Nu cosmologies and signals Jeff Dror

 2004.09511 JD, David Dunsky, Lawrence Hall, Keisuke Harigaya
 1908.03227 JD, Takashi Hiramatsu, Kazunori Kohri, Hitoshi Murayama, Graham White

Outline

Left-right cosmology

Leptogenesis

- Overview of See-saw+leptogenesis
 - \circ The need for a restored symmetry
 - Remnants from phase transitions
 - Cosmic string detection
 - Detecting (high-scale!) leptogenesis

• UV perspective on new physics

- Overview of left-right ("LR") theories
- Cosmologies of right-handed neutrino dark matter
- Freeze-out and dilution
 - Mechanism
 - Parameter space
- Freeze-in

Freeze-in

Leptogenesis

Physics in the ultraviolet (high energies)

4/36

Physics in the UV LR theories Freeze-out + dilution Freeze-in Leptogenesis Cosmic remnants

Physics in the UV LR theories Freeze-out + dilution Freeze-in Leptogenesis Cosmic remnants 4/36

Hints of new physics

Physics in the UV LR theories Freeze-out + dilution Freeze-in Leptogenesis Cosmic remnants 4/36

LR theories

Physics in the UV LR theories Freeze-out + dilution Freeze-in Leptogenesis Cosmic remnants $\frac{5}{36}$

6/36

• Left-right theories create:

Symmetry between left and right-chiral particles in the UV

• Extend gauge group from Standard Model to

 $SU(3)_C \times SU(2)_L \times SU(2)_R \times U(1)_{B-L}$

- Can only be a broken symmetry
- New gauge bosons Z_R, W_R^{\pm}
- \circ New neutral leptons, N_i
- \circ Scale of symmetry breaking, $v_R \gg v$

[1906.05609 - ATLAS]

- $\,\circ\,$ Right-handed neutrinos can be much lighter then gauge sector
- $\,\circ\,$ Will be ignorant to ${\sf SU}(2)_{\it R}{\sf -}{\sf symmetry}$ breaking sector

Neutral leptons

 \circ Standard Model + 3 right-handed neutrinos (N_i)

 $-\mathcal{L} \supset y_{ij}(\ell_i N_j) H_L + \qquad \qquad y_{ij}'' M_R(N_i N_j) + \text{h.c.}$

Physics in the UV LR theories Freeze-out + dilution Freeze-in Leptogenesis Cosmic remnants 7/36

Neutral leptons

 \circ Standard Model + 3 right-handed neutrinos (N_i)

Physics in the UV LR theories Freeze-out + dilution Freeze-in Leptogenesis Cosmic remnants 7/36

Neutral leptons

 $7/_{36}$

 \circ Standard Model + 3 right-handed neutrinos (N_i)

$$-\mathcal{L} \supset y_{ij}(\ell_i N_j) H_L + \frac{y'_{ij}}{\Lambda} (\ell_i \ell_j) H_L^2 + y''_{ij} M_R(N_i N_j) + \text{h.c.}$$

$$\longleftarrow \text{ choose } y'_{ij} \propto \delta_{ij}$$

 \circ Simple left-right symmetric models have relation between y'_{ij} and y''_{ij} ,

$$-\mathcal{L} \supset y_{ij} \left(\ell_i N_j\right) H_L + \frac{c \, y'_{ij}}{v_R} \left(\ell_i \, \ell_j\right) H_L^2 + y'_{ij} \, v_R \left(N_i \, N_j\right)$$

- Residual left-right symmetry
- $\begin{array}{ccc} \circ & M_R = v_R, \ \Lambda = v_R/c & & N_{2,3} & E \\ \circ & c \text{- free parameter} & & N_1 & & \Delta_R \\ & & (c \gtrsim 1 \Rightarrow \text{ fine-tuning}) & & H \end{array}$

• Neutral lepton masses

Neutrino masses

$$\begin{pmatrix} \nu_i & N_i \end{pmatrix} \begin{pmatrix} cM_{ij} v^2 / v_R^2 & y_{ij}v \\ y_{ji}v & M_{ij} \end{pmatrix} \begin{pmatrix} \nu_j \\ N_j \end{pmatrix}$$

• Physical neutrino masses:

- Either term may dominate (and can cancel with fine-tuning)
- $\circ\,$ Heavy states are natural dark matter candidate " N_i "
- Need to answer...

stable? cosmology? Mass?

Does there exist a range of parameters leading to cold N_1 with $\Omega_{N_1} = \Omega_{DM}$?

- $\,\circ\,$ Will not consider matter content beyond minimal LR theory
- Free(*ish*) parameters:

Right-handed symmetry breaking scale v_R Mass of right-handed neutrinos M_i Mixing matrix between neutrinos y_{ij} Interpolation parameter between LR theoriesc

- Constraints:
 - Stability of N_1
 - Observed neutrino masses

Stability

• Dominant decay processes:

 $\circ W_R - W_L$ mixing can be $\mathcal{O}(1)$ or 1-loop suppressed

 $\,\circ\,$ Assuming N_1 is sufficiently stable can it get the right relic density? $\,\circ\,$ Options:

Freeze-out

Dodelson-Widrow

Freeze-in

Freeze-out+dilution

 $\,\circ\,$ Assuming N_1 is sufficiently stable can it get the right relic density? $\,\circ\,$ Options:

Freeze-outStability \Rightarrow couplings too smallDodelson-Widrow $\langle \sigma v \rangle \sim \frac{g^2 s_{\theta}^2}{m_W^2} \sim \frac{1}{(10 \text{ TeV})^2}$
But need $s_{\theta} \ll 1$ Freeze-out+dilution

Physics in the UV LR theories Freeze-out + dilution Freeze-in Leptogenesis Cosmic remnants 11/36

 $\,\circ\,$ Assuming N_1 is sufficiently stable can it get the right relic density? $\,\circ\,$ Options:

 $\,\circ\,$ Assuming N_1 is sufficiently stable can it get the right relic density? $\,\circ\,$ Options:

Freeze-out

Dodelson-Widrow

Freeze-in

Subject of this work

Freeze-out+dilution

 $\,\circ\,$ Assuming N_1 is sufficiently stable can it get the right relic density? $\,\circ\,$ Options:

Freeze-outXDodelson-WidrowXFreeze-in✓Freeze-out+dilutionSubject of this work

Physics in the UV LR theories Freeze-out + dilution Freeze-in Leptogenesis Cosmic remnants $11/_{36}$

 $\,\circ\,$ Assuming N_1 is sufficiently stable can it get the right relic density? $\,\circ\,$ Options:

Dodelson-Widrow

Freeze-in

Freeze-out

Freeze-out+dilution

[Asaka, Shaposhnikov, Kusenko - hep-ph/0602150]
[Gelmini, Osoba, Palomares-Ruiz, Pascoli - 0803.2735]
[Bezrukov, Hettmansperger, Lindner - 0912.4415]
[Nemevsek, Senjanovic, Zhang - 1205.0844]
[Patwardhan, Fuller, Kishimoto, Kusenko - 1507.01977]

Initial temperature of the universe

 \circ Type of cosmology depends on $T_{
m RH}^{
m inf}$

$$T_{\rm therm} \sim 10^8 \,\,{\rm GeV} \left(\frac{v_R}{10^{10}\,\,{\rm GeV}}\right)^{4/3}$$

 $\mathbf{T}_{\rm RH}^{\rm inf}\gtrsim\mathbf{T}_{\rm therm}$

- $\circ N_1$ can freeze-out while relativistic
- \circ Decays of $N_{2,3}$ dilute N_1
- Abundance is UV insensitive

 $\mathbf{T}_{RH}^{inf} \ll \mathbf{T}_{therm}$

- $\circ N_1$ will not come into thermal contact with bath
- \circ N_1 produced through bath interactions

Unique options within this minimal framework!

Physics in the UV LR theories Freeze-out + dilution Freeze-in Lo

Leptogenesis

Freeze-out + dilution

 $13/_{36}$

Relativistic freeze-out

/36

 $\,\circ\,$ Particles that decouple before $T\sim m$ have a "thermal abundance"

$$n \sim T^3$$
 (e.g., ν)

- \circ If particle has mass, m: $\frac{\rho}{s} \sim \frac{mn}{s} \sim \frac{m}{g_{\star}} \leftarrow$ should be $\sim eV$ to be dark matter
- Would wipe out small scale structure

[- burro.case.edu/Academics/Astr222/Cosmo/Structure/darkmatter.html] [- ned.ipac.caltech.edu/level5/Sept11/Norman/Norman2.html]

Physics in the UV LR theories Freeze-out + dilution Freeze-in Leptogenesis Cosmic remnants

High scale reheating

- $\,\circ\,$ To be viable candidate, dark matter needs to be cooled
- \circ Simple mechamism decays to Standard Model bath after decoupling

Quantitative

- $\circ\ N_2$ decays after N_1 decouples from the SM
- $\,\circ\,$ Energy density is diluted by entropy ratio,

$$\Omega\simeq\Omega_{\rm DM}\left(\frac{M_1}{10~{\rm eV}}\right)\frac{(sa^3)_i}{(sa^3)_f}$$

Entropy ratio can be computing using thermodynamics,

$$\frac{(sa^3)_f}{(sa^3)_i} \simeq \left(1 + (1.4/A)^{2/3}\right)^{3/4}$$

N_2 decays

17/36

- \circ This second reheating occurs from N_2 decay
- \circ Dominant processes are close analogs to N_1

N_2 decays

18/36

 \circ If v_R is small dominant decays to

- $\operatorname{Br}_{N_1\ell^+\ell^-} = 10\%$
- Two effects
 - ① Dilutes pre-existing N_1 population
 - O Produces additional component of hot N_1
- Mixed dark matter predicted in this range of parameter space
- $\,\circ\,$ Predicts $\Delta N_{\rm eff}\simeq 0.1$
- Mild tension with CMB data

Physics in the UV LR theories Freeze-out + dilution Freeze-in Leptogenesis Cosmic remnants 19/36.

[1908.10189 - Hasegawa, Hiroshima, Kohri, Hansen, Tram, Hannestad]

19/36

[1702.03314 - Yeche, Palanque-Delabrouille, Baur, du Mas des BourBoux]

 \circ Parameter space has sharp upper and lower bounds for all c

Freeze-in

Physics in the UV LR theories Freeze-out + dilution Freeze-in Leptogenesis Cosmic remnants $21/_{36}$

Freeze-in

- $\,\circ\,$ If N_1 is never thermalized there is more freedom
- \circ N_1 still populated by non-renormalizable interactions

- $\circ\,$ Abundance sensitive to $T_{
 m RH}^{
 m inf}$
- "UV-freeze in"

$$\Omega \simeq \Omega_{\rm DM} \left(\frac{M_1}{150 \text{ keV}}\right) \left(\frac{10^{10} \text{ GeV}}{v_R}\right)^4 \left(\frac{T_{\rm RH}^{\rm inf}}{10^7 \text{ GeV}}\right)^3$$

Neglect dilution

 \circ N_1 parameter space (every point has observed relic density)

 \circ N_1 parameter space (every point has observed relic density)

 \circ N_1 parameter space (every point has observed relic density)

Leptogenesis

Physics in the UV LR theories Freeze-out + dilution Freeze-in Leptogenesis Cosmic remnants 24/36

 \odot See-saw mechanism: simplest natural mechanism to generate $m_{\nu} \sim 0.1 {\rm eV}$

$$\mathcal{L} \supset y_{ij} H \ell_i N_j + M_{ij} N_i N_j$$
$$\Rightarrow m_{\nu} \sim y^2 v^2 / M$$

- Perturbativity $(y \lesssim 1) \Rightarrow M \lesssim 10^{15} \text{ GeV}$
- \circ Why is $M \neq M_{\rm pl} \sim 10^{19} {
 m GeV?}$
- \circ Naturalness requires symmetry to forbid N_i mass

25/36

$\circ\,$ See-saw can also explain baryon asymmetry in the unvierse

Leptogenesis

- $\circ N_i$ decay late into the Standard Model
- Yukawa couplings can have phases
- $\circ N_i$ have majorana masses

odel Out of equilibrium 🗸

CP violation

 \circ Sphelarons convert lepton \rightarrow baryon

Η

27/36

- \odot Range of masses parameterized by M_1 and $\tilde{m}_1 \sim m_{\nu}$
- Varying over parameters gives parameter space

[hep-ph/0401240 - Buchmuller, Di Bari, Plumacher]

 $2 \times 10^9 \text{ GeV} \lesssim M_1 \lesssim 10^{15} \text{ GeV}$

Symmetries

- Appears to be some symmetry breaking well below GUT scale
- $\,\circ\,$ Symmetries that protect N mass , anomaly free , max rank 5:

 $G_{\text{disc}} = G_{\text{SM}} \times \mathbb{Z}_{N}$ $G_{B-L} = G_{\text{SM}} \times U(1)_{B-L}$ $G_{LR} = SU(3)_{C} \times SU(2)_{L} \times SU(2)_{R} \times U(1)_{B-L}$ $G_{421} = SU(4)_{\text{PS}} \times SU(2)_{L} \times U(1)_{Y}$ $G_{\text{flip}} = SU(5) \times U(1)$ exhaustive

- $T_{\rm RH}^{\rm inf} \gtrsim M$ to have leptogenesis ⇒ phase transition in early universe
- Can you see this phase transition?

• Broken symmetries in early universe leave remnants

Possibilities are: 0

1st order transition	Early matter domination	Topological defects
bubble collisions & turbulence	Produces small scale structure	domain walls cosmic strings monopoles
Gravity waves centered at $f \sim \frac{T_*}{10^6 \text{ GeV}} \text{Hz}$	Ultralight clumps PBHs?	texture Can emit gravity waves
too high	too light	promising

Freeze-out + dilution

Freeze-in

Cosmic remnants

Physics in the UV LR theories Freeze-out + dilution Freeze-in Leptogenesis Cosmic remnants $\frac{30}{36}$

Types of defects

- \circ Type of defects depend on broken symmetry
 - \circ Different Higgs + gauge groups \Rightarrow different defects

RERKELEV I

 $\,\circ\,$ Determined by "homotopy theory"

	$H = G_{\rm SM}$		$H = G_{\rm SM} \times \mathbb{Z}_2$	
G	defects	Higgs	defects	Higgs
$G_{\rm disc}$	domain wall [*]	B-L=1	domain wall [*]	B-L=2
G_{B-L}	abelian string *	B - L = 1	$\mathbb{Z}_2 \ \mathrm{string}^\dagger$	B-L=2
G_{LR}	$texture^*$	$(1,1,2,rac{1}{2})$	\mathbb{Z}_2 string	(1 , 1 , 3 ,1)
G_{421}	none	(10 , 1 ,2)	\mathbb{Z}_2 string	$({f 15},{f 1},2)$
G_{flip}	none	(10, 1)	\mathbb{Z}_2 string	$({f 50},2)$

• Cosmic strings are a common prediction

Cosmic strings and GW

32/36

- \circ Naively: $ho_s \propto a^{-2}$, reality: $ho_s \propto a^{-4}$ "scal
 - "scaling solution"
- Strings intercommute each other
- Loops form which radiate energy and dissapear

[- Ringeval, Bouchet]

- [Copeland, Kibble]
- Kinks in strings emit into heavy particles
- Coherent motion into gravitational waves
- Gravitational waves dominate?

[Matsunami, Pogosian, Saurabh, Vachaspati - 1903.05102]

Production of gravitational waves

- $\,\circ\,$ Semi-analytic way to estimate gravitational wave production
- Energy dissapation depends on loop size
 - Large loops: lose energy through particle emission
 - Small loops: relavistic motion and lose energy to redshifting

Initial length some fraction of universe

Future is bright in GW

Projected constraints

• Reach and signals from cosmic strings

• Probe all of range relevant for leptogenesis!

Conclusions

- $\odot\,$ Explored new implications of two well motivated frameworks
- In (minimal) left-right theories:
 - $\odot\,$ Explored the full cosmology leading to dark matter
 - Freeze-out and dilution
 - $\, \odot \,$ bounded parameter space
 - $\, \odot \,$ can be probed in near future
 - Freeze-in
 - More flexibility
 - $\, \odot \,$ Can get observed relic density in either case
- See-saw mechanism
 - Natural theory requires:

 - ② Symmetry to protect right-handed neutrinos
 - ③ Symmetry to be broken in early universe
 - $\odot\,$ Explored prospects to find broken symmetry
 - $\,\circ\,$ Focused on cosmic strings

