Charmless *b* decays

Daniel O'Hanlon, on behalf of the LHCb collaboration

Beauty 2019, Ljubljana

Why charmless decays?

- Suppressed in the Standard Model: penguin (loop) and tree diagrams of a similar magnitude
- $b \to s$ and $b \to d$ loop diagrams carry a different weak phase to those in the tree diagrams
- Different strong and weak phases can lead to large CP-violation in decay

$$\begin{aligned} \mathcal{A}_{CP} &= \frac{\Gamma(\overline{B} \to \overline{f}) - \Gamma(B \to f)}{\Gamma(\overline{B} \to \overline{f}) + \Gamma(B \to f)} \\ &= \frac{2|A_1||A_2|\sin\delta\sin\phi}{|A_1|^2 + |A_2|^2 + 2|A_1||A_2|\cos\delta\cos\phi}, \end{aligned}$$

 Inputs to constrain CKM angles, sensitive to new heavy particles off-shell in the loop

Why multibody decays?

 Intermediate resonances and short distance QCD effects result in a strong phase variation across the Dalitz plot
 CPV in decay!

 $B^+ \to \pi^+ \pi^+ \pi^-$ data (Phys. Rev. D 90, 112004 (2014)):

LHCb-PAPER-2019-017

arXiv:1909.05212, Submitted to PRD

LHCb-PAPER-2019-018

• New analysis (3 fb⁻¹ of Run 1 LHCb data):

arXiv:1909.05211, Submitted to PRL

Construct an explicit **amplitude model** for the decay

• Three approaches, that differ in the S-wave (spin-0) description:

'K-matrix': Single unitarity conserving model, with parameters from scattering data

'Isobar':

Individual hand-engineered components for each

contribution, does not conserve unitarity

'Quasi-model-independent':

Fit for a magnitude and phase in bins of the phase-space

The 'K-matrix' S-wave model

Sum over resonance poles

arXiv:hep-ph/0204328 (Anisovich & Sarantsev)

Describes initial B 'production' state, and propagation into all final states:

$$\hat{K}_{uv}(s) = \left(\sum_{\alpha=1}^{N} \frac{g_u^{(\alpha)} g_v^{(\alpha)}}{m_{\alpha}^2 - s} + f_{uv}^{\text{scatt}} \frac{m_0^2 - s_0^{\text{scatt}}}{s - s_0^{\text{scatt}}}\right) f_{A0}(s) \qquad \text{Parameters from scattering data (fixed)}$$

$$\hat{P}_v(s) = \sum_{\alpha=1}^N \frac{\beta_\alpha g_v^{(\alpha)}}{m_\alpha^2 - s} + f_v^{\text{prod}} \frac{m_0^2 - s_0^{\text{prod}}}{s - s_0^{\text{prod}}}$$

Parameters from extracted from fit

The 'K-matrix' S-wave model

Poles

Parameters from scattering data (fixed)

α	m_{α}	$g_1^{(lpha)}[\pi\pi]$	$g_2^{(lpha)}[Kar{K}]$	$g_3^{(lpha)}[4\pi]$	$g_4^{(lpha)}[\eta\eta]$	$g_5^{(lpha)}[\eta\eta']$
1	0.65100	0.22889	-0.55377	0.00000	-0.39899	-0.34639
2	1.20360	0.94128	0.55095	0.00000	0.39065	0.31503
3	1.55817	0.36856	0.23888	0.55639	0.18340	0.18681
4	1.21000	0.33650	0.40907	0.85679	0.19906	-0.00984
5	1.82206	0.18171	-0.17558	-0.79658	-0.00355	0.22358
\bigcirc	$s_0^{ m scatt}$	$f_{11}^{ m scatt}$	$f_{12}^{ m scatt}$	$f_{13}^{ m scatt}$	$f_{14}^{ m scatt}$	$f_{15}^{ m scatt}$
	-3.92637	0.23399	0.15044	-0.20545	0.32825	0.35412
	$s_0^{ m prod}$	m_0^2	s_A	s_{A0}		
	-3.0	1.0	1.0	-0.15		

Channels

Couplings

The 'Isobar' S-wave model

Simple pole, plus a 'rescattering' term:

Phys. Rev. D 92, 054010 (2015), Phys. Rev. D 89, 094013 (2014)

$$A_{\text{source}}(m) = [1 + (m/\Delta_{\pi\pi}^2)]^{-1} [1 + (m/\Delta_{KK}^2)]^{-1}$$
$$A_{\text{scatt}}(m) = A_{\text{source}}(m) f_{\text{rescatt}}(m).$$
$$f_{\text{rescatt}}(m) = \sqrt{1 - \eta(m)^2} e^{2i\delta(m)}$$

Phase

Inelasticity

$$\cot \delta = c_0 \frac{(s - M_s^2)(M_f^2 - s)}{M_f^2 s^{1/2}} \frac{|k_2|}{k_2^2}, \qquad \eta = 1 - \left(\epsilon_1 \frac{k_2}{s^{1/2}} + \epsilon_2 \frac{k_2^2}{s}\right) \frac{M'^2 - s}{s}$$

$$k_2 = \frac{\sqrt{s - 4m_K^2}}{2};$$

Parameters from $\pi\pi \to \pi\pi$ and $\pi\pi \to KK$ scattering data

Phys.Rev. D71 (2005) 074016

The 'QMI' S-wave model

• 17 bins - 14 below the charm veto, 3 above

• Fit an independent magnitude and phase in each bin

Model construction

- Start with components identified by the BaBar analysis of this mode, that used 20x fewer signal candidates Phys. Rev. D72 (2005) 052002
- Include additional components based on a **likelihood ratio test**, with a threshold of 10 units of negative log-likelihood for inclusion

More accurate model for $o(770)^0$ width

(See previous slide) $ ho(770)^0$ width
Gounaris-Sakurai model 🖌
Relativistic Breit-Wigner
Relativistic Breit-Wigner
Relativistic Breit-Wigner
Relativistic Breit-Wigner

 $B^+ \to \pi^+ \pi^+ \pi^-$

LHCb-PAPER-2019-017 LHCb-PAPER-2019-018

narrow resonance

 $B^+ \to \pi^+ \pi^+ \pi^-$

LHCb-PAPER-2019-017 LHCb-PAPER-2019-018

 $\rho(770)^{0}$

• Very little asymmetry in this region as a function of **mass**:

 $A_{\rm CP}(\rho(770)^0) \to 0$

 Also very little asymmetry as a function of helicity angle...

• ...so where is the CP violation?

Almost perfect cancellation!

LHCb-PAPER-2019-017 LHCb-PAPER-2019-018

• But why?

This region is dominated by slowly varying spin 0, and the rapidly varying spin-1 $\rho(770)^0$

Interference term between these is $\sim \cos \theta_{\text{hel}}$, when projecting on mass (integrating over $\cos \theta_{\text{hel}}$) this term **vanishes!**

CP violation is driven by the strong phase of the resonance, varies as a function of mass, symmetric about the pole

$f_2(1270)$

LHCb-PAPER-2019-017 LHCb-PAPER-2019-018

- Very large asymmetry in this region, associated with the $f_2(1270)$ component, an $A_{\rm CP}$ of around 40% in all models
- Robust to systematic effects
- One of the largest CP asymmetries ever observed!

S-wave model projections - comparisons

LHCb-PAPER-2019-017 LHCb-PAPER-2019-018

Agreement between magnitudes is very good

Phases are harder to get right, models rely on different assumptions

S-wave model projections

LHCb-PAPER-2019-017 LHCb-PAPER-2019-018 Correspondence with $B^+ \rightarrow K^+ \pi^+ K^-$

LHCb-PAPER-2019-017 LHCb-PAPER-2019-018

- Possible for strong phase generation via final-state re-scattering: $\pi^+\pi^- \leftrightarrow K^+K^-$ This would imply that there is a relation between the scalar components of the $B^+ \to K^+\pi^+K^-$ and $B^+ \to \pi^+\pi^+\pi^-$ decays
- Large CP asymmetry observed in the re-scattering (~1.0 ~1.5 GeV) range in $B^+ \rightarrow K^+ \pi^+ K^-$ of around 66%, but less in $B^+ \rightarrow \pi^+ \pi^+ \pi^ \frac{2}{V}$ 2.5 Entries / (0.065 GeV²/ c^4 B+ Data LHCb B+ Model LHCb ∇ B- Data 2.0 ····· B- Model Isobar 1.5 LHCB-PAPER-2018-051 1.0 20 0.5 R 0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 $m^{2}(K^{+}K^{-})$ [GeV²/ c^{4}] $m(\pi^{+}\pi^{-}) \,[{\rm GeV}/c^2]$
- To gain more information on this phenomenon would required a coupled channel analysis of both decay modes

Numerical results

LHCb-PAPER-2019-017 LHCb-PAPER-2019-018

• Fit-fractions - the rate if only this component contributed

Component	Isobar	K-matrix	QMI	-
$\rho(770)^0$	$55.5 \pm 0.6 \pm 0.7 \pm 2.5$	$56.5 \pm 0.7 \pm 1.5 \pm 3.1$	$54.8 \pm 1.0 \pm 1.9 \pm 1.0$	_
$\omega(782)$	$0.50 \pm 0.03 \pm 0.03 \pm 0.04$	$0.47 \pm 0.04 \pm 0.01 \pm 0.03$	$0.57 \pm 0.10 \pm 0.12 \pm 0.12$	
$f_2(1270)$	$9.0 \ \pm 0.3 \ \pm 0.8 \ \pm 1.4$	$9.3 \ \pm 0.4 \ \pm 0.6 \ \pm 2.4$	$9.6 \ \pm 0.4 \ \pm 0.7 \ \pm 3.9$	\mathcal{F}_{j}
$ ho(1450)^{0}$	$5.2\ \pm 0.3\ \pm 0.4\ \pm 1.9$	$10.5 \ \pm 0.7 \ \pm 0.8 \ \pm 4.5$	$7.4 \ \pm 0.5 \ \pm 3.9 \ \pm 1.1$	
$ ho_{3}(1690)^{0}$	$0.5 \ \pm 0.1 \ \pm 0.1 \ \pm 0.4$	$1.5 \ \pm 0.1 \ \pm 0.1 \ \pm 0.4$	$1.0 \ \pm 0.1 \ \pm 0.5 \ \pm 0.1$	
S-wave	$25.4 \pm 0.5 \pm 0.7 \pm 3.6$	$25.7 \ \pm 0.6 \ \pm 2.6 \ \pm 1.4$	$26.8 \pm 0.7 \pm 2.0 \pm 1.0$	_

$$f_j = \frac{\int_{\text{PhSp}} |A_j|^2 + |\overline{A}_j|^2 d\text{PhSp}}{\int_{\text{PhSp}} |\sum_j A_j|^2 + |\sum_j \overline{A}_j|^2 d\text{PhSp}}$$

• Quasi-two-body **CP asymmetries** - asymmetry of a single component

Component	Isobar	K-matrix	QMI
$ ho(770)^{0}$	$+0.7 \pm 1.1 \pm 1.2 \pm 1.5$	$+4.2 \pm 1.5 \pm 2.6 \pm 5.8$	$+4.4 \pm 1.7 \pm 2.3 \pm 1.6$
$\omega(782)$	$-4.8 \pm \ 6.5 \pm \ 6.6 \pm \ 3.5$	$-6.2 \pm 8.4 \pm 5.6 \pm 8.1$	$-7.9 \pm 16.5 \pm 14.2 \pm 7.0$
$f_2(1270)$	$+46.8 \pm 6.1 \pm 3.6 \pm 4.4$	$+42.8 \pm 4.1 \pm 2.1 \pm 8.9$	$+37.6 \pm 4.4 \pm 6.0 \pm 5.2$
$ ho(1450)^{0}$	$-12.9 \pm 3.3 \pm 7.0 \pm 35.7$	$+9.0\pm \ \ 6.0\pm 10.8\pm 45.7$	$-15.5 \pm \ 7.3 \pm 14.3 \pm 32.2$
$ ho_{3}(1690)^{0}$	$-80.1 \pm 11.4 \pm 13.5 \pm 24.1$	$-35.7 \pm 10.8 \pm \ 8.5 \pm 35.9$	$-93.2 \pm \ 6.8 \pm \ 8.0 \pm 38.1$
S-wave	$+14.4 \pm 1.8 \pm 2.1 \pm 1.9$	$+15.8 \pm 2.6 \pm 2.1 \pm 6.9$	$+15.0 \pm 2.7 \pm 4.2 \pm 7.0$

$$A_{\rm CP}^{j} = \frac{|\overline{A}_{j}|^{2} - |A_{j}|^{2}}{|\overline{A}_{j}|^{2} + |A_{j}|^{2}}$$

- CP violation has been observed in B, K, and D decays, but not yet in baryon decays
- The $\Lambda_b^0 \to p^+ \pi^- \pi^+ \pi^-$ decay proceeds via tree and loop diagrams with similar contributions, and via numerous intermediate resonances, enhancing the possibility for CP violation
- A previous LHCb analysis performed on Run 1 data observed a 3.30 deviation from CP • symmetry in a single triple-product asymmetry phase-space bin - this result is an update with Run 1 + 6.6 fb⁻¹ of Run 2 data

• Construct triple products of the decay product momentum

$$C_{\hat{T}} \equiv \vec{p}_{p^+} \cdot (\vec{p}_{\pi_{\text{fast}}} \times \vec{p}_{\pi^+})$$

and form the asymmetries according to

$$A_{\widehat{T}} = \frac{N(C_{\widehat{T}} > 0) - N(C_{\widehat{T}} < 0)}{N(C_{\widehat{T}} > 0) + N(C_{\widehat{T}} < 0)}, \qquad \overline{A}_{\widehat{T}} = \frac{\overline{N}(-\overline{C}_{\widehat{T}} > 0) - \overline{N}(-\overline{C}_{\widehat{T}} < 0)}{\overline{N}(-\overline{C}_{\widehat{T}} > 0) + \overline{N}(-\overline{C}_{\widehat{T}} < 0)},$$

with the P and CP violating observables

$$a_P^{\widehat{T}\text{-}\mathrm{odd}} = \frac{1}{2} \left(A_{\widehat{T}} + \overline{A}_{\widehat{T}} \right), \ a_{CP}^{\widehat{T}\text{-}\mathrm{odd}} = \frac{1}{2} \left(A_{\widehat{T}} - \overline{A}_{\widehat{T}} \right).$$

Computed in bins of |Φ|, the angle between p⁺π⁻_{fast} and π⁺π⁻_{slow} (A) and as a function of the polar and azimuthal angles (B) of the proton or Δ⁺⁺ in the Δ⁺⁺ or N^{*+} rest frame, in regions dominated by the (1) a₁ resonance or (2) N^{*+} resonance

LHCb-PAPER-2019-028 (In preparation)

• No evidence for CP violation in any region of the phase space, for any binning scheme

• However, for the region dominated by the $\Lambda_b^0 \rightarrow p^+ a_1 (1260)^-$ decay, P violation on the level of 5.5 σ is observed - the first observation of P violation in a b-baryon decay

Asymmetry $[\%]$		Measurement
$ A_{\widehat{T}} $		$-4.68 \pm 0.99 \pm 0.24$
inar	$\overline{A}_{\widehat{T}}$	$-3.29 \pm 0.99 \pm 0.24$
elim	$a_P^{\widehat{T} ext{-odd}}$	$-3.98 \pm 0.70 \pm 0.17$
P	$a_{C\!P}^{\widehat{T} ext{-odd}}$	$-0.70 \pm 0.70 \pm 0.17$

LHCb-PAPER-2019-028 (In preparation)

• An additional test is performed on the same dataset, using the 'energy' test statistic

$$T \equiv \frac{1}{2n(n-1)} \sum_{i \neq j}^{n} \psi_{ij} + \frac{1}{2\overline{n}(\overline{n}-1)} \sum_{i \neq j}^{\overline{n}} \psi_{ij} - \frac{1}{n\overline{n}} \sum_{i=1}^{n} \sum_{j=1}^{\overline{n}} \psi_{ij},$$

where $\psi_{ij} = \exp(-d_{ij}^2/\delta^2)$, d_{ij} is the distance between candidates i and j, and the value of δ is the characteristic length scale of the kernel (1.6, 2.7, or 13 GeV²/c⁴)

• p-value is constructed using a permutation test, with data split using the sign of $C_{\hat{T}}$ (for P-odd test), or Λ_b^0 flavour (P-even test)

Table 3: p-values for the energy test.

<u>S</u>	δ	$1.6 \ { m GeV^2}/c^4$	$2.7~{ m GeV^2}/c^4$	$13~{ m GeV^2}/c^4$
ina	p-value (CP -conservation, P -even)	0.031	0.0027	0.013
lim	p-value (CP -conservation, P -odd)	0.15	0.069	0.065
Pre	p-value (P -conservation)	$1.3 imes 10^{-7}$	4.0×10^{-7}	0.16

> 5o significance

LHCb-PAPER-2019-028 (In preparation)

Summary

Multi-body decays are the place to study CP violation

Access to overlapping resonances **enhances CP violation**, but also permits measurements of the relative phases

• Observations of large CP violation, and the first observation of CP violation in the interference between resonances in the $B^+ \rightarrow \pi^+ \pi^+ \pi^-$ decay

Provides information on how CP violation manifests in practice - useful for understanding the (essential) **QCD components**, and informs **future studies** (e.g., in charm and baryon decays)

• First observation of parity violation in the decay of a b-baryon in the analysis of $\Lambda_b^0 \to p^+ \pi^- \pi^+ \pi^-$ decays, at the level of 5 σ , although no evidence for CP violation

Backup

species via Cherenkov radiation

Relativistic Breit-Wigner

Problems with this

- Resonances near open decay channels see a drop in amplitude due to conservation of unitarity - total probability to decay to all channels must be conserved
- Unitarity is also violated for nearby **overlapping resonances** of the same spin

 'Pole' masses and widths of resonances near thresholds are also not well replicated by Breit-Wigner lineshapes $\rho(770)^{0}$

 $\rho(770)^0 - \omega(782)$ Mixing

 $\omega(782)$ is forbidden to decay to $\pi^+\pi^-$ due to isospin conservation

However, it can **mix** with the $\rho(770)^0$, causing a drop in the $\rho(770)^0$ amplitude above the mass

 $B^+ \to \pi^+ \pi^+ \pi^-$

f2 width

Figure 99: Comparison of the mass-dependence of the (a) $f_2(1270)$ total width (blue) with its $\pi^+\pi^-$ partial width (red), and its effects on (b), the Breit-Wigner amplitude-squared and (c) the Breit-Wigner phase

f2 width

Figure 15: Data and fit model projections in the $f_2(1270)$ region with (a) freely varied $f_2(1270)$ resonance parameters, and (b) with an additional spin-2 component with mass and width parameters determined by the fit.

Backgrounds and efficiencies

Table 2: Results obtained with different binning schemes; the p-value takes into account systematic effects and is reported for the CP and P conserving hypotheses.

Binning scheme	Dominant contribution	Hypothis	p-value
[A]	Entiro complo	CP conserving	5.0×10^{-3}
$(\mathrm{in} \; \Phi)$	Entire sample	P conserving	$3.5 imes 10^{-7}$
$[A_1]$	$10 \ \mathrm{ma}^{-}$	CP conserving	$4.7 imes 10^{-2}$
$(\mathrm{in} \; \Phi)$	$M_b \rightarrow p a_1$	P conserving	$4.3 imes 10^{-8}$
$[A_2]$	Λ^0 $\Lambda^{*+}\pi^-$	CP conserving	3.4×10^{-3}
$(\mathrm{in} \; \Phi)$	$M_b \rightarrow N \to N$	P conserving	$1.9 imes 10^{-3}$
$[B_1]$	$10 \ \mathrm{mg}^{-}$	CP conserving	$9.8 imes 10^{-2}$
(helicity angles)	$M_b \rightarrow pa_1$	P conserving	$1.8 imes 10^{-5}$
$[B_2]$	Λ^0 , $\Lambda^{\tau*+}$	CP conserving	$6.4 imes 10^{-1}$
(helicity angles)	$M_b \rightarrow M$	P conserving	$6.4 imes 10^{-2}$

Table 3: *p*-values for the energy test.

δ	$1.6 \ { m GeV^2}/c^4$	$2.7~{ m GeV^2}/c^4$	$13 \ { m GeV^2}/c^4$
p-value (CP -conservation, P -even)	0.031	0.0027	0.013
p-value (CP -conservation, P -odd)	0.15	0.069	0.065
p-value (P -conservation)	$1.3 imes 10^{-7}$	$4.0 imes 10^{-7}$	0.16

Figure 3: Distributions of T values under the null hypothesis obtained from permutations, using the energy test with $\delta = 2.7 \,\text{GeV}^2/c^4$ in the P-even and P-odd configurations when searching for CP violation. The values of T for real data are shown as red lines.

Table 4: Definition of the binning scheme [B]. This binning scheme is based on the helicity angles of the decay topology $\Lambda_b^0 \to (N^{*+} \to (\Delta^{++} \to p\pi^+)\pi^-)\pi^-$ where φ is the azimuthal angle of the proton in the Δ^{++} rest frame and $\theta_{\Delta^{++}}(\theta_p)$ is the polar angle of the $\Delta^{++}(p)$ in the $N^{*+}(\Delta^{++})$ rest frame.

Bin number	Polar angles	Azimuthal angles
1	$\begin{array}{l} \theta_p \in [0, \pi/4] \& \theta_{\Delta^{++}} \in [0, \pi/4] \\ \theta_p \in [\pi/2, 3\pi/4] \& \theta_{\Delta^{++}} \in [\pi/2, 3\pi/4] \end{array}$	$ \varphi \in [0,\pi/2]$
2	$\begin{array}{l} \theta_p \in [0, \pi/4] \& \theta_{\Delta^{++}} \in [\pi/4, \pi/2] \\ \theta_p \in [\pi/2, 3\pi/4] \& \theta_{\Delta^{++}} \in [3\pi/4, \pi] \end{array}$	$ \varphi \in [0,\pi/2]$
3	$\begin{array}{l} \theta_p \in [0, \pi/4] \& \theta_{\Delta^{++}} \in [\pi/2, 3\pi/4] \\ \theta_p \in [\pi/2, 3\pi/4] \& \theta_{\Delta^{++}} \in [0, \pi/4] \end{array}$	$ \varphi \in [0,\pi/2]$
4	$\begin{array}{l} \theta_p \in [0, \pi/4] \& \theta_{\Delta^{++}} \in [3\pi/4, \pi] \\ \theta_p \in [\pi/2, 3\pi/4] \& \theta_{\Delta^{++}} \in [\pi/4, \pi/2] \end{array}$	$ \varphi \in [0,\pi/2]$
5	$\begin{array}{l} \theta_p \in [\pi/4, \pi/2] \& \theta_{\Delta^{++}} \in [0, \pi/4] \\ \theta_p \in [3\pi/4, \pi] \& \theta_{\Delta^{++}} \in [\pi/2, 3\pi/4] \end{array}$	$ \varphi \in [0,\pi/2]$
6	$\begin{array}{l} \theta_p \in [\pi/4, \pi/2] \& \theta_{\Delta^{++}} \in [\pi/4, \pi/2] \\ \theta_p \in [3\pi/4, \pi] \& \theta_{\Delta^{++}} \in [3\pi/4, \pi] \end{array}$	$ \varphi \in [0,\pi/2]$
7	$\begin{array}{c} \theta_p \in \overline{[\pi/4, \pi/2] \& \theta_{\Delta^{++}} \in [\pi/2, 3\pi/4]} \\ \theta_p \in [3\pi/4, \pi] \& \theta_{\Delta^{++}} \in [0, \pi/4] \end{array}$	$ \varphi \in [0,\pi/2]$
8	$ \begin{array}{c} \theta_p \in [\pi/4, \pi/2] \& \theta_{\Delta^{++}} \in [3\pi/4, \pi] \\ \theta_p \in [3\pi/4, \pi] \& \theta_{\Delta^{++}} \in [\pi/4, \pi/2] \end{array} $	$ \varphi \in [0,\pi/2]$

(Continued)

	• - · · · · · · ·	
9	$\begin{array}{l} \theta_p \in [0, \pi/4] \& \theta_{\Delta^{++}} \in [0, \pi/4] \\ \theta_p \in [\pi/2, 3\pi/4] \& \theta_{\Delta^{++}} \in [\pi/2, 3\pi/4] \end{array}$	$ \varphi \in [\pi/2,\pi]$
10	$\begin{array}{l} \theta_p \in [0, \pi/4] \& \theta_{\Delta^{++}} \in [\pi/4, \pi/2] \\ \theta_p \in [\pi/2, 3\pi/4] \& \theta_{\Delta^{++}} \in [3\pi/4, \pi] \end{array}$	$ \varphi \in [\pi/2,\pi]$
11	$\begin{array}{l} \theta_p \in [0, \pi/4] \& \theta_{\Delta^{++}} \in [\pi/2, 3\pi/4] \\ \theta_p \in [\pi/2, 3\pi/4] \& \theta_{\Delta^{++}} \in [0, \pi/4] \end{array}$	$ \varphi \in [\pi/2,\pi]$
12	$\begin{array}{l} \theta_p \in [0, \pi/4] \& \theta_{\Delta^{++}} \in [3\pi/4, \pi] \\ \theta_p \in [\pi/2, 3\pi/4] \& \theta_{\Delta^{++}} \in [\pi/4, \pi/2] \end{array}$	$ \varphi \in [\pi/2,\pi]$
13	$\begin{array}{l} \theta_p \in [\pi/4, \pi/2] \& \theta_{\Delta^{++}} \in [0, \pi/4] \\ \theta_p \in [3\pi/4, \pi] \& \theta_{\Delta^{++}} \in [\pi/2, 3\pi/4] \end{array}$	$ \varphi \in [\pi/2,\pi]$
14	$\begin{array}{l} \theta_p \in [\pi/4, \pi/2] \& \theta_{\Delta^{++}} \in [\pi/4, \pi/2] \\ \theta_p \in [3\pi/4, \pi] \& \theta_{\Delta^{++}} \in [3\pi/4, \pi] \end{array}$	$ \varphi \in [\pi/2,\pi]$
15	$\begin{array}{c} \theta_p \in [\pi/4, \pi/2] \& \theta_{\Delta^{++}} \in [\pi/2, 3\pi/4] \\ \theta_p \in [3\pi/4, \pi] \& \theta_{\Delta^{++}} \in [0, \pi/4] \end{array}$	$ \varphi \in [\pi/2,\pi]$
16	$\begin{array}{c} \theta_p \in [\pi/4, \pi/2] \& \theta_{\Delta^{++}} \in [3\pi/4, \pi] \\ \theta_p \in [3\pi/4, \pi] \& \theta_{\Delta^{++}} \in [\pi/4, \pi/2] \end{array}$	$ \varphi \in [\pi/2,\pi]$

$$B^0_{(s)} \to \phi \phi$$

Time dependent, tagged, angular analysis: Separate different helicity components, for B_s^0 and \overline{B}_s^0

Select candidates in window $\pm 25 \text{ MeV}/c^2$ of the known ϕ mass (account for small amount of $f_0(980)$ in the model)

LHCB-PAPER-2019-019 (arXiv:1907.10003)

5fb⁻¹ of data (2011 - 2016)

Tag initial flavour with 'opposite side', and 'same side' kaon flavour taggers, with a tagging power (ϵD^2) of around **5.7%**

$$B^0_{(s)} \to \phi \phi$$

Measurement of CP violating phase:

 $\phi_s^{s\bar{s}s} = -0.073 \pm 0.115 \pm 0.027$

consistent with the Standard Model expectation (upper limit of $|\phi_s^{s\bar{s}s}| < 0.02$ from QCDf), previous measurements, and the most precise single-experiment result to-date

Measurement of CP violating tripleproduct asymmetries, consistent with CP conservation (combination of Run 1 and 2):

 $A_U = -0.003 \pm 0.011 \,(\text{stat}) \pm 0.004 \,(\text{syst}),$ $A_V = -0.014 \pm 0.011 \,(\text{stat}) \pm 0.004 \,(\text{syst}),$

LHCB-PAPER-2019-019 (arXiv:1907.10003)

Direct CP violation parameter also consistent with CP conservation:

 $|\lambda| = 0.99 \pm 0.05 \,(\text{stat}) \pm 0.01 \,(\text{syst})$

 $B^0_{(s)} \to \phi \phi$

$$B^0_{(s)}
ightarrow \phi \phi$$
 future prospects

$B^0_{(s)} ightarrow \phi \phi$ polarisation dependent results

$$\phi_{s,\parallel} = 0.014 \pm 0.055 \,(\text{stat}) \pm 0.011 \,(\text{syst}) \,\text{rad}, \phi_{s,\perp} = 0.044 \pm 0.059 \,(\text{stat}) \pm 0.019 \,(\text{syst}) \,\text{rad}.$$

$$\begin{split} |A_0|^2 &= 0.381 \pm 0.007 \, (\text{stat}) \pm 0.012 \, (\text{syst}), \\ |A_{\perp}|^2 &= 0.290 \pm 0.008 \, (\text{stat}) \pm 0.007 \, (\text{syst}), \\ \delta_{\perp} &= 2.818 \pm 0.178 \, (\text{stat}) \pm 0.073 \, (\text{syst}) \, \text{rad}, \\ \delta_{\parallel} &= 2.559 \pm 0.045 \, (\text{stat}) \pm 0.033 \, (\text{syst}) \, \text{rad}. \end{split}$$