J/ψ -nucleon scattering in P_c^+ pentaquark channels

Urša Skerbiš

ursa.skerbis@ijs.si in collaboration with: Saša Prelovšek Based on: Skerbis and Prelovsek, Phys. Rev. D 99, 094505 (2019)

Ljubljana, October 21st, 2020

Overview

Motivation

Strong decay of P_c^+

Single hadron results Results for scattering

Conclusion

Motivation

- In 2015 charmed pentaquark state P_c^+ in the spectrum $N+J/\psi$
- In 2019 additional analysis showed one additional peak
- upper P_c(4450) peak are in fact two peaks
- no additional info about P_c(4380)
- 2019 results confirmed by D0 collaboration (old Fermilab data)
- P_c was not seen by GlueX experiment $\gamma p \rightarrow J/\psi p$
- most belived interpretation at the moment P_c is bound state of $D^{\bar{0}(*)}\Sigma_c^{(*)}$

Strong decay of P_c^+

•
$$\vec{P} = \vec{p}_{H_1} + \vec{p}_{H_2} = 0$$

- P_c^+ : uudc \bar{c}
- Simulation are made in approximation of 1 channel scattering for J/ψ p
- It should be sufficient to study scattering until $|p_{H_i}|^2 = 2$, we could be able to see both P_c^+ states

• other possible channels:
$$(\bar{D}^0 - \Sigma_c^+, \bar{D}^{*0} - \Sigma_c^+, ...)$$

Example: Scattering in P_c^+ pentaquark candidate channel: for irrep H^- and $J = \frac{3}{2}, S = \frac{3}{2}, L = 0$ and $|p|^2 = 0$

An. Op:
$$O^{|p|,J,m_J,L,S} = \sum_{\substack{m_L,m_S\\m_{S1},m_{S2}}} C_{Lm_L,Sm_S}^{Jm_J} C_{s_1m_{S1},s_2m_{S2}}^{Sm_S} \sum_{R \in O} Y_{Lm_L}^*(\widehat{Rp}) H_{m_{S1}}^{(1)}(Rp) H_{m_{S2}}^{(2)}(-Rp)$$

Results for scattering in irrep G_1^- (pentaquark candidate channel)

F

• state with
$$|p|^2 = 0$$
: $(J = \frac{1}{2}, S = \frac{1}{2}, L = 0)$

- state with $|p|^2 = 1$: $(J = \frac{1}{2}, S = \frac{1}{2}, L = 0),$ $(J = \frac{1}{2}S = \frac{3}{2}, L = 2)$
- states with $|p|^2 = 2$: $(J = \frac{1}{2}, S = \frac{1}{2}, L = 0)$, $(J = \frac{1}{2}S = \frac{3}{2}, L = 2)$, $(J = \frac{7}{2}, S = \frac{3}{2}, L = 2)$

degeneration due to the spin of the particles # of states in the non-interacting limit

Prediction

Phase shift: Th: $\cot \delta = \frac{2Z_{0,0}\left(1; \left(|\vec{p}|\frac{L}{2\pi}\right)^2\right)}{\sqrt{\pi L|\vec{p}|}}$

Exp:
$$\cot \delta_I(E) = \frac{M^2 - E^2}{E \Gamma(E)}$$

Result

All calculated energies $J/\psi N$

All calculated energies $\eta_c N$

Comparation between lattice and exp results GlueX experiment

- $\gamma p \rightarrow P_c \rightarrow J/\psi p$
- P_c coupled only to the $J/\psi N$ channel
- P_c is not observed

LHCb and D0 experiment

- P_c is not coupled only to $J/\psi N$ channel
- *P_c* is observed

Comment:

- the P_c is probably not coupled only to the $J/\psi N$ channel
- experimental results and our lattice results agree
- Lattice study of coupled channels $(\bar{D}^0 \Sigma_c, \bar{D}^{*0} \Sigma_c, J/\psi N,...)$ is needed

Conclusion

- Results of one channel approximation for $J/\psi N$ scattering including the P_c^+ channels
- Degeneration of states is caused by spin of particles, all these states are observed
- In our approximation there is no sign of extra eigenstate or significant energy shift, which would indicate to P_c^+ state
- P_c^+ is probably a result of other neglected effects (coupled channels effect,...)

Old LHCb results for P_c

Prediction of spectrum for P_c coupled only to $J/\psi - N$ channel

JP	Ι	$m_M + m_B$ [MeV]	М	В
1-	0	3021	<i>n</i> .	
2	Ū	4034	1/2/2	р р
		4319	\bar{D}^0	$\frac{\rho}{\Sigma^+}$
		4313	 ⊡*0	Σ^{c}
	1	4352		L_c
	1	4332	χc0 χ 1	p
	2	4440	$\frac{\chi_{CI}}{L/a/s}$	p
	2	4054	5/ψ 5*0	$\frac{\rho}{\Sigma^+}$
1+		4401	D	<u> </u>
2	0	4352	χ_{c0}	р
		4448	χ_{c1}	р
	1	3921	η_c	р
		4034	J/ψ	p
		4319	D^0	Σ_c^+
		4461	D^{*0}	Σ_c^+
	2	4352	χ_{c0}	р
		4448	χ_{c1}	р
3-	0	4034	J/ψ	р
2		4461	\bar{D}^{*0}	Σ_c^+
	1	4352	χ_{c0}	р
		4448	χ_{c1}	р
	2	3921	η_c	р
		4034	J/ψ	р
		4319	\bar{D}^0	Σ_c^+
		4461	\bar{D}^{*0}	Σ_c^+

JP	Ι	$m_M + m_B$ [MeV]	М	В
$\frac{3}{2}^{+}$	0	4448	χ_{c1}	р
-	1	3921	η_c	р
		4034	J/ψ	р
		4319	$\overline{D}{}^{0}$	Σ_{c}^{+}
		4461	$ar{D}^{*0}$	Σ_c^+
	2	4352	χ_{c0}	р
		4448	χ_{c1}	р
$\frac{5}{2}$ -	1	4448	χ_{c1}	р
2	2	3921	η_c	р
		4034	J/ψ	р
		4319	\bar{D}^0	Σ_c^+
		4461	\bar{D}^{*0}	Σ_c^+
5+	1	4034	J/ψ	р
2		4461	\bar{D}^{*0}	Σ_c^+
	2	4352	χ_{c0}	p
		4448	χ_{c1}	р

Combining single hadron correlators

- $\vec{P} = p_{H_1}^2 + p_{H_2}^2 = 0$
- Operators in Partial wave method:

 $O^{|p|,J,m_J,L,S} = \sum_{m_L,m_S,m_{s1},m_{s2}} C_{Lm_L,Sm_S}^{Jm_J} C_{s_1m_{s1},s_2m_{s2}}^{Sm_S} \sum_{R \in O} Y_{Lm_L}^*(\widehat{Rp}) H_{m_{s1}}^{(1)}(Rp) H_{m_{s2}}^{(2)}(-Rp)$

• Subduction to irrep: $O_{|p|,\Gamma,r}^{[J,L,S]} = \sum_{m_J} S_{\Gamma,r}^{J,m_J} O^{|p|,J,m_J,L,S}$

irrep
G_1
Н
$H\oplus G_2$
$G_1 \oplus H \oplus G_2$

- All explicit expressions for H₁(p)H₂(-p) operators : (S. Prelovsek, U.S., C.B. Lang ; JHEP 2017(1), 129.).
- Subduction coefficients S^{J,m_J} are given in: (J. Dudek, et.all; PRD 2010(82), 034508)

Results for the H^- irrep

Quantum number basis for $J/\psi - N$ -part 1

irrep	type-number	p ²	J	1	5
G_1^-	1	0	1/2	0	1/2
-	2	1	1/2	0	12
	3	1	1/2	2	32
	4	2	1/2	0	1/2
	5	2	1/2	2	32
	6	2	7/2	2	32
G ₁ ⁺	1	1	1/2	1	1/2
-	2	1	1/2	1	3
	3	2	1/2	1	12
	4	2	1/2	1	32
	5	2	$\frac{7}{2}$	3	32
G_2^-	1	1	52	2	32
-	2	2	52	2	12
	3	2	52	2	32
	4	2	52	4	32
G_2^+	1	1	5/2	1	37
-	2	2	52	3	12
	3	2	52	1	32
	4	2	52	3	32

Quantum number basis for $J/\psi - N$ -part 2

irrep	type-number	р ²	J	L	5
Н_	1	0	32	0	32
	2	1	3	2	12
	3	1	32	0	32
	4	1	32	2	32
	5	2	32	0	32
	6	2	32	2	32
	7	2	52	2	1/2
	8	2	52	2	32
	9	2	52	4	32
	10	2	$\frac{7}{2}$	2	32
H^+	1	1	32	1	1/2
	2	1	<u>3</u> 2	1	<u>3</u> 2
	3	1	<u>3</u> 2	3	<u>3</u> 2
	4	2	<u>3</u> 2	1	1 2
	5	2	32	3	32
	6	2	52	3	$\frac{1}{2}$
	7	2	<u>5</u> 2	1	32
	8	2	52	3	32
	9	2	$\frac{7}{2}$	3	1/2

Quantum number basis for $\eta_c - N$

irrep	type-number	$ p ^2$	J	\mathcal{L}	S
G_1^-	1	0	$\frac{1}{2}$	0	$\frac{1}{2}$
_	2	1	$\frac{\overline{1}}{2}$	0	$\frac{\overline{1}}{2}$
	3	2	$\frac{1}{2}$	0	$\frac{1}{2}$
G_1^+	1	1	$\frac{\overline{1}}{2}$	1	$\frac{\overline{1}}{2}$
	2	2	$\frac{\overline{1}}{2}$	1	$\frac{\overline{1}}{2}$
G_2^-	1	2	<u>5</u> 2	2	$\frac{\overline{1}}{2}$
G_2^+	1	2	$\frac{5}{2}$	3	$\frac{1}{2}$
H^{-}	1	1	$\frac{3}{2}$	2	$\frac{1}{2}$
	2	2	3/2	2	$\frac{\overline{1}}{2}$
	3	2	$\frac{\overline{5}}{2}$	2	$\frac{\overline{1}}{2}$
H^+	1	1	$\frac{\overline{3}}{2}$	1	$\frac{\overline{1}}{2}$
	2	2	32	1	$\frac{\overline{1}}{2}$
	3	2	<u>3</u> 2	3	$\frac{\overline{1}}{2}$