
Introduction to parallel programming
accelerators

Leon Bogdanović
University of Ljubljana, FME, LECAD lab

2

NVIDIA Tesla V100

Graphics accelerators or graphics processing

units (GPUs) are devices with:

▶ many highly parallel streaming multiprocessors

▶ very high bandwidth memory

Applications:

▶ for intensive 3D graphical rendering, ray tracing etc.

(graphics applications)

▶ for GPGPU (General Purpose GPU) computing

(scientific and engineering applications)

Graphics accelerators: definition

3

▶ clone the repository from bitbucket to your viz.hpc.fs.uni-lj.si account:

$ git clone https://bitbucket.org/lecad-peg/eurocc-accelerators.git

▶ to build the executable with the CUDA ray tracer follow these steps:

$ cd eurocc-accelerators/CUDA_ray_tracing

$ source setupenv.sh

$ make

▶ to run the CUDA ray tracer execute:

$./run.sh

or

$./a.out

Motivational example: CUDA ray tracing

4

Graphics accelerators: architecture

Schematic of a GPU (source: nvidia.com)

GPU architecture:

▶ global memory: 0.5-80 GB, very high bandwidth (up to

2000 GB/s)

▶ streaming multiprocessors (SM):

▶ groups of many parallely executing ALU cores

▶ many registers (32-64 KB)

▶ very fast shared memory

▶ SIMT scheduling (older micro-architectures),

Independent Thread Scheduling (Volta and Ampere

micro-architecture on NVIDIA cards)

5

GPUs: consumer grade vs. high-end

NVIDIA GeForce 930MX

Output from deviceQuery:

Total amount of global memory:

2004 MBytes (2101870592 bytes)

(3) Multiprocessors, (128) CUDA Cores/MP:

384 CUDA Cores

GPU Max Clock rate: 1020 MHz (1.02 GHz)

Memory Bus Width: 64-bit

L2 Cache Size: 1048576 bytes

Output from bandwidthTest:

Device to Device Bandwidth, 1 Device(s)

Transfer Size (Bytes) Bandwidth(MB/s)

33554432 13193.8

NVIDIA Tesla V100-SXM2-16GB

Output from deviceQuery:

Total amount of global memory:

16128 MBytes (16911433728 bytes)

(80) Multiprocessors, (64) CUDA Cores/MP:

5120 CUDA Cores

GPU Max Clock rate: 1530 MHz (1.53 GHz)

Memory Bus Width: 4096-bit

L2 Cache Size: 6291456 bytes

Output from bandwidthTest:

Device to Device Bandwidth, 1 Device(s)

Transfer Size (Bytes) Bandwidth(GB/s)

32000000 713.5

6

GPUs for High Performance Computing (HPC)

NVIDIA Tesla cards (flagship cards historically) AMD Radeon Instinct cards

Model No. of
cores

Memory
[GB]

Bandwidth
[GB/s]

FP32
[TFlops]

Kepler K40 2280 12 (GDDR5) 240 4.3

Pascal P100 3584 16 (HBM2) 732 10.6

Volta V100 5120 32 (HBM2) 900 15.7

Ampere A100 6912 80 (HBM2) 2039 19.5

Model No. of
cores

Memory
[GB]

Bandwidth
[GB/s]

FP32
[TFlops]

Radeon MI8 4096 4 (HBM) 512 8.2

Radeon MI25 4096 16 (HBM2) 484 12.3

Radeon MI50 3840 16 (HBM2) 1024 13.4

Radeon MI60 4096 32 (HBM2) 1024 14.7

A consumer-grade GPU: just for comparison

Model No. of
cores

Memory
[GB]

Bandwidth
[GB/s]

FP32
[TFlops]

NVIDIA GeForce
930MX

384 2 (DDR3) 14.4 0.765

7

Exercise 1: Information and compute capabilities of a GPU

Login to your viz.hpc.fs.uni-lj.si account and complete the following tasks:

▶ find and load a suitable CUDA module (hint: use module avail and module load)

▶ find general info on the GPU available on the login node (hint: use nvidia-smi)

▶ find the diagnostic programs deviceQuery and bandwidthTest (hint: use which nvcc and

navigate to the subdirectory extras/demo_suite of the main CUDA directory)

▶ execute the diagnostic programs to determine the main characteristics of the GPU (No. of SMs,

No. of CUDA cores, global memory available, memory bandwidth)

▶ compile and run the OpenCL diagnostic program to determine the OpenCL compute capability of

the GPU (hint: go to the eurocc-accelerators/OpenCL_diagnostics subdirectory of the

cloned repository for this course and use the command make)

8

GPGPU programming

CPU vs. GPU (source: nvidia.com)

General Purpose GPU (GPGPU) programming:

▶ GPUs are used for accelerating intensive

computational tasks rather than accelerating graphics

tasks

▶ CPU and GPU are in principle separate devices with

separate memory space

▶ GPU is a co-processor to CPU:

▶ CPU: Optimized for serial tasks and

 low-latency access

▶ GPU: Optimized for many parallel tasks and

throughput

9

GPGPU languages

Many solutions exist for programming GPUs, the two mostly used are:

▶ CUDA (Compute Unified Device Architecture)

▶ a set of extensions to higher level programming languages (C, C++ and Fortran) for

▶ using GPU as a co-processor for heavy parallel tasks

▶ provides a developer toolkit for compiling, debugging and profiling programs

▶ only supported by NVIDIA GPUs

▶ OpenCL (Open Computing Language)

▶ a standard open-source programming model initially developed by major

manufacturers (Apple, Intel, ATI/AMD, NVIDIA), now maintained by Khronos

▶ also provides extensions to C and C++ (SYCL) and a developer toolkit, more low-level

than CUDA

▶ supported by many types of Processing Units (CPUs, GPUs, FPGAs, MICs...):

▶ de facto oriented to heterogeneous computing

10

Example 1: Hello world

Notebook with examples on Google Colaboratory:

https://colab.research.google.com/drive/1C6DAGC7fvfQWI-D5L7Cuc58-BjkFLGPk?usp=sharing

C for loop:

#define N 16

for(int i = 0; i < N; ++i){

 printf("Hello world! I'm

 Iteration %d\n", i);

}

▶ In a for loop every iteration of the code is

run sequentially on a CPU

▶ the code will print messages in order

from iteration 0 to 15

11

Example 1: Hello world (cont.)

CUDA kernel:

#define NUM_BLOCKS 16

#define BLOCK_SIZE 1

__global__ void hello(){

 int idx = blockIdx.x;

 printf("Hello world! I'm a

 thread in block

 %d\n", idx);

}

hello<<<NUM_BLOCKS, BLOCK_SIZE>>>();

From a for loop to a CUDA kernel:

▶ On a GPU the code in a kernel is run in parallel by

independent threads organized in blocks (CUDA

terminology)

▶ In CUDA a kernel is defined by the __global__ prefix:

called by the CPU as a regular function by the triple

chevron syntax <<<...>>>

12

Example 1: Hello world (cont.)

OpenCL kernel:

#define GLOBAl_SIZE 16

#define LOCAL_SIZE 1

__kernel void hello() {

 int gid = get_global_id(0);

 printf("Hello world! I'm a

 thread in

 block %d\n", gid);

}

size_t globalItemSize = GLOBAl_SIZE;

size_t localItemSize = LOCAL_SIZE;

cl_kernel kernel = clCreateKernel(program, "hello", &ret);

ret = clEnqueueNDRangeKernel(commandQueue,

 kernel, 1, NULL, &globalItemSize, &localItemSize,

 0, NULL, NULL);

From a for loop to an OpenCL kernel:

▶ On a GPU the code in a kernel is run in parallel by

independent work–items organized in work–groups

(OpenCL terminology)

▶ In OpenCL a kernel is defined by the __kernel prefix:

called by the CPU with the clEnqueueNDRangeKernel()

function of the OpenCL API

13

CUDA kernel launch

Triple chevron launch syntax <<< >>> contains

“kernel launch parameters”

hello<<<NUM_BLOCKS, BLOCK_WIDTH>>>();

defines the number

of blocks to use

= 16

defines the number

of threads per block

= 1

__global__ void hello(){

 int idx = blockIdx.x;

 printf("Hello world! I'm a thread in block %d\n", idx);

}

hello<<<NUM_BLOCKS, BLOCK_WIDTH>>>();

14

OpenCL kernel launch

This function of the OpenCL API contains

“kernel launch parameters”

clEnqueueNDRangeKernel(commandQueue, kernel,

1, NULL, &globalItemSize, &localItemSize, 0, NULL,

NULL);

defines the number of

work–items times work–groups

1 x 16 = 16

defines the number of

work–items

= 1
__kernel void hello() {

 int gid = get_global_id(0);

 printf("Hello world! I'm a thread in block %d\n", gid);

}

cl_kernel kernel = clCreateKernel(program, "hello", &ret);

ret = clEnqueueNDRangeKernel(commandQueue, kernel, 1,

 NULL, &globalItemSize, &localItemSize, 0, NULL, NULL);

15

Exercise 2: Hello World extended

1. Modify the Hello World CUDA code from Example 1 in the following way:

▶ define 8 blocks with 2 threads each

▶ print the "Hello World" message to reflect also information on the thread number from each block (hint: use the built-

in variable threadIdx.x)

2. Modify the Hello World OpenCL code from Example 1 in the following way:

▶ define 8 blocks (work-groups) with 2 threads (work-items) each

▶ print the "Hello World" message to reflect also information on the thread (work-item) number from each block (work-

group) (hint: use the built-in variables get_group_id(0) for work-groups and get_local_id(0) for work-items)

The skeleton codes for this exercise can be found on Google Colab on this link:

https://colab.research.google.com/drive/1eqQoXbmL7kPjS3dwZGtxfYY3fmETTBrK?usp=sharing

Replace ??? in the code to complete the tasks listed above.

16

GPU CUDA threads hierarchy

Threads hierarchy (source: nvidia.com)

▶ threads are organized into blocks:

blocks can be 1D, 2D, 3D

▶ blocks are organized into a grid:

grids can also be 1D, 2D, 3D

▶ each block or thread has a unique ID:

.x, .y, .z are components in every dimension

threadIdx:

thread coordinate inside the block

blockIdx:

block coordinate inside the grid

blockDim:

block dimension in thread units

gridDim:

grid dimension in block units

17

CUDA threads hierarchy examples

▶ 1D kernel:

int idx = blockIdx.x * blockDim.x + threadIdx.x;

idx ... global thread index in one dimension

▶ 2D kernel:

int i = blockDim.x * blockIdx.x + threadIdx.x;

int j = blockDim.y * blockIdx.y + threadIdx.y;

i ... global thread index in first dimension

j ... global thread index in second dimension

18

GPU OpenCL work-items hierarchy

work-items hierarchy (source: khronos.org)

▶ work-items are grouped into work-

groups

▶ work-items within a work-group can

share local memory and can

synchronize

▶ the number of work-items can be

specified in a work-group – this is

called the local (work-group) size

▶ the OpenCL run-time can choose the

work-group size automatically

(usually not optimal)

19

OpenCL work-items hierarchy examples

▶ 1D kernel:

int idx = get_global_id(0);

or alternatively:

int idx = get_group_id(0) * get_local_size(0) + get_local_id(0)

idx ... global work-item index in one dimension

▶ 2D kernel:

int i = get_global_id(0);

int j = get_global_id(1);

or alternatively:

int i = get_group_id(0) * get_local_size(0) + get_local_id(0)

int j = get_group_id(1) * get_local_size(1) + get_local_id(1)

i ... global work-item index in first dimension

j ... global work-item index in second dimension

20

Example 2: Vector addition on CPU

Vector addition is done in a for loop:

for(int i = 0; i < N; i++){

 out[i] = a[i] + b[i];

}

part of code for parallelization on GPU!

Notebook with examples on Google Colaboratory:

https://colab.research.google.com/drive/1C6DAGC7fvfQWI-D5L7Cuc58-BjkFLGPk?usp=sharing

21

Example 2: Vector addition with CUDA

CUDA kernel for vector addition:

__global__ void vector_add(double *out, double *a, double *b, int n)

{

 int i = blockIdx.x * blockDim.x + threadIdx.x;

 if(i < n)

 out[i] = a[i] + b[i];

}

vector components of a and b are added in parallel! each thread i runs in parallel!

22

CUDA program flow

 A typical flow of a CUDA program:

▶ Allocate GPU memory

▶ Populate GPU memory with inputs from the host

▶ Execute a GPU kernel on those inputs

▶ Transfer outputs from the GPU back to the host

▶ Free GPU memory

Recent Nvidia GPUs (Pascal microarchitecture or newer) support:

▶ unified memory invoked with cudaMallocManaged()

▶ single-pointer-to-data model, CPUs and GPUs use the same memory address space hence

transfers from/to GPU memory no longer needed

23

CUDA step by step: 1. Initialize device

▶ CUDA initialization (optional):

CudaSetDevice(0);

▶ CUDA initialization through CUDA_ERROR() API call (optional):

CUDA_ERROR(cudaSetDevice(0));

▶ getting device (first available) properties through cudaGetDeviceProperties() (optional):

cudaDeviceProp prop;

CUDA_ERROR(cudaGetDeviceProperties(&prop,0));

printf("Found GPU '%s' with %g GB of global memory, max %d threads per

 block, and %d multiprocessors\n", prop.name,

 prop.totalGlobalMem/(1024.0*1024.0*1024.0),

 prop.maxThreadsPerBlock,prop.multiProcessorCount);

24

CUDA step by step: 2. Allocate GPU memory

▶ allocating memory:

cudaMalloc((void**)&d_a, sizeof(double) * N);

cudaMalloc((void**)&d_b, sizeof(double) * N);

cudaMalloc((void**)&d_out, sizeof(double) * N);

▶ naming convention(optional):

“d” indicating device in d_a or a_d

25

CUDA step by step: 3. Transfer data from host to device memory

▶ copy from host to device memory:

cudaMemcpy(d_a, a, sizeof(double) * N, cudaMemcpyHostToDevice);

cudaMemcpy(d_b, b, sizeof(double) * N, cudaMemcpyHostToDevice);

▶ host and device variables must be of same size and type!

26

CUDA step by step: 4. Execute kernel on device variables as inputs

▶ defining kernel block size and threads per block size:

int threadsPerBlock = 1024;

int blocksPerGrid = N/threadsPerBlock + (N % threadsPerBlock == 0 ? 0:1);

▶ or alternatively:

int threadsPerBlock = 1024;

int blocksPerGrid =(N + threadsPerBlock - 1) / threadsPerBlock;

▶ executing kernel:

vector_add<<<blocksPerGrid, threadsPerBlock>>>(d_out, d_a, d_b, N);

▶ integers and constant type variables can be passed to the kernel without device memory

allocation

27

CUDA step by step: 5. Transfer data back from device to host

▶ copy from device to host memory:

cudaMemcpy(out, d_out, sizeof(double) * N, cudaMemcpyDeviceToHost);

▶ the counterpart host variable (e.g., out) must be of the same size and type!

28

CUDA step by step: 6. Deallocate (free) device memory

▶ free device memory:

cudaFree(d_a);

cudaFree(d_b);

cudaFree(d_out);

29

CUDA step by step: 7. Compiling the code

▶ CUDA codes reside in *.cu files

▶ nvcc compiler is used to compile the codes, e.g.:

$ nvcc -o vector_add_cuda vector_add_cuda.cu

▶ execution of the codes in command line, e.g.:

$./vector_add_cuda

▶ hardware design, number of cores, cache size, and supported arithmetic instructions are different for different

versions of compute capability

▶ compiling the codes for different compute capabilities, e.g. for maximum compatibility with cards predating Volta

microarchitecture:

$ nvcc -arch=sm_30 -gencode=arch=compute_20,code=sm_20 \

-gencode=arch=compute_30,code=sm_30 -gencode=arch=compute_50,code=sm_50 \

-gencode=arch=compute_52,code=sm_52 -gencode=arch=compute_60,code=sm_60 \

-gencode=arch=compute_61,code=sm_61 -gencode=arch=compute_61,code=compute_61 \

-o vector_add_cuda vector_add_cuda.cu

30

Nvidia Kepler cards compute capabilities

▶ SM30 or SM_30, compute_30

Kepler architecture (e.g. generic Kepler, GeForce 700, GT-730).

Adds support for unified memory programming

Completely dropped from CUDA 11 onwards.

▶ SM35 or SM_35, compute_35

Tesla K40.

Adds support for dynamic parallelism.

Deprecated from CUDA 11, will be dropped in future versions.

▶ SM37 or SM_37, compute_37

Tesla K80.

Adds a few more registers.

Deprecated from CUDA 11, will be dropped in future versions.

More info on other Nvidia cards compute capabilities:

https://arnon.dk/matching-sm-architectures-arch-and-gencode-for-various-nvidia-cards/

31

Example 2: Vector addition with OpenCL

OpenCL kernel for vector addition:

__kernel void vector_add(__global double *a, __global double *b,

__global double *out, int n) {

 int i = get_global_id(0);

 if(i < n)

 out[i] = a[i] + b[i];

}

vector components of a and b are added in parallel! each thread i runs in parallel!

32

OpenCL step by step: 1. Initialize device

▶ declare context

▶ choose a device from context

▶ create a command queue with device and context

cl_context context = clCreateContext(NULL, 1,
&device_id, NULL, NULL, &ret);

ret = clGetDeviceIDs(platform_id,
 CL_DEVICE_TYPE_ALL,
 1, &device_id, &ret_num_devices);

cl_command_queue command_queue = clCreateCommandQueue
 (context, device_id,
 0, &ret);

OpenCL program flow
(source: KU Leuven)

33

OpenCL step by step: 2. Create buffers

▶ create buffers on device

▶ transfer host data to device

cl_mem a_mem_obj = clCreateBuffer(context,
 CL_MEM_READ_ONLY,
 N * sizeof(double), NULL,
 &ret);

cl_mem out_mem_obj = clCreateBuffer(context,
 CL_MEM_WRITE_ONLY,
 N * sizeof(double), NULL,
 &ret);

ret = clEnqueueWriteBuffer(command_queue, a_mem_obj,
 CL_TRUE, 0,
 N * sizeof(double), a, 0,
 NULL, NULL);

34

OpenCL step by step: 3. Build program and select kernel

▶ create program

▶ build program

▶ create kernel

cl_program program = clCreateProgramWithSource
 (context, 1,
 (const char **)&source_str,
 (const size_t *)&source_size,
 &ret);

ret = clBuildProgram(program, 1, &device_id,
 NULL, NULL, NULL);

cl_kernel kernel = clCreateKernel(program, "vector_add",
 &ret);

35

OpenCL step by step: 4. Set arguments and enqueue kernel

▶ set arguments

▶ set local and global work-group sizes

▶ execute kernel

ret = clSetKernelArg(kernel, 0, sizeof(cl_mem),
 (void *)&a_mem_obj);
ret = clSetKernelArg(kernel, 1, sizeof(cl_mem),
 (void *)&b_mem_obj);
ret = clSetKernelArg(kernel, 2, sizeof(cl_mem),
 (void *)&out_mem_obj);
ret = clSetKernelArg(kernel, 3, sizeof(cl_int),
 (void *)&n);

size_t local_item_size = 64;
int n_blocks = n/local_item_size + (n % local_item_size
 == 0 ? 0:1);
size_t global_item_size = n_blocks * local_item_size;

ret = clEnqueueNDRangeKernel(command_queue, kernel, 1,
 NULL, &global_item_size,
 &local_item_size, 0, NULL,
 NULL);

36

OpenCL step by step: 5. Transfer back result

▶ transfer of results if needed on the host:

avoid unnecessary transfers from/to host!

▶ data from one kernel can be used by another kernel

ret = clEnqueueReadBuffer(command_queue, out_mem_obj,
 CL_TRUE, 0,
 N * sizeof(double), out, 0,
 NULL, NULL);

37

OpenCL step by step: 6. Compiling the code

▶ OpenCL codes reside in *.c files and *.cl files (kernels)

▶ gcc (or nvcc) compiler is used to compile the codes, e.g.:

$ nvcc -o vector_add_opencl vector_add_opencl.c -lOpenCL

▶ execution of the codes in command line, e.g.:

$./vector_add_opencl

▶ OpenCL drivers available in CUDA (most cards support OpenCL 1.2)

38

Example 3: Numerical integration (Riemann sum with trapezoids)

Approximation of the integral of a function using the

trapezoid rule:

▶ divide area under the function from a to b into N

trapezoids

▶ area of trapezoid: median of the trapezoid

(f(x+h)+f(x))/2 multiplied with sub-interval width (b-a)/N

▶ sum of the trapezoid areas: approximation of the

definite integral from a to b

▶ for simplicity: a = 0 and b = 1

▶ numerical evaluation of the normal distribution

function from 0 to 1: 0.341345

39

CPU code: Calculation of the Riemann sum

double riemann(int n)

{

 double sum = 0;

 for(int i = 0; i < n; ++i)

 {

 double x = (double) i / (double) n;

 double fx = (exp(-x * x / 2.0) +

 exp(-(x + 1 / (double)n) *

 (x + 1 / (double)n) / 2.0)) / 2.0;

 sum += fx;

 }

 sum *= (1.0 / sqrt(2.0 * M_PI)) / (double) n;

 return sum;

}

All the computation is done in a for loop:

▶ trapezoid medians and trapezoid sums

▶ non-optimized CPU code:

riemann_cpu_double.c

▶ Execution time for N = 1 billion:

about 90 s (about 40 s with -O3

optimization level)

40

GPU code: Riemann sum with one CUDA kernel

__global__ void medianTrapezoid(double *a, int n)

{

 int idx = blockIdx.x * blockDim.x + threadIdx.x;

 double x = (double)idx / (double)n;

 if(idx < n)

 a[idx] = (exp(-x * x / 2.0) + exp(-(x + 1 /

 (double)n) * (x + 1 / (double)n) / 2.0))

 / 2.0;

}

▶ trapezoid medians are calculated on

device (GPU) with the CUDA

“medianTrapezoid” kernel

▶ GPU code: riemann_cuda_double.cu

▶ an array of trapezoid medians is

returned to host (CPU)

▶ the trapezoid sums are calculated on

host

▶ a speed up of 10x for N = 1 billion

41

GPU code: Riemann sum with one OpenCL kernel

__kernel void medianTrapezoid(__global double *a, int n)

{

 int idx = get_global_id(0);

 double x = (double)idx / (double)n;

 if(idx < n)

 a[idx] = (exp(-x * x / 2.0) +

 exp(-(x + 1 / (double)n) * (x + 1 /

 (double)n) / 2.0)) / 2.0;

}

▶ trapezoid medians are calculated on

device (GPU) with the OpenCL

“medianTrapezoid” kernel

▶ GPU code: riemann_opencl_double.c

▶ an array of trapezoid medians is

returned to host (CPU)

▶ the trapezoid sums are calculated on

host

▶ also a speed up of 10x for N = 1 billion

42

Numerical integration: reduction of trapezoid sums

Calculation of trapezoid sums is done with sum

reduction:

▶ the array of calculated trapezoid medians is used

by another kernel for sum reduction

▶ a kernel with one block of multiple threads is

used

▶ sum reduction of partial sums is done in shared

memory which is faster than global memory

Sum reduction (source: nvidia.com)

43

GPU code: Riemann sum with two CUDA kernels

__global__ void reducerSum(double *a, double *out,

int n, int block_size) {

 int idx = threadIdx.x;

 double sum = 0;

 for (int i = idx; i < n; i += block_size)

 sum += a[i];

 extern __shared__ double r[];

 r[idx] = sum;

 __syncthreads();

 for (int size = block_size/2; size>0; size/=2)

{

 if (idx<size)

 r[idx] += r[idx+size];

 __syncthreads();

 }

 if (idx == 0)

 *out = r[0];

}

▶ an additional CUDA kernel “reducerSum”

for calculating the trapezoid sums

▶ GPU code:

riemann_cuda_double_reduce.cu

▶ a speed up of 8x against the GPU code

with one kernel and of 80x against the non-

optimized CPU code for N = 1 billion

44

GPU code: Riemann sum with two OpenCL kernels

__kernel void reducerSum(__global double *a, __global

double *out, __local double *r, int n, int block_size)

{

 int idx = get_local_id(0);

 double sum = 0;

 for (int i = idx; i < n; i += block_size)

 sum += a[i];

 r[idx] = sum;

 barrier(CLK_LOCAL_MEM_FENCE);

 for (int size = block_size/2; size>0; size/=2) {

 if (idx<size)

 r[idx] += r[idx+size];

 barrier(CLK_LOCAL_MEM_FENCE);

 }

 if (idx == 0)

 *out = r[0];

}

▶ an additional OpenCL kernel “reducerSum”

for calculating the trapezoid sums

▶ GPU code:

riemann_opencl_double_reduce.cu

▶ also a speed up of 8x against the GPU code

with one kernel and of 80x against the non-

optimized CPU code for N = 1 billion

45

Exercise 3: Block size performance analysis

1. Analyze the performance of the riemann_cuda_double_reduce.cu code by varying the block size (32, 64, 128,

192, 256, 512 and 1024) of the kernel medianTrapezoid and setting the block size of the kernel reducerSum to 1024:

▶ Use the prepared shell script for the analysis.

▶ For which block size the code performs the best?

2. Analyze the performance for the best performing block size of the kernel medianTrapezoid from the previous analysis

and by varying the block size (32, 64, 128, 192, 256, 512 and 1024) of the kernel reducerSum:

▶ Replace ??? in the second shell script to complete the analysis due to the requirements.

▶ For which block size the code performs the best?

▶ Are there any anomalous results for a chosen block size? Can you identify the reason? Also run the anomalous case

separately with nvprof and cuda-memcheck (replace ??? with the appropriate block size values) to check for any errors.

The codes for this exercise can be found on Google Colab on this link:

https://colab.research.google.com/drive/1lxW-QaIg66_BTMoGWA0vtERfJouYkbJS?usp=sharing

46

What about Python?

Python wrappers of CUDA and OpenCL exist although not officially suported:

▶ pyCUDA:

$ pip install pycuda

▶ pyOpenCL:

$ pip install pyopencl

▶ both use numpy for array and data manipulation

▶ PyOpenCL is somewhat easier to use than OpenCL (no low-level programming needed)

Riemann sum codes in pyCUDA (riemann_cuda_double.py) and pyOpenCL

(riemann_opencl_double.py) available in jupyter notebook on Google Colab – for running

the scripts prior installation of libraries is needed:

▶ !pip -q install pycuda

▶ !pip -q install opencl

Co-funded by the Horizon 2020 programme
of the European Union

This project has received funding from the European High-Performance Computing Joint Undertaking (JU)
under grant agreement No 951732. The JU receives support from the European Union’s Horizon 2020
research and innovation programme and Germany, Bulgaria, Austria, Croatia, Cyprus, Czech Republic,
Denmark, Estonia, Finland, Greece, Hungary, Ireland, Italy, Lithuania, Latvia, Poland, Portugal, Romania,
Slovenia, Spain, Sweden, United Kingdom, France, Netherlands, Belgium, Luxembourg, Slovakia, Norway,
Switzerland, Turkey, Republic of North Macedonia, Iceland, Montenegro

Thanks!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47

