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Introduction

and main idea



  

  Collider Data

No direct evidence of BSM at colliders

 b → s μμ  BR data < SM
Challenge:  B → light meson f.f.’s

➋ B → K* μμ  angular data
Challenge:  charm loops

➌ b → s μμ  /  b → s ee  ratios
Challenge:  (mostly) stats

➍ b → c τν  /  b → c ℓν  ratios
Challenge:  stats + syst
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Several hints from flavour experiments

-
-

loop
processes

tree
processes



  

 Why LeptoQuarks
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 Why LeptoQuarks
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Take

q

ℓ
LQ

then

q ℓ

q ℓ

ј
q

ј
ℓ is  tree

but

q

q

ј
q is  loop-

suppressed

q

q

ј
q

(at least for “genuine” LQs [Dorsner et al., LQ review])



  



  The U
1
  LQ

 It was realized that the vector LQ  U
1
  ~  (3, 1, 2/3)

  [Alonso, Grinstein, Martin-Camalich, Calibbi, Crivellin, Ota, 2015]

would simultaneously explain all B discrepancies
  [Buttazzo, Greljo, Isidori, Marzocca, 2017]
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

  The U
1
  LQ

This explanation has become even more consistent with recent data
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including 
Belle RD(*) update

  [Aebischer et al., 2019]



  



  The U
1
  LQ  and UV completions

As a massive vector boson, the U
1
  requires a UV completion
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  [Barbieri, Murphy, Senia , 2016]

as

a gauge boson of a spont.-broken gauge sym.

a composite vector boson

Pati-Salam?  SU(4)
PS

  SU(2)
L 
 SU(2)

R

☞
Problem: push the scale of RH currents up, but not the U

1
 scale



  

  The U
1
  LQ  and UV completions
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Pati-Salam?  SU(4)
PS

  SU(2)
L 
 SU(2)

R

☞
Problem: push the scale of RH currents up, but not the U

1
 scale

“Partial Unification”: color & hypercharge are embedded into

SU(3+N)  SU(3)’
 
 U(1)’   [Georgi, Nakai , 2016]

N = 1              U
1
  LQ not coupled to SM fermions 

that are singlets of SU(3+N)

A coupling to LH SM fermions can still be generated from

SM fermions VL fermions ~ SU(4)  SU(2)
L

-

-

-

mixing

  [Diaz, Schmaltz, Zhong, 2017]



  

  … which leads to 4321
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Consider SU(4)  SU(3)’  SU(2)
L 
 U(1)

X

The SM arises after

-

SU(4)  SU(3)’  U(1)
X

SU(3)
c
  U(1)

Y

1st complete construction
(incl. pheno):

  [Di Luzio, Greljo, Nardecchia,
2017]

Two basic questions.

Who ordered all this structure?  Flavour anomalies alone?
DM (if particles) arguably the most solid evidence of BSM

By construction, 4321 includes several new v.b.’s

U
1

G’ Z’
SU(3)

c
 octet SM singletSU(3)

c
 octet

One or more of them may well mediate SM Dark



  

4321

and Dark Matter



  

   DM:  General Considerations

Bosonic vs. fermionic

Bosonic DM would rely 
on a Higgs portal as mediator

fermionic
DM

DM requirements

cold thermal relic

color-less and electrically neutral

zero hypercharge   (→ avoid DD bounds)

vector-like under 4321

(co-)annihilation dominated by 2 → 2 processes

(1)

(2)

(3)

(4)

(5)
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approach analogous to  [Cirelli, Fornengo,Strumia, 2005]



  

   DM within 4321

color-singlet and Q = 0

Y = 0

We restrict to the smallest irrep: the 4

w/ N = 1, 3, 5, ...

(2)

(3)
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SU(2)
L
 irrep

with odd dim

ΨDM ∼ (4 ,1 ,N ,+1 /2)

4321       breaking

χ ∼ (1 ,N ,0) ψ ∼ (3 ,N ,2 /3)&

-

DM = e.m.-neutral component of χ

   DM within 4321

color-singlet and Q = 0

Y = 0

We restrict to the smallest irrep: the 4

w/ N = 1, 3, 5, ...

(2)

(3)
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SU(2)
L
 irrep

with odd dim

ΨDM ∼ (4 ,1 ,N ,+1 /2)

4321       breaking

χ ∼ (1 ,N ,0) ψ ∼ (3 ,N ,2 /3)&

-

DM = e.m.-neutral component of χ

Y = X + √ 23 T15
X  is  fixed for a given 
SU(4) irrep Y = X + √ 2

3
T15



  

   Disclaimer

N = 1
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N = 3

N = 5







   mixes with  u
R


U

1

q

ℓ

u
R

 

L a H  a 

H



no renormalizable couplings 
leading to  decay

see also  [Cirelli, Fornengo,Strumia, 2005]



  

Model

parameters



  

  G.b. mixing
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H15 B’
SU(4) U(1)

X

Z’


41

+

B
U(1)

Y

massive

massless

(v
LQ

)

Ha Ca

SU(4) SU(3)’

G’


43

+

G
SU(3)

c

once g
4
 is fixed, so are g

1
 and g

3

free params: v
LQ

 , g
4
 

cosθ41 =
g4

√g4
2+g1

2
=
gY
g1

cosθ43 =
g4

√g4
2+g3

2
=
gs
g3

☞



  

  Fermionic sector
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 3rd - family fermions unified into 4’s

Ψ L
3 = (qL ,ℓL)

Ψ R
3 (+) = (uR ,νR)

Ψ R
3 (- ) = (dR , eR)

 light fermions are as in the SM. So they don’t couple to U
1

introduce                               

transform like
Ψ L
i = ( ΨqL

i

W ijΨℓL
j ) -

mix onto LH SM fermions of gen. i
that

-
Ψ L

3

☞

1st- and 2nd- gen. fermions: linear combi’s of

(q ' L
1,2 ,ℓ ' L

1,2) (Ψ ' qL
1,2 ,Ψ 'ℓL

1,2)and

 [Bordone+., ‘17-’18; Greljo, Stefanek, ‘18; Cornella+, ‘19; 
Di Luzio+, ‘18; Fuentes-M., Stangl, ‘20]

via (θqi ,θℓi )



  

  Fermionic sector
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  Fermionic sector
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Simplifying assumptions (w/ marginal impact on DM pheno):

W
ij
  mixes only 2nd and 3rd gen.(a) θLQone single angle

approx. U(2) sym. between 
light quark gen.’s

(b) θq1
= θq2

=: θq12

1st-gen leptons are SU(4) singlets(c) θℓ1
= 0

(avoids U
1
 - mediated LFV)

“Minimal” fermion-sector params.:

θq12
θℓ2

θLQ



  

  Parameter  recap
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Model parameters are thus

DM pheno depends crucially on
these params.

g4 vLQ Mχ N θℓ2
θLQθq12

important only
for direct detection

DM pheno nearly
unaffected by them

- A fit to flavour data, in particular R
D(*) 

constrains  a combi of  v
LQ

  and of the U
1
 couplings to 2nd and 3rd gen

(         of                               )θq12
, θℓ2

, θLQ

  [Cornella, Fuentes-M., Isidori, 2019]

This translates into the fiducial range    v
LQ

   [3, 5] TeV



  

Collider constraints
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- enter U
1
,  Z’,  G’  couplings

         constrained by direct searches

g4 & θq12

Suggested ranges: &



  

DM

relic abundance



  



  Ω
0
  estimation

 Our DM sector includes all particles within the χ  and  ψ  multiplets

χ ∼ (1 ,N ,0) ψ ∼ (3 ,N ,2 /3)&χ ∼ (1 ,N ,0) ψ ∼ (3 ,N ,2 /3)&

 χ
0
  is the DM.   The rest are co-annihilators

 The (analytic) estimation of  Ω
0
  in the presence of co-annihilators

is well known since   [Griest, Seckel, 1991; Kolb, Turner, 1990]
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  Ω
0
  estimation

Three steps   [Griest, Seckel, 1991; Kolb, Turner, 1990]

Determine  the freeze-out  temperature T
f
  through(1)

Mχ0 
/T

f
  =  log ( func.[ Mχ0 

/T
f
  , # DM sect. dof,  # rel. dof,  σ

eff
 v ]  )

         typically yields  T
f
 / Mχ0

 ≈  1 / 30

Evaluate the amount of annihilations from freeze-out to today(2)

Get today’s  Ω
0
h2 (3)

crucial ingredient
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  σ
eff

σeff ≡ σij ri r j

σij ≡ σ(DMi DM j → X X ' )

ri =
gi
geff

(1+Δi)
3 /2 exp(−x Δi)

fractional d.o.f., 
“weighted” by mass splitting

any 2 DM-sector
particles

any 2 particles
outside the DM sector

 In our case

1

geff
2 ∑ij (σχ i χ j gχ

2 + 2σχ iψj
gχ gψ(1+Δψ)

3 /2e−xΔψ + σψiψ j
gψ

2 (1+Δψ)
3e−2xΔψ )

σeff =

         important to evaluate the  mass splitting  :

determines g
eff

weighs the different ’s

-
-
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  (zero-T) mass splittings

 T
f
  ~  average amount of kin. energy in the annihilations

negligible
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For  ~ T
f
  , co-annih. partners nearly as kin. accessible as  

0

 EW mass splitting

(within the  and  
 SU(2)

L
  multiplets)

~  10–3  – 10–4  for M0
 = O(TeV)

 4321 mass splitting Δψ
4321 =

g4
2

16 π2 f (MU

M χ
,
MZ '

M χ
,
MG'

M χ
) ≃ 8−15%

geff = N (gχ + gψ(1+Δψ)
3/2e−xΔψ)

= 4          = 4 N
c

≃ 0.06



  

  Back to σ
eff

  and 
eff

  v

1
geff

2 ∑ij (σχ i χ j gχ
2 + 2σχ iψj

gχ gψ(1+Δψ)
3 /2e−xΔψ + σψiψ j

gψ
2 (1+Δψ)

3e−2xΔψ )

σeff =

the Z’-mediated             larger than any other contrib. by 1 – 2 o.o.m.
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≃ 0.06 ≃ 0.062

σχ iχ j

σeff ≃ 1
N

σ (χ 0χ0 → Z ' → X X ' )

From σ
eff

  as a series in s = (2 M)
2

one can determine 
eff

  v as a series in 1 / x

  [Srednicki, Watkins, Olive, 1985]

☞



  

  Ω
0
 h2 : why it works
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neglects (2 M)
2  w.r.t.  M

Z’
2

With 
eff

  v at hand, we can calculate Ω
0
 h2

Before discussing the full numerics, 
useful to have a heuristic understanding:

f ( {ξ i} ) denotes a function of the Z’ to fermion
couplings of the different generations 

-
-

f ( {ξ i} ) = O(10) throughout the parameter space

Ω
0
 h2 ≈  0.1  naturally achievable







  

  DM direct detection
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DD constraints
potentially stringent

(Actually, precisely because of DD we took N = odd.)

DM

DM

light
quarks

DM DM

nucleus

How to estimate these signals

Write down   ℒq
  ∝  ( bilinear)(quark bilinear)

Evaluate    nucleon |(q   q)| nucleon 

Determine              (SI = spin-independent)σSI
nucleon

-
-
-

Directly comparable to exps.

Although they operate on heavy nuclei,

results are exclusion x-sec’s on nucleons



  

  How to (better) estimate DM DD signals
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Many caveats in the above (simplistic) recipe:

ℒq
  is written down at a matching scale .

Need an educated average for σSI
N

-

-

We get
    

M  400 GeV

So,  using                   we get conservative (i.e. stronger) DD bounds

How large are RGE effects from  to M
nucleon

 ?

The DM momentum may be large enough -
to resolve the internal nucleon structure

 - N  couplings may be isospin-breaking.

σSI , analytic
N > σSI , DirectDM + DMFF

N

σSI , analytic
N ≥ 2⋅σSI, DirectDM + DMFF

N
M  1.5 TeV

σSI , analytic
N

☞ DirectDM
Bishara et al.

☞ DMFormFactor
Anand et al.



(and within 25% of it)  





  

Results



  

  Direct Detection
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Xenon1T 2018

Direct searches and DM DD suggest one and the same region

for                       – even quantitatively. g4 & θq12

-
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For each N, the v
LQ

 range selects a corresp. range for Mχ

v
LQ

fiducial
range

For                        &   v
LQ

 ≥ 3 TeV, all param. space allowed

and for any N

-
sinθq12

= 0.2-

  Ω
0
 h2  &  v

LQ
  select  Mχ  ranges

Ω
0
 h2

constraint
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Upper bound on              becomes stronger as N increases

DD prefers small

-
sinθq12

-
sinθq12

For each N, the Ω
0 
h2  constraint translates into an Mχ range,

as discussed earlier
-



  

  Conclusions

 We added to the 4321 gauge ansatz a minimal Dark-Matter sector,
a 4 under SU(4)

 After 4321 → SM breaking, this gives rise to the multiplets 
χ (containing the DM) plus ψ (“co-annihilator”)


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 The DM-relevant param. space is very simple

g4 vLQ Mχ N θq12

The parameter ranges selected by DM pheno coincide 
with those preferred by collider pheno

 While the U
1
 dominates flavour pheno, 

the most important DM-sector mediator is the Z’
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