#### The Dark Side of 4321

Diego Guadagnoli CNRS, LAPTh Annecy

> based on 2005.10117, with Méril Reboud and Peter Stangl

Introduction

and main idea







It was realized that the vector LQ U<sub>1</sub> ~ (3, 1, 2/3)
 Alonso, Grinstein, Martin-Camalich, Calibbi, Crivellin, Ota, 2015

The  $U_1$  LQ

..............................

would simultaneously explain all B discrepancies

[Buttazzo, Greljo, Isidori, Marzocca, 2017]



D. Guadagnoli, The Dark Side of 4321



......

The  $U_1$  LQ

D. Guadagnoli, The Dark Side of 4321



Problem: push the scale of RH currents up, but not the  $U_1$  scale



... which leads to 4321

- Consider SU(4)  $\times$  SU(3)'  $\times$  SU(2)<sub>L</sub>  $\times$  U(1)<sub>X</sub>

The SM arises after

 $SU(4) \times SU(3)' \times U(1)_{\chi} \longrightarrow SU(3)_{c} \times U(1)_{\gamma}$ 

#### Two basic questions.

- Who ordered all this structure? Flavour anomalies alone?
   DM (if particles) arguably the most solid evidence of BSM
- By construction, 4321 includes several new v.b.'s



D. Guadagnoli, The Dark Side of 4321

.....

1<sup>st</sup> complete construction

Di Luzio, Greljo, Nardecchia,

2017

(incl. pheno):

#### 4321

## and Dark Matter

#### **DM: General Considerations**

#### **Bosonic vs. fermionic**

Bosonic DM would rely on a Higgs portal as mediator

#### **DM requirements**

- (1) cold thermal relic
- (2) color-less and electrically neutral
- (3) zero hypercharge ( $\rightarrow$  avoid DD bounds)
- (4) vector-like under 4321
- (5) (co-)annihilation dominated by  $2 \rightarrow 2$  processes

approach analogous to [Cirelli, Fornengo, Strumia, 2005]

D. Guadagnoli, The Dark Side of 4321

fermionic

DM





## Model

## parameters



and and a second

 $H^{15}$ B' Ha  $C^{a}$ SU(4)  $U(1)_{x}$ SU(4) SU(3)'  $\theta_{43}$  $\theta_{41}$ G Z' massive  $(V_{LQ})$ ++В massless G U(1)<sub>Y</sub> SU(3)<sub>c</sub>

$$\cos \theta_{41} = \frac{g_4}{\sqrt{g_4^2 + g_1^2}} = \frac{g_Y}{g_1} \qquad \qquad \cos \theta_{43} = \frac{g_4}{\sqrt{g_4^2 + g_3^2}} = \frac{g_s}{g_3}$$

once  $g_4$  is fixed, so are  $g_1$  and  $g_3$ 

> free params:  $v_{LO}$  ,  $g_4$ 



# Fermionic sector

tunna and a second a

| Field                | SU(4) | SU(3)' | $SU(2)_L$ | $U(1)_X$ |
|----------------------|-------|--------|-----------|----------|
| $\ell_L^{\prime1,2}$ | 1     | 1      | 2         | -1/2     |
| $e_R^{\prime1,2}$    | 1     | 1      | 1         | -1       |
| $q_L^{\prime1,2}$    | 1     | 3      | 2         | +1/6     |
| $u_R^{\prime1,2}$    | 1     | 3      | 1         | +2/3     |
| $d_R^{\prime1,2}$    | 1     | 3      | 1         | -1/3     |
| $\Psi_L^{\prime3}$   | 4     | 1      | 2         | 0        |
| $\Psi_R^{\prime+3}$  | 4     | 1      | 1         | +1/2     |
| $\Psi_R'^{-3}$       | 4     | 1      | 1         | -1/2     |
| $\Psi_{\rm DM}$      | 4     | 1      | N         | +1/2     |





#### **Collider constraints** - $g_4$ & $\theta_{q_{12}}$ enter $U_1$ , Z', G' couplings constrained by direct searches 50 10 10 $-\sin \theta_{q_{12}} = 0.8$ $|g_{d_1}^{(Z)}|^2 + |g_{q_1}^{(Z)}|^2 [*10^{-2}]$ 0. 1. 1. $|g_{u_1}^{(Z)}|^2 + |g_{q_1}^{(Z)}|^2 [*10^{-2}]$ $|g_{u_{i}, d_{i}}^{(G)}|^{2} + |g_{q_{i}}^{(G)}|^{2}$ 10 $-\sin\theta_{q_{12}}=0.7$ $-\sin\theta_{q_{12}} = 0.6$ $-\sin \theta_{q_{12}} = 0.5$ $-\sin \theta_{q_{12}} = 0.4$ $\sin \theta_{q_{12}} = 0.3$ $\sin \theta_{q_{12}} = 0.2$ $-\sin \theta_{q_{12}} = 0.1$ 0.10 $-\sin\theta_{q_{12}}=0.0$ 0.05 0.1 0.01 1.0 1.5 2.0 2.5 3.0 3.5 1.0 1.5 2.0 2.5 3.0 3.5 1.5 2.0 2.5 3.0 3.5 1.0 **g**<sub>4</sub> **g**<sub>4</sub> **g**4 Suggested ranges: $g_4 \gtrsim 3$ & $\sin \theta_{q_{12}} \lesssim 0.2$

D. Guadagnoli, The Dark Side of 4321

# DM relic abundance



 $\Omega_{o}$  estimation

 The (analytic) estimation of Ω<sub>0</sub> in the presence of co-annihilators is well known since [Griest, Seckel, 1991; Kolb, Turner, 1990]





- determines  $g_{\text{eff}}$
- weighs the different  $\sigma$ 's

(zero-T) mass splittings

- $T_f \sim \text{average amount of kin. energy in the annihilations}$ For  $\Delta_{\psi} \sim T_f$ , co-annih. partners nearly as kin. accessible as  $\chi_0$
- EW mass splitting (within the ψ and χ SU(2), multiplets)

~ 
$$10^{-3} - 10^{-4}$$
 for  $M_{\chi 0} = O(TeV)$   
negligible

7

$$\Delta_{\psi}^{4321} = \frac{g_4^{-}}{16\pi^2} f\left(\frac{M_U}{M_{\chi}}, \frac{M_{Z'}}{M_{\chi}}, \frac{M_{G'}}{M_{\chi}}\right) \simeq 8 - 15\%$$

$$= 4 = 4 N_c$$

$$g_{\text{eff}} = N \left( g_{\chi} + g_{\psi} (1 + \Delta_{\psi})^{3/2} e^{-x \Delta_{\psi}} \right)$$

$$\simeq 0.06$$

Back to  $\sigma_{eff}$  and  $\langle \sigma_{eff} \mathbf{v} \rangle$  $\sigma_{\rm eff} =$  $\frac{1}{g_{\text{eff}}^2} \sum_{ij} \left( \sigma_{\chi_i \chi_j} g_{\chi}^2 + 2 \sigma_{\chi_i \psi_j} g_{\chi} g_{\psi} (1 + \Delta_{\psi})^{3/2} e^{-x \Delta_{\psi}} + \sigma_{\psi_i \psi_j} g_{\psi}^2 (1 + \Delta_{\psi})^3 e^{-2x \Delta_{\psi}} \right)$  $\simeq 0.06^2$  $\simeq 0.06$ the Z'-mediated  $\sigma_{\chi_i\chi_i}$  larger than any other contrib. by 1 – 2 o.o.m.  $\sigma_{\rm eff} \simeq \frac{1}{N} \sigma (\chi_0 \chi_0 \rightarrow Z' \rightarrow XX')$ From  $\sigma_{\text{eff}}$  as a series in s =  $(2 \text{ M}_{\gamma})^2$ one can determine  $\langle \sigma_{_{eff}} ~ v \rangle$  as a series in 1 / x Srednicki, Watkins, Olive, 1985

## $\Omega_0 h^2$ : why it works

- With  $\langle \sigma_{_{\rm eff}} \,\, {
  m v} 
  angle$  at hand, we can calculate  $arOmega_{_{O}} \, h^2$
- Before discussing the full numerics, useful to have a heuristic understanding:

$$\Omega_0 h^2 ~pprox~ 0.06 rac{N}{f(\{\xi^i\})} \left(rac{v_{LQ}}{5 ~{
m TeV}}
ight)^2 \left(rac{v_{LQ}}{M_\chi}
ight)^2$$

- neglects  $(2 M_{\chi})^2$  w.r.t.  $M_{Z'}^2$
- f ( {ξ<sup>i</sup>} ) denotes a function of the Z' to fermion couplings of the different generations
  - $f(\{\xi^i\}) = O(10)$  throughout the parameter space

 $\sum \Omega_0 h^2 \approx 0.1$  naturally achievable



- Write down  $\mathscr{L}_{\chi q} \propto (\chi \text{ bilinear}) \times (\text{quark bilinear})$
- Evaluate  $\langle$  nucleon  $|(\overline{q} \gamma^{\mu} q)|$  nucleon  $\rangle$
- Determine  $\sigma_{SI}^{nucleon}$  (SI = spin-independent)

Directly comparable to exps. Although they operate on heavy nuclei,

results are exclusion x-sec's on nucleons



### **Results**







D. Guadagnoli, The Dark Side of 4321

# Conclusions

- We added to the 4321 gauge ansatz a minimal Dark-Matter sector, a 4 under SU(4)
- After 4321  $\rightarrow$  SM breaking, this gives rise to the multiplets  $\chi$  (containing the DM) plus  $\psi$  ("co-annihilator")
- The DM-relevant param. space is very simple

$$\boldsymbol{g}_{4}$$
  $\boldsymbol{v}_{LQ}$   $\boldsymbol{M}_{\chi}$   $N$   $\boldsymbol{ heta}_{q_{12}}$ 

- The parameter ranges selected by DM pheno coincide with those preferred by collider pheno
- While the U<sub>1</sub> dominates flavour pheno, the most important DM-sector mediator is the Z'