ 2 days) provide detailed mapping of µSRV field (multipole expansion).
- Calibration of trolley probes (TPs) is performed via a special "plunging probe" in the µSRV, as TPs experience B perturbations due to trolley materials, electronics, enclosures.
- Absolute calibration of plunging probe by two methods:
 - $\circ\,$ using spherical-shaped H_2O sample (as was done in BNL E821), and
 - $\,\circ\,$ using polarized ^{3}He (an independent technique newly implemented in FNAL E989).
- ► Two(+) independent blinded analyses; they agree within the blinding bands; a preliminary Run-1 estimate of ⟨B⟩ is imminent.

FNAL Muon g - 2 experiment final uncertainty goals

ω_a systematic uncertainty summary[1].

Category	BNL [ppb]	FNAL Goal [ppb]
Gain Changes	120	20
Pileup	80	40
Lost Muons	90	20
СВО	70	< 30
E-field & Pitch Corrections	50	30
Total (Quadrature Sum)	190	70

a_{μ} uncertainty summary[1,2].

Category	BNL [ppb]	FNAL Goal [ppb]
Total Statistical Uncertainty	460	100
Total Systematic Uncertainty	280*	100
Total (Quadrature Sum)	540 [*]	140

* The net systematic is across 3 running periods.

J. Grange et al. [Muon g-2 Collaboration], arXiv:1501.06858 [physics.ins-det].
 M. Tanabashi et al. (PDG), Phys. Rev. D 98 (2018) 030001.

$<\omega_p>$ (B-field) systematic uncertainty summary[1].

Category	BNL [ppb]	FNAL Goal [ppb]
Absolute Field Calibration	50	35
Trolley Probe Calibrations	90	30
Trolley Measurements Of B ₀	50	30
Fixed Probe Interpolation	70	30
Muon Distribution	30	10
Time-dependent External Magnetic Fields	-	5
Others (Collective Smaller Effects)	100	30
Total (Quadrature Sum)	170	70

Muon g-2 (and CLFV):

Extra slides

E821 Error	Size	Plan for the E989 $g - 2$ Experiment	Goal
	[ppm]		[ppm]
Gain changes	0.12	Better laser calibration; low-energy threshold;	
		temperature stability; segmentation to lower rates;	
		no hadronic flash	0.02
Lost muons	0.09	Running at higher n -value to reduce losses; less	
		scattering due to material at injection; muons	
		reconstructed by calorimeters; tracking simulation	0.02
Pileup	0.08	Low-energy samples recorded; calorimeter segmentation;	
		Cherenkov; improved analysis techniques; straw trackers	
		cross-calibrate pileup efficiency	0.04
CBO	0.07	Higher n-value; straw trackers determine parameters	0.03
E-Field/Pitch	0.06	Straw trackers reconstruct muon distribution; better	
		collimator alignment; tracking simulation; better kick	0.03
Diff. Decay	0.05^{1}	better kicker; tracking simulation; apply correction	0.02
Total	0.20		0.07

E821 Error	Size	Plan for the E989 $g-2$ Experiment	Goal
	[ppm]		[ppm]
Absolute field	0.05	Special 1.45 T calibration magnet with thermal	
calibrations		enclosure; additional probes; better electronics	0.035
Trolley probe	0.09	Absolute cal probes that can calibrate off-central	
calibrations		probes; better position accuracy by physical stops	
		and/or optical survey; more frequent calibrations	0.03
Trolley measure-	0.05	Reduced rail irregularities; reduced position uncer-	
ments of B_0		tainty by factor of 2; stabilized magnet field during	
		measurements; smaller field gradients	0.03
Fixed probe	0.07	More frequent trolley runs; more fixed probes;	
interpolation		better temperature stability of the magnet	0.03
Muon distribution	0.03	Additional probes at larger radii; improved field	
		uniformity; improved muon tracking	0.01
Time-dependent	-	Direct measurement of external fields;	
external B fields		simulations of impact; active feedback	0.005
Others	0.10	Improved trolley power supply; trolley probes	
		extended to larger radii; reduced temperature	
		effects on trolley; measure kicker field transients	0.05
Total	0.17		0.07

4

Ultimate goal of E989

	From	2013	Snowmass white	paper:
(values	given	in units of 10^{-11})	

		•	
Uncertainty	Dav11	Hag11	Future
$\delta \pmb{a}^{SM}_{\mu}$	49	50	35
$\delta \pmb{a}_{\mu}^{HLO}$	42	43	26
δa_{μ}^{HLbL}	26	26	25
$\delta(a_{\mu}^{EXP}-a_{\mu}^{SM})$	80	80	40

2017 updates:

Uncertainty	DHMZ17	KNT17	Future
$\delta \pmb{a}^{SM}_{\mu}$	42	37	35
$\delta a_{\mu}^{\rm HLO}$	33	26	26
$\delta \pmb{a}_{\mu}^{HLbL}$	26	26	25
$\delta(\pmb{a}_{\mu}^{EXP}-\pmb{a}_{\mu}^{SM})$	76	73	40

Ultimate goal of E989

From	2013	Snowmass white	paper:
(values	s given	in units of 10^{-11})	

		•	
Uncertainty	Dav11	Hag11	Future
$\delta \pmb{a}^{SM}_{\mu}$	49	50	35
$\delta \pmb{a}_{\mu}^{HLO}$	42	43	26
δa_{μ}^{HLbL}	26	26	25
$\delta(a_{\mu}^{EXP}-a_{\mu}^{SM})$	80	80	40

2017 updates:

Uncertainty	DHMZ17	KNT17	Future
$\delta \pmb{a}^{SM}_{\mu}$	42	37	35
$\delta a_{\mu}^{\rm HLO}$	33	26	26
$\delta \pmb{a}_{\mu}^{HLbL}$	26	26	25
$\delta(a_{\mu}^{EXP}-a_{\mu}^{SM})$	76	73	40

For the same SM and EXP central values, the discrepancy would increase from $\sim 3.5 \sigma$ to $\sim 7\sigma$.

Muon g-2 (and CLFV): Extra slides

des

The big SR magnet move (2013)

Fermilab E989 collaboration

Muon g-2 (and CLFV):

E989 Collaboration

USA

- Boston
- Cornell _
- Illinois
- James Madison _
- Kentuckv _
- Massachusetts _
- _ Michigan
- Michigan State _
- Mississippi _
- North Central _
- Northern Illinois _
- Reais _
- Virginia _
- Washington _

USA National Labs

- Argonne _
- Brookhaven _
- Fermilab _

- Shanghai Jiao Tong _
- Germany
 - Dresden _

Italy

- Frascati _
- Molise
- Naples _
- Pisa _
- Roma Tor Vergata _
- Trieste _
- Udine _

Korea

- CAPP/ISB
- KAIST _
- Russia
 - Budker/Novosibirsk _
 - JINR Dubna _

United Kinadom \mathbb{Z}

- Lancaster/Cockcroft _
- Liverpool _
- Manchester _
- University College London _

Muon g-2 (and CLFV):

E989 Collaboration

