
Advanced MPI: MPI + OpenMP

Leon Kos
University of Ljubljana, FME, LECAD lab



2

Acknowledgments 

▶ Shared MPI-3 memory is Chapter 11 from Introduction to the Message Passing Interface (MPI) course by Rolf 

Rabenseifner from University of Stuttgart and High-Performance Computing-Center Stuttgart (HLRS)

▶ The MPI-1.1 part of this course is partially based on the MPI course developed by the EPCC Training and Education 

Centre, Edinburgh Parallel Computing Centre, University of Edinburgh.

▶ Thanks to the EPCC, especially to Neil MacDonald, Elspeth Minty, 

Tim Harding, and Simon Brown.

▶ Course Notes and exercises of the EPCC course can be used together with this slides. 

▶ The MPI-2.0 part is partially based on the MPI-2 tutorial at the MPIDC 2000 by Anthony Skjellum, Purushotham 

Bangalore, Shane Hebert (High Performance Computing Lab, Mississippi State University, and Rolf Rabenseifner 

(HLRS)

▶ Some MPI-3.0 detailed slides are provided by the MPI-3.0 ticket authors, chapter authors, or chapter working groups, 

Richard Graham (chair of MPI-3.0), and Torsten Hoefler (additional example about new one-sided interfaces)

▶ Thanks to Dr. Claudia Blaas-Schenner from TU Wien (Vienna) and many other trainers and participants for all their 

helpful hints for optimizing this course over so many years.



3

Motivation 

▶ Computer systems in High-performance computing (HPC) feature a hierarchical hardware design (multi-

core nodes connected via a network) 

▶ Pure OpenMP performs better than pure MPI within node is a necessity to have hybrid code better than 

pure MPI across node 

▶ Whether the hybrid code performs better than MPI code depends on whether the communication 

advantage outcomes the thread overhead, etc. or not. 



4

MPI + threading methods 

▶ MPI + OpenMP

▶ Often better one process per NUMA domain (not per ccNUMA node)

▶ (Perfect) compiler support for threading

▶ Called libraries must be thread-safe 

▶ MPI + MPI-3 shared memory

▶ Efficient placement of MPI processes on ccNUMA nodes is not trivial

▶ Hard for applications with unstructured grids

▶ Possible solution: Domain decomposition on core level. 

Then recombining for (cc)NUMA domains.

▶ See in Chapter 9. Virtual topologies, (3) Optimization through reordering

▶ Major usecase:

▶ Replicated application data in one shared memory window 

per CPU or per ccNUMA nodeo



5

MPI rules with OpenMP / Automatic SMP-parallelization 

▶  Special MPI-2 Init for multi-threaded MPI processes:
 

int MPI_Init_thread( int * argc, char ** argv[],
int thread_level_required,
int * thread_level_provided);

int MPI_Query_thread(int * thread_level_provided);
int MPI_Is_main_thread(int * flag);

• REQUIRED values (increasing order):
 MPI_THREAD_SINGLE: Only one thread will execute

 MPI_THREAD_FUNNELED: Only master thread will make MPI-calls

 MPI_THREAD_SERIALIZED: Multiple threads may make MPI-calls,
but only one at a time

 MPI_THREAD_MULTIPLE: Multiple threads may call MPI, 
with no restrictions

• returned provided may be other than REQUIRED by the application



6

MPI_THREAD_FUNNLED

Safest (easiest) to use MPI_THREAD_FUNNLED 
See https://bit.ly/37w5g90 notebook example

▶ Fits nicely with most OpenMP models

▶ Expensive loops parallelized with OpenMP

▶  Communication and MPI calls between loops 

▶ Eliminates need for true “thread-safe” MPI 

▶ Parallel scaling efficiency may be limited (Amdahl’s law) by MPI_THREAD_FUNNLED 

approach 

▶ Moving to MPI_THREAD_MULTIPLE does come at a performance price (and programming 

challenge) 

https://bit.ly/37w5g90


7

Hybrid MPI+OpenMP Masteronly Style

Hybrid MPI+OpenMP Masteronly Style 
Masteronly MPI only outside of parallel regions 

for (iteration ....) { 
 #pragma omp parallel
  numerical code 
  /*end omp parallel */
  /* on master thread only */
  MPI_Send (original data to halo areas in 
other SMP nodes) 
  MPI_Recv (halo data from the neighbors) 
} /*end for loop 

 
 
 

▶ Advantages

▶ No message passing inside of the SMP nodes 

▶ No topology problem 

▶ Problems

▶ All other threads are sleeping while master thread 

communicates!

▶ Which inter-node bandwidth? 

▶ MPI-lib must support at least 

MPI_THREAD_FUNNELED 



8

Calling MPI inside of OMP MASTER

 Inside of a parallel region, with “OMP MASTER”

 Requires MPI_THREAD_FUNNELED,
i.e., only master thread will make MPI-calls

 Caution: There isn’t any synchronization with “OMP MASTER”!
Therefore, “OMP BARRIER” normally necessary to
guarantee, that data or buffer space from/for other 
threads is available before/after the MPI call!

 

!$OMP BARRIER #pragma omp barrier
!$OMP MASTER #pragma omp master
             call MPI_Xxx(...)          MPI_Xxx(...);  
!$OMP END MASTER
!$OMP BARRIER #pragma omp barrier

 But this implies that all other threads are sleeping!
 The additional barrier implies also the necessary cache flush!

MPI course  Chap. 14  MPI and Threads 



9

… the barrier is necessary  –  example with MPI_Recv

!$OMP PARALLEL

!$OMP DO

do i=1,1000

a(i) = buf(i)

end do

!$OMP END DO NOWAIT

!$OMP BARRIER

!$OMP MASTER

call MPI_RECV(buf,...)

!$OMP END MASTER

!$OMP BARRIER

!$OMP DO

do i=1,1000

c(i) = buf(i)

end do

!$OMP END DO NOWAIT

!$OMP END PARALLEL

#pragma omp parallel
{
#pragma omp for nowait

for (i=0; i<1000; i++)
a[i] = buf[i];

#pragma omp barrier
#pragma omp master

MPI_Recv(buf,...);
#pragma omp barrier

#pragma omp for nowait
for (i=0; i<1000; i++)

c[i] = buf[i];

}
/* omp end parallel */

No barrier inside

Barriers needed 
to prevent
data races

MPI course  Chap. 14  MPI and Threads 



10

MPI-3 shared memory

MPI course  Chap.11-(1)  Shared Memory One-sided Communication

▶ Split main communicator into shared memory islands

▶ MPI_Comm_split_type

▶ Define a shared memory window on each island

▶ MPI_Win_allocate_shared 

▶ Result (by default):  

contiguous array, directly accessible by all processes of the island

▶ Accesses and synchronization

▶ Normal assignments and expressions

▶ No MPI_PUT/GET !

▶ Normal MPI one-sided synchronization, e.g., MPI_WIN_FENCE

▶ Caution: 

▶ Memory may be already completely pinned to the physical memory of the process with 

rank 0, i.e., the first touch rule (as in OpenMP) does not apply!

(First touch rule: a memory page is pinned to the physical memory of the processor 

 that first writes a byte into the page) 



11

R R
R R

R R
R R

R R
R R

R= Replicated data
in each MPI process

Example:
Cluster of 3 SMP nodes
without using MPI 
shared memory methods  

R R R

new
R= Shared memory

 replicated data
only once within

    each SMP node

Using MPI 
shared memory methods  

Direct loads & stores,
no library calls

MPI-3.0 shared memory can be used 
to significantly reduce the memory needs for replicated data.

MPI-3 shared memory (cont.)

MPI course  Chap.11-(1)  Shared Memory One-sided Communication



12

Hybrid shared/cluster programming models

MPI course  Chap.11-(1)  Shared Memory One-sided Communication

▶ MPI on each core (not hybrid)

▶ Halos between all cores

▶ MPI uses internally shared memory and 

cluster communication protocols

▶ MPI+OpenMP

▶ Multi-threaded MPI processes

▶ Halos communicated only between MPI processes

▶ MPI cluster communication + MPI shared memory communication 

▶ Same as “MPI on each core”, but

▶ within the shared memory nodes, 

halo communication through direct copying 

with C or Fortran statements

▶ MPI cluster comm. + MPI shared memory access

▶ Similar to “MPI+OpenMP”, but

▶ shared memory programming through 

work-sharing between the MPI processes 

within each SMP node

new

new

MPI inter-node 
communication
MPI intra-node 
communication
Intra-node direct Fortran/
C copy
Intra-node direct neighbor 
access

1 SMP node with 4 
cores



13

Splitting the communicator & contiguous shared memory allocation
Contiguous shared memory window within each SMP node 

MPI course  Chap.11-(1)  Shared Memory One-sided Communication

MPI_Aint /*IN*/ local_window_count=10; double /*OUT*/  *base_ptr; 
MPI_Comm  comm_all,  comm_sm; int  my_rank_all,  my_rank_sm,  
size_sm,  disp_unit; 
MPI_Comm_rank (comm_all, &my_rank_all);
MPI_Comm_split_type (comm_all, MPI_COMM_TYPE_SHARED, 0,
                                            MPI_INFO_NULL,  &comm_sm);
MPI_Comm_rank (comm_sm, &my_rank_sm);  MPI_Comm_size (comm_sm, 
&size_sm);
disp_unit = sizeof(double);  /* shared memory should contain doubles */
MPI_Win_allocate_shared (local_window_count*disp_unit,  disp_unit,  
MPI_INFO_NULL,
                                                   comm_sm,  &base_ptr,  &win_sm);  

    0     1     2     3        4     5     6     7       8     9   10   11     12   13   14   
15  …      my_rank_all

    0     1     2     3     
     my_rank_sm

    0     1     2     3     
     my_rank_sm

    0     1     2     3     
     my_rank_sm

    0     1     2     3     
     my_rank_sm

…

MPI process
Sub-communicator
comm_sm
for one SMP node

base_ptr

Sequence in 
comm_sm as in  

comm_all

comm_all

F

F In Fortran, MPI-3.1, page 339, Examples 8.1 (and 8.2) show how to convert buf_ptr into a usable array a.
This mapping is based on a sequential ranking of the SMP nodes in comm_all.

M

M



14

Within each SMP node  –  Essentials

▶ The allocated shared memory is contiguous across process ranks,

▶ i.e., the first byte of rank i starts right after the last byte of rank i-1.

▶ Processes can calculate remote addresses’ offsets

with local information only.

▶ Remote accesses through load/store operations,

▶ i.e., without MPI RMA operations (MPI_GET/PUT, …) 

▶ Although each process in comm_sm accesses the same physical memory,

the virtual start address of the whole array 

may be different in all processes!

 linked lists only with offsets in a shared array, 

but not with binary pointer addresses!

▶ Following slides show only the shared memory accesses,

i.e., communication between the SMP nodes is not presented.

MPI course  Chap.11-(1)  Shared Memory One-sided Communication



15

Exercise 1: Shared memory ring communication 

 We use  ring-1sided-put-win-alloc.c / _30.f90  as variant of ring-1sided-put.c / _30.f90 

 Using MPI_Win_allocate to allocate the rcv_buf

 Therefore in C, local rcv_buf is substituted by *rcv_buf_ptr – changed code lines:
  int snd_buf;   int *rcv_buf_ptr;
  /* Allocate the window. */
  MPI_Win_allocate(&rcv_buf, sizeof(int), sizeof(int), MPI_INFO_NULL, 
                   MPI_COMM_WORLD, &rcv_buf_ptr, &win);
    snd_buf = *rcv_buf_ptr;
    sum += *rcv_buf_ptr; 

 In Fortran, it uses C_F_POINTER – changed code lines:
  USE, INTRINSIC :: ISO_C_BINDING, ONLY : C_PTR
  INTEGER, ASYNCHRONOUS :: snd_buf
  INTEGER, POINTER, ASYNCHRONOUS :: rcv_buf !or rcv_buf(:) if it is an array
  TYPE(C_PTR) :: ptr_rcv_buf
! ALLOCATE THE WINDOW.
  CALL MPI_Win_allocate(rcv_buf, rcv_buf_size, disp_unit,MPI_INFO_NULL,&
   &                    MPI_COMM_WORLD, ptr_rcv_buf, win)
! CALL C_F_POINTER(ptr_rcv_buf, rcv_buf, (/shape_of_number_of_elements/))
! rcv_buf(0:) => rcv_buf ! change lower bound to 0 (instead of default 1) 
CALL C_F_POINTER(ptr_rcv_buf, rcv_buf) ! if rcv_buf is not an array
snd_buf = rcv_buf
sum = sum + rcv_buf

   
   

 E
xe

rc
is

e 
1

if rcv_buf 
is an 
array

unchange
d

C

Fortran

MPI course  Chap.11-(1)  Shared Memory One-sided Communication  Exercise 1



17

Exercise 1: Shared memory ring communication (cont.) 

MPI course  Chap.11-(1)  Shared Memory One-sided Communication  Exercise 1

 Task of this exercise:                  & 

 Add MPI_Comm_split_type directly after MPI_Init.  From there, use comm_sm

 and of course also  my_rank  and  size  of  comm_sm

 Substitute MPI_Win_allocate  by  MPI_Win_allocate_shared

 Use                C/Ch11/ring-1sided-put-win-alloc-shared-skel.c  

or                   F_30/Ch11/ring-1sided-put-win-alloc-shared-skel_30.f90

 They are already prepared with

 size_world  and my_rank_world for MPI_COMM_WORLD

 size_sm  and my_rank_sm for comm_sm

 And the print/write-statement already prints both my_ranks

C Fortran

Fortran

C



18

Exercise 1: Shared memory ring communication (cont.) 

MPI course  Chap.11-(1)  Shared Memory One-sided Communication  Exercise 1

During the Exercise

Please stay here in the main room while you do this exercise

And have fun with this short exercise

Please do not look at the solution before you finished this exercise,

otherwise,

 90% of your learning outcome may be lost

As soon as you finished the exercise, 

please go to your breakout room

and continue your discussions with your fellow learners:

Please start with assert==0!

Please go already to your break out room as soon as you program works

with assert == 0.

You may check and discuss as group, which assertions do apply

and which ones are      forbidden 



19

Conclusions

MPI course  Chap.11-(1)  Shared Memory One-sided Communication  Exercise 1

▶ MPI+OpenMP reduces communication overhead and does cheap load balancing

▶ No intra-node communication 

▶ Longer messages between nodes and fewer parallel links may imply better bandwidth 

▶ Application developer can split the load-balancing issues between course-grained MPI and fine-grained 

OpenMP 

▶ MPI+3.0 shared memory may be helpful to save memory

▶ Thread-safety is not needed for libraries. 

▶ No reduction of MPI ranks

 



20

Solution to Exercise 1



21

Chapter 11-(1) Exercise 1:
Ring with shared memory one-sided comm.

C
MPI/tasks/C/Ch11/solutions/ring-1sided-put-win-alloc-shared.c

  int my_rank_world, size_world;
  int my_rank_sm,    size_sm;
  MPI_Comm comm_sm;
  int snd_buf;
  int *rcv_buf_ptr;

  MPI_Comm_split_type(MPI_COMM_WORLD, MPI_COMM_TYPE_SHARED, 0, 
                      MPI_INFO_NULL, &comm_sm);
  MPI_Comm_rank(comm_sm, &my_rank_sm);
  MPI_Comm_size(comm_sm, &size_sm);
  if (my_rank_sm == 0)
  { if (size_sm == size_world)
    {  printf("comm_sm consists of only one shared memory region\n");
    }else
    { printf("comm_sm is split into 2 or more shared memory islands\n");
  } }

  right = (my_rank_sm+1)         % size_sm;
  left  = (my_rank_sm-1+size_sm) % size_sm;

  MPI_Win_allocate_shared(sizeof(int), sizeof(int), MPI_INFO_NULL,
                          comm_sm, &rcv_buf_ptr, &win);

  snd_buf = my_rank_sm;
  for( i = 0; i < size_sm; i++)

    snd_buf = *rcv_buf_ptr;
    sum += *rcv_buf_ptr; © 2000-2020 HLRS, Rolf Rabenseifner MPI course  Chap.11-(1)  Shared Memory One-sided Communication  Exercise 1



22

Chapter 11-(1) Exercise 1:
Ring with shared memory one-sided comm.

  USE mpi_f08
  USE, INTRINSIC :: ISO_C_BINDING, ONLY : C_PTR
  INTEGER :: my_rank_world, size_world
  INTEGER :: my_rank_sm,    size_sm
  TYPE(MPI_Comm) :: comm_sm
  INTEGER, ASYNCHRONOUS :: snd_buf
  INTEGER, POINTER, ASYNCHRONOUS :: rcv_buf(:) ! "(:)" because it is an array
  TYPE(C_PTR) :: ptr_rcv_buf
  CALL MPI_Comm_split_type(MPI_COMM_WORLD, MPI_COMM_TYPE_SHARED, 0, &
   &                       MPI_INFO_NULL, comm_sm)
  CALL MPI_Comm_rank(comm_sm, my_rank_sm)
  CALL MPI_Comm_size(comm_sm, size_sm)
  IF (my_rank_sm == 0) THEN
    IF (size_sm == size_world) THEN
      write (*,*) 'comm_sm consists of only one shared memory region'
    ELSE
      write (*,*) 'comm_sm is split into 2 or more shared memory islands'
    END IF
  END IF
  right = mod(my_rank_sm+1,         size_sm)
  left  = mod(my_rank_sm-1+size_sm, size_sm)
  CALL MPI_Win_allocate_shared(rcv_buf_size, disp_unit, MPI_INFO_NULL, &
   &                           comm_sm, ptr_rcv_buf, win)
  CALL C_F_POINTER(ptr_rcv_buf, rcv_buf, (/1/)) ! if rcv_buf is an array
  rcv_buf(0:) => rcv_buf ! change lower bound to 0
  snd_buf = my_rank_sm
  DO i = 1, size_sm
     snd_buf = rcv_buf(0)
     sum = sum + rcv_buf(0)

Fortran
MPI/tasks/F_30/Ch11/solutions/ring-1sided-put-win-alloc-shared-30.f90

© 2000-2020 HLRS, Rolf Rabenseifner MPI course  Chap.11-(1)  Shared Memory One-sided Communication  Exercise 1



Co-funded by the Horizon 2020 programme 
of the European Union

This project has received funding from the European High-Performance Computing Joint Undertaking (JU) 
under grant agreement No 951732. The JU receives support from the European Union’s Horizon 2020 
research and innovation programme and Germany, Bulgaria, Austria, Croatia, Cyprus, Czech Republic, 
Denmark, Estonia, Finland, Greece, Hungary, Ireland, Italy, Lithuania, Latvia, Poland, Portugal, Romania, 
Slovenia, Spain, Sweden, United Kingdom, France, Netherlands, Belgium, Luxembourg, Slovakia, Norway, 
Switzerland, Turkey, Republic of North Macedonia, Iceland, Montenegro

Thanks!


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

