Introduction	Experiment	Lattice QCD approach	Interpolating operators	GEVP	Preliminary results	Conclusion

Z_b tetraquark channel with lattice QCD

Mitja Šadl

advisor: Assoc. Prof. Dr. Saša Prelovšek Komelj

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Introduction	Experiment	Lattice QCD approach	Interpolating operators	GEVP	Preliminary results	Conclusion
000	00		O	○	000	00
<u> </u>						

Contents

2 Experiment

- 3 Lattice QCD approach
- Interpolating operators

5 GEVP

6 Preliminary results

Introduction Experiment Lattice QCD approach Interpolating operators GEVP Over Preliminary results Conclusion over Quantum chromodynamics (QCD)

- fundamental quantum field theory of quarks (q) and gluons (g)
- the Lagrangian:
 - $\mathscr{L} = \sum_{q} \overline{\psi}_{q,s} \left(i \gamma^{\mu} \partial_{\mu} \delta_{ab} g_{s} \gamma^{\mu} t^{C}_{ab} A^{C}_{\mu} m_{q} \delta_{ab} \right) \psi_{q,b} \frac{1}{4} F^{A}_{\mu\nu} F^{A\mu\nu}$

・ロト ・ 一下・ ・ コト ・ 日 ・ - 日 ・

- ψ quark field
- A_{μ} gluon gauge field
- ab-initio predictive methods for QCD:
 - quantum chromodynamics on the lattice (lattice QCD)
 - perturbative expansions in the coupling

Introduction Experiment Lattice QCD approach Interpolating operators QEVP of Octo Conclusion of Octo Conclus

- fundamental quantum field theory of quarks (q) and gluons (g)
- the Lagrangian:

$$\mathscr{L} = \sum_{q} \overline{\psi}_{q,a} \left(i \gamma^{\mu} \partial_{\mu} \delta_{ab} - g_{s} \gamma^{\mu} t^{C}_{ab} A^{C}_{\mu} - m_{q} \delta_{ab} \right) \psi_{q,b} - \frac{1}{4} F^{A}_{\mu\nu} F^{A\mu\nu}$$

$$\psi$$
 – quark field

- A_{μ} gluon gauge field
- ab-initio predictive methods for QCD:
 - quantum chromodynamics on the lattice (lattice QCD)
 - perturbative expansions in the coupling

Introduction Experiment Lattice QCD approach Interpolating operators QEVP of Octo Conclusion of Octo Conclus

- fundamental quantum field theory of quarks (q) and gluons (g)
- the Lagrangian:

$$\mathscr{L} = \sum_{q} \overline{\psi}_{q,a} \left(i \gamma^{\mu} \partial_{\mu} \delta_{ab} - g_{s} \gamma^{\mu} t^{C}_{ab} A^{C}_{\mu} - m_{q} \delta_{ab} \right) \psi_{q,b} - \frac{1}{4} F^{A}_{\mu\nu} F^{A\mu\nu}$$

$$\psi$$
 – quark field

$$A_{\mu}$$
 – gluon gauge field

- ab-initio predictive methods for QCD:
 - quantum chromodynamics on the lattice (lattice QCD)
 - perturbative expansions in the coupling

- The theory is discretised onto a four-dimensional spacetime lattice
 - quark fields lattice sites
 - gauge fields links between sites
- lattice spacing a
- quantities extracted from Euclidean (imaginary-time) correlation functions
- Monte-Carlo methods

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

|▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - 釣風()

- イロト イヨト イヨト イヨト ヨー つう

es a co

Experimental discovery of the Z_b tetraquarks

Experiment Lattice QCD approach Interpolating operators GEVP Preliminary results Conclusion

• the Belle collaboration first observed two charged bottomonium-like resonances in $\Upsilon(5S) \rightarrow \Upsilon(nS)\pi^+\pi^-, h_b(mP)\pi^+\pi^-,$ (n = 1, 2, 3; m = 1, 2)

Introduction

name	valence quark content	m [MeV]	$I^G(J^{PC})$	discovery year	reference
$Z_b(10610)$		10607.2	$1^+(1^{+-})$	2011	 [A. Bondar et al. (Belk), Phys. Rev. Lett. 108, 122001 (2012).] and
$Z_b(10650)$	ЬБ	10652.2	$1^+(1^{+-})$	2011	[A. Garmash et al. (Belle), Phys. Rev. D91, 072003 (2015).] for both

- $Z_b(10610)$ and $Z_b(10650)$ decay also to $B\overline{B}^*$ and $B^*\overline{B}^*$ respectively
 - these are the dominant decay channels

Introduction $\underbrace{\text{Experiment}}_{000}$ $\underbrace{\text{Lattice QCD approach}}_{000}$ $\underbrace{\text{Interpolating operators}}_{0}$ $\underbrace{\begin{array}{c} \text{GEVP}\\ 0\end{array}}_{000}$ $\underbrace{\begin{array}{c} \text{Preliminary results}\\ 0\end{array}}_{000}$ $\underbrace{\begin{array}{c} \text{Conclusion}\\ 0\end{array}}_{000}$

Experimental discovery of the Z_b tetraquarks

- properties incompatible with a $q\overline{q}$ structure
- masses few MeV above the thresholds for the open beauty channel $B\overline{B}^*$ and $B^*\overline{B}^*$
- this suggests a "molecular" nature of these states, which might explain most of their observed properties

Introduction Experiment Lattice QCD approach Interpolating operators GEVP Preliminary results Conclusion 000 00 00 00 00 00 00

Lattice QCD - scattering analysis

- Lüscher scattering formalism:
 - eigen-energies of a correlation function
 ⇒ two hadron scattering amplitudes
 ⇒ mass and decay width
- rigorously treating Z_b tetraquark with lattice QCD:
 - scattering matrix for at least 7 coupled channels
 - a severe challenge

Figure: non-interacting energies $E(L) = \sum_{i=1,2} \sqrt{m_i^2 + p_i^2} + \Delta E,$ $\vec{p}_i = \frac{2\pi}{L} \vec{n}_i$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ▲□

- b and \overline{b} infinitely heavy $(m_b
 ightarrow \infty)$ and static
 - on a distance r
 - their spins conserved quantities
- compute the potential V(r) of the static quarks in the presence of the light quarks, \Rightarrow potential of B and \overline{B}

Born-Oppenheimer approximation:

 solve the Schrödinger equation with the computed potential V(r)

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへの

Symmetries of the static limit

- j_{z,light} = z-component of the angular momentum of the light quarks
- $C \circ P =$ combined parity and charge conjugation
- ε = P_x = x-parity = reflection along an axis orthogonal to the separation axis e. g. x-axis
- my advisor has considered the case $S_{\text{heavy}} = 1$, $j_{z,\text{light}} = 0$, CP = -1, $\varepsilon = -1$ [S. Prelovšek, H. Bahtiyar and J. Petković (2019), [arXiv:1912.02656].]

shematic presentation of operators for a specific set of quantum numbers $(S_{\text{heavy}} = 0, j_{z,\text{light}} = 0, CP = +1, \varepsilon = +1)$: $O_{7} = O^{h_{b}a_{0}(0)} \propto \left[\overline{b}P_{-}\gamma_{5}b\right] \left[\overline{q}\mathbb{I}q\right]_{\vec{n}=\vec{0}}$ $O_8 = O^{h_b a_0(1)} \propto \left[\overline{b}P_-\gamma_5 b\right] \left(\left[\overline{q}\mathbb{I}q\right]_{\vec{p}=\hat{e}_z} + \left[\overline{q}\mathbb{I}q\right]_{\vec{p}=-\hat{e}_z} \right)$

Introduction Experiment Lattice QCD approach Interpolating operators of Preliminary results Conclusion of Generalized eigenvalue problem (GEVP)

• two-point correlation functions

$$C_{ij}(t) = \langle 0 | O_i(t) O_j^{\dagger}(0) | 0
angle = \sum_n \langle 0 | O_i | n
angle \langle n | O_j^{\dagger} | 0
angle e^{-E_n t}$$

• overlaps:

$$Z_i^{(n)} = \langle 0 | \hat{O}_i | n \rangle, \qquad Z_j^{(n)*} = \langle n | \hat{O}_j^{\dagger} | 0 \rangle$$

eigen-energies E_n extracted using the GEVP approach

$$\sum_{j=1}^{N} C_{ij}(t) v_{j}^{(n)}(t,t_{0}) = \sum_{j=1}^{N} \lambda^{(n)}(t,t_{0}) C_{ij}(t_{0}) v_{j}^{(n)}(t,t_{0}),$$

where $n = 1, \ldots, N$ and $t > t_0$

$$\lambda^{(n)}(t,t_0) = e^{-E_n(t-t_0)} = Ae^{-E_n t}$$

Introduction Experiment Lattice QCD approach Interpolating operators of Preliminary results Conclusion of Generalized eigenvalue problem (GEVP)

• two-point correlation functions

$$C_{ij}(t) = \langle 0 | O_i(t) O_j^{\dagger}(0) | 0
angle = \sum_n \langle 0 | O_i | n
angle \langle n | O_j^{\dagger} | 0
angle e^{-E_n t}$$

overlaps:

$$Z_i^{(n)} = \langle 0 | \hat{O}_i | n \rangle, \qquad Z_j^{(n)*} = \langle n | \hat{O}_j^{\dagger} | 0 \rangle$$

• eigen-energies E_n extracted using the GEVP approach

$$\sum_{j=1}^{N} C_{ij}(t) v_{j}^{(n)}(t,t_{0}) = \sum_{j=1}^{N} \lambda^{(n)}(t,t_{0}) C_{ij}(t_{0}) v_{j}^{(n)}(t,t_{0}),$$

where $n = 1, \ldots, N$ and $t > t_0$

$$\lambda^{(n)}(t,t_0) = e^{-E_n(t-t_0)} = Ae^{-E_n t}$$

Introduction Experiment Lattice QCD approach Interpolating operators of Preliminary results Conclusion of Generalized eigenvalue problem (GEVP)

• two-point correlation functions

$$C_{ij}(t) = \langle 0 | O_i(t) O_j^{\dagger}(0) | 0
angle = \sum_n \langle 0 | O_i | n
angle \langle n | O_j^{\dagger} | 0
angle e^{-E_n t}$$

overlaps:

$$Z_i^{(n)} = \langle 0 | \hat{O}_i | n
angle, \qquad Z_j^{(n)*} = \langle n | \hat{O}_j^{\dagger} | 0
angle$$

• eigen-energies E_n extracted using the GEVP approach

$$\sum_{j=1}^{N} C_{ij}(t) v_{j}^{(n)}(t,t_{0}) = \sum_{j=1}^{N} \lambda^{(n)}(t,t_{0}) C_{ij}(t_{0}) v_{j}^{(n)}(t,t_{0}),$$

where $n = 1, \ldots, N$ and $t > t_0$

$$\lambda^{(n)}(t,t_0) = e^{-E_n(t-t_0)} = Ae^{-E_n t}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Introduction Experiment Lattice QCD approach Interpolating operators O Preliminary results Conclusion

• effective energies:

$$E_{\mathrm{eff}}^{(n)}(t,t_0)=-rac{\partial\log\left(\lambda^{(n)}(t,t_0)
ight)}{\partial t},\qquad E_n=\lim_{t o\infty}E_{\mathrm{eff}}^{(n)}(t,t_0)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

example for
$$r = 1$$
, $t_0 = 2$ and these 5 interpolating operators
a $O_1 = O^{B\bar{B}^*} \propto (P_-\gamma_3)_{AB}(P_-\gamma_5)_{CD} \ (\bar{b}_C q_B) \ (\bar{q}_A b_D)$
a $O_2 = O^{B\bar{B}^{*'}} \propto (P_-\gamma_3)_{AB}(P_-\gamma_5)_{CD} \ (\bar{b}_C \nabla^2 q_B) \ (\nabla^2 \bar{q}_A b_D)$
a $O_3 = O^{\eta_b \rho(0)} \propto [\bar{b}P_-\gamma_5 b] \ [\bar{q}\gamma_3 q]_{\vec{p}=\vec{0}}$
a $O_4 = O^{\eta_b \rho(1)} \propto [\bar{b}P_-\gamma_5 b] \ ([\bar{q}\gamma_3 q]_{\vec{p}=\hat{e}_z} + [\bar{q}\gamma_3 q]_{\vec{p}=-\hat{e}_z})$
b $O_5 = O^{\eta_b \rho(2)} \propto [\bar{b}P_-\gamma_5 b] \ ([\bar{q}\gamma_3 q]_{\vec{p}=2\hat{e}_z} + [\bar{q}\gamma_3 q]_{\vec{p}=-2\hat{e}_z})$

• effective energies:

$$E_{\rm eff}^{(n)}(t,t_0) = -\frac{\partial \log(\lambda^{(n)}(t,t_0))}{\partial t}, \qquad E_n = \lim_{t \to \infty} E_{\rm eff}^{(n)}(t,t_0)$$

example for $S_{\rm heavy}=$ 0, $j_{z,{\rm light}}=$ 0, CP=+ 1, $\epsilon=+$ 1, r= 1, $t_0=$ 2:

Preliminary results

Introduction	Experiment	Lattice QCD approach	Interpolating operators	GEVP	Preliminary results	Conclusion
000	00		O	○	000	●○
Conclu	sion					

- there are many phenomenological studies on spectroscopy of exotic hadrons with heavy quarks
- but only one group (except of my supervisor) made studies based on the fundamental theory lattice QCD considering the Z_b tetraquark
- this tetraquark is due to experimental discovery of great interest

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

• looks like no attraction in my channel

Introduction	Experiment	Lattice QCD approach	Interpolating operators	GEVP	Preliminary results	Conclusion
						••

Thank you for your attention.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●