
Accelerators
Profiling, debugging and optimization

Leon Bogdanović
University of Ljubljana, FME, LECAD lab



2

GPU optimization

Optimization can be done on:

▶ algorithms

▶ memory access and usage

▶ execution configuration

▶ instruction performance



3

Algorithm optimization

Algorithms should be designed for:

▶ maximizing independent parallelism

▶ maximizing arithmetic intensity (computation/bandwidth)

▶ minimizing data memory transfer to/from host

▶ minimizing memory caching



4

Memory optimization

coalescing (source: cvw.cac.cornell.edu)

Memory access:

▶ ideally coalesced (combining multiple memory accesses into a single transaction)

▶ avoid high-degree bank conflicts in shared memory

Memory usage:

▶ shared memory (faster than global memory, threads can cooperate, for avoiding

non-coalesced access)

▶ effective bandwidth of memory transfer



5

Execution optimization

▶ multiprocessor occupancy:

▶ hardware must be kept busy

▶ 100% occupancy: maximum number of warps of threads that can run concurrently

▶ limited by resource usage (shared memory, registers)

▶ blocks per multiprocessor ratio:

▶ all multiprocessors should have at least one block to execute

▶ to keep multiprocessors busy multiple blocks should be executed on them

▶ latency hiding:

▶ at least 192 threads (6 warps of 32 threads) per multiprocessor should be executed

▶ limited by number of registers per kernel and amount of shared memory

▶ threads per block

▶ should be a multiple of warp size (32 threads)

▶ 64 threads per block (minimum), better choice: 192 or 256 threads per block



6

Instruction optimization

▶ instruction throughput dependent on:

▶ nominal instruction throughput

▶ memory latency and bandwidth

▶ maximizing usage of high-bandwidth memory by:

▶ maximizing use of shared memory

▶ minimizing accesses to global memory

▶ maximizing coalescing of global memory accesses

▶ overlapping memory accesses with computation:

▶ high ratio of computational operations to memory transactions

▶ concurrency of many threads



7

Tools for performance evaluation

Tools capable of profiling and/or tracing CUDA and OpenCL codes:

▶ CUDA:

▶ nvprof: command line profiling tool from CUDA toolkit

▶ nvvp: visual profiler (GUI) tool from CUDA toolkit

▶ nvprof and nvvp deprecated in CUDA 11: replaced by Nsight Tools

▶ TAU (Tuning and Analysis Utilities): open source tool for profiling and tracing

▶ other tools: vampir, SCALASCA (for large scale applications)...

▶ OpenCL:

▶ on NVIDIA cards: OpenCL profiling not supported since CUDA 8

▶ on AMD cards: OpenCL profiling with Radeon GPU profiler

▶ TAU (Tuning and Analysis Utilities): open source tool for profiling and tracing

▶ other tools: vampir, Intel VTune Amplifier...



8

Tools on HPCFS for GPU profiling/tracing

On HPCFS available:

▶ nvprof, nvvp, TAU for CUDA

▶ TAU for OpenCL

▶ clone the repository from bitbucket to your viz.hpc.fs.uni-lj.si account:

$ git clone https://bitbucket.org/lecad-peg/eurocc-accelerators.git

$ cd eurocc-accelerators/ex-3_riemann

▶ start the environment with profiling tools by following these steps on your viz.hpc.fs.uni-lj.si account:

$ module purge

$ module load tau/2.29.1-CUDA

$ module load jre

$ env --unset=LD_PRELOAD TMOUT=600 srun --time=1:0:0 --partition=gpu --x11 --pty bash -i

$ env --unset=LD_PRELOAD srun --partition=gpu nvprof ./riemann_cuda_double

running jobs: recommended

interactive session: not recommended

https://bitbucket.org/lecad-peg/eurocc-accelerators.git


9

CUDA profiling with nvprof and nvvp

▶ executables to profile: riemann_cuda_double,  riemann_cuda_double_reduce

▶ compilation is done with:

$ nvcc -o riemann_cuda_double riemann_cuda_double.cu

$ nvcc -o riemann_cuda_double_reduce riemann_cuda_double_reduce.cu

▶ profiling is done with:

$ env --unset=LD_PRELOAD srun --partition=gpu nvprof ./riemann_cuda_double

$ env --unset=LD_PRELOAD srun --partition=gpu --x11 nvvp ./riemann_cuda_double 

(not recommended)

▶ nvprof available options and query metrics:

$ env --unset=LD_PRELOAD srun --partition=gpu nvprof -h

$ env --unset=LD_PRELOAD srun --partition=gpu nvprof --query-metrics



10

CUDA profiling on login node with nvvp

▶ CUDA profiles visualization with nvvp is recommended on the login node

▶ create profile with nvprof:

$ env --unset=LD_PRELOAD srun --partition=gpu nvprof -s -o \ 

riemann_cuda_double.nvprof ./riemann_cuda_double

▶ start nvvp (on the login node): 

$ nvvp

▶ select the created profile (riemann_cuda_double.nvprof) and visualize it with:

File -> Import -> Nvprof (Select an import source) -> Multiple processes -> 

Browse... -> select "riemann_cuda_double.nvprof" -> OK -> Finish



11

Example 1: CUDA profiling - riemann_cuda_double

outputs of nvprof:

$ env --unset=LD_PRELOAD srun --partition=gpu nvprof ./riemann_cuda_double



12

Example 1: CUDA profiling – riemann_cuda_double (cont.)

outputs of nvprof:

$ env --unset=LD_PRELOAD srun --partition=gpu nvprof --metrics flop_count_dp \ 

--metrics dram_read_throughput --metrics dram_write_throughput –metrics \ 

achieved_occupancy ./riemann_cuda_double



13

Example 1: CUDA profiling – riemann_cuda_double (cont.)

profiles/traces with nvvp:



14

Example 1: CUDA profiling – riemann_cuda_double (cont.)

Analysis of profiles:

▶ bottleneck: memory transfer from device to host (Memcpy DtoH)

▶ multiprocessor occupancy: 91.1% (medianTrapezoid)

▶ device memory read throughput: 5.8172 MB/s (medianTrapezoid)

▶ device memory write throughput:  56.239 GB/s (medianTrapezoid)

▶ FLOPS for medianTrapezoid: 86000005646/162.37872*1000/10^9 = 529.63 GFLOPS

Possible optimizations:

▶ reducing memory transfer from device to host 

▶ increasing device memory throughput: 240.6 GB/s (theoretical memory bandwidth of Tesla K80)

▶ Increasing kernel throughput: 1371 GFLOPS (theoretical FP64 (double) performance of Tesla K80)



15

Analyze the riemann_cuda_double_reduce executable with nvprof and nvvp:

▶ determine execution times, FLOPS, multiprocessor occupancy and read/write memory 

throughputs for both kernels (from nvprof output)

▶ determine memory transfers times to/from device (from nvprof output) and identify possible 

bottlenecks

▶ visualize the traces with nvvp: how are kernels deployed in the default stream?

▶ on the basis of the analysis suggest any possible optimizations

Exercise 1: CUDA profiling – riemann_cuda_double_reduce



16

Solution (Exer. 1):
CUDA profiling – riemann_cuda_double_reduce

outputs of nvprof:



17

outputs of nvprof:

Solution (Exer. 1):
CUDA profiling – riemann_cuda_double_reduce (cont.)



18

profiles/traces with nvvp:

Solution (Exer. 1):
CUDA profiling – riemann_cuda_double_reduce (cont.)



19

Analysis of profiles:

▶ minimal (just one double float) memory transfer from device to host (Memcpy DtoH)

▶ multiprocessor occupancy: 91.1% (medianTrapezoid), 50% (reducerSum)

▶ device memory read throughput: 5.766 MB/s (medianTrapezoid), 13.866 GB/s (reducerSum)

▶ device memory write throughput:  56.231 GB/s (medianTrapezoid), 524.000 B/s (reducerSum)

▶ FLOPS for medianTrapezoid: 86000005646/162.37872*1000/10^9 = 529.63 GFLOPS

▶ FLOPS for reducerSum: 1000001023/672.17*1000/10^9 = 1.488 GFLOPS

Possible further optimizations:

▶ sum reduce kernel with many blocks of threads instead of 1 block for achieving better device 

memory and kernel throughput

▶ combining both kernels into one kernel for achieving better overall device memory and kernel 

throughput

Solution (Exer. 1):
CUDA profiling – riemann_cuda_double_reduce (cont.)



20

Example 2: CUDA profiling with TAU

▶ executables to profile: riemann_cuda_double_reduce

▶ profiling is done with:

$ env --unset=LD_PRELOAD srun --partition=gpu tau_exec -T serial -cupti \ 

./riemann_cuda_double_reduce

$ pprof

$ paraprof

▶ tracing is done with:

$ env --unset=LD_PRELOAD srun --partition=gpu env TAU_TRACE=1 tau_exec -T \ 

serial -cupti ./riemann_cuda_double_reduce

$ tau_treemerge.pl

$ tau2slog2 tau.trc tau.edf -o tau.slog2

$ jumpshot tau.slog2



21

profiles with paraprof:

Example 2: CUDA profiling with TAU (cont.)



22

traces with jumpshot:

Example 2: CUDA profiling with TAU (cont.)



23

Exercise 2: OpenCL profiling with TAU

▶ analyze the riemann_opencl_double_reduce  executable with TAU

▶ compilation is done with:

$ gcc -o riemann_opencl_double_reduce riemann_opencl_double_reduce.c -lOpenCL

▶ generate profiles with:

$ env --unset=LD_PRELOAD srun --partition=gpu tau_exec -T serial -opencl \ 

./riemann_opencl_double_reduce

▶ use pprof and paraprof for profiling

▶ generate traces with:

$ env --unset=LD_PRELOAD srun --partition=gpu env TAU_TRACE=1 tau_exec -T serial \

-opencl ./riemann_opencl_double_reduce

▶ use jumpshot for visualizing traces



24

profiles with paraprof:

Solution (Exer. 2):
OpenCL profiling – riemann_opencl_double_reduce



25

profiles with paraprof:

Solution (Exer. 2):
OpenCL profiling – riemann_opencl_double_reduce (cont.)



26

traces with jumpshot:

Solution (Exer. 2):
OpenCL profiling – riemann_opencl_double_reduce (cont.)



27

Multiple GPUs in CUDA  

In a multiple GPU set-up:

▶ all CUDA API calls are issued into a current GPU

▶ cudaSetDevice(ID): for changing the current GPU to GPU with id ID

▶ GPU IDs always in range [0, number of GPUs), GPUs count can be obtained with 

cudaGetDeviceCount() or by invoking nvidia-smi

▶ kernel calls and asynchronous memory copying functions are in principle non-blocking 

towards CPU thread execution and therefore towards switching GPUs



28

Example 3: Domain decomposition on multiple GPUs 

__global__ void medianTrapezoid(double *a, int n, int dev)

{

  int idx = blockIdx.x * blockDim.x + threadIdx.x;

  double x = (double)(idx + n * dev) / (double)(2 * n);

 

  if(idx < n)

    a[idx] = (exp(-x * x / 2.0) + 

              exp(-(x + 1 / (double)(2 * n)) * 

              (x + 1 / (double)(2 * n)) / 2.0)) / 2.0;

}

Domain composition for numerical integration in 

CUDA  on two GPUs:

▶ the kernel medianTrapezoid is modified for 

calculations on two sub-domains (dev = 0, i.e. GPU with 

ID 0 calculates on the first sub-interval of the integrating 

domain, dev = 1, i.e. GPU with ID 1 calculates on the 

second sub-interval of the integrating domain)

▶ both GPUs return the array with trapezoid medians 

calculated on the specific sub-interval of the integrating 

domain



29

Example 3: Domain decomposition on multiple GPUs (cont.) 

Code riemann_cuda_double_multiple (in eurocc-accelerators/multiple_gpus):

▶ uses normal host memory allocation with malloc() and synchronous memory transfer from 

device to host with cudaMemcpy()

▶ concurrency of medianTrapezoid kernel executions on GPUs is NOT achieved 



30

Example 3: Domain decomposition on multiple GPUs (cont.) 

Code riemann_cuda_double_multiple_concurrency:

▶ uses pinned host memory allocation with cudaMallocHost() and asynchronous memory 

transfer from device to host with cudaMemcpyAsync()

▶ concurrency of medianTrapezoid kernel executions on GPUs IS achieved



31

▶ Debugging possibilities:

▶ in-program checking:

▶ use of printf() in device code

▶ use of assert() in device code

▶ data checks

▶ CUDA/OpenCL API call checks

▶ tools for debugging:

▶ for CUDA: CUDA-MEMCHECK, CUDA-GDB (command-line or GUI in NVIDIA Nsight Eclipse 

Edition)...

▶ for OpenCL: Oclgrind, GDB...

Debugging applications (source: V. Venkataraman)

CUDA / OpenCL debugging



32

CUDA API call checking

▶ checking errors in runtime API code through an assert style handler function and 

wrapper macro:#define gpuErrchk(ans) {gpuAssert((ans), __FILE__, __LINE__);}

inline void gpuAssert(cudaError_t code, const char *file, int line, bool abort=true)

{

   if (code != cudaSuccess) 

   {

      fprintf(stderr,"GPUassert: %s %s %d\n", cudaGetErrorString(code), file, line);

      if (abort) exit(code);

   }

}

▶ return status of the API call:

gpuErrchk(cudaMalloc(&a_d, size * sizeof(float)));

▶ checking errors in kernel launch:

kernel<<<1,1>>>(a);

gpuErrchk(cudaPeekAtLastError());

gpuErrchk(cudaDeviceSynchronize());



33

Example 4: CUDA API call checking

▶ checking for errors when executing the compiled hello_cuda.cu example

▶ the code is compiled with kernel launch <<<16, 0>>>:

#define NUM_BLOCKS 16

#define BLOCK_WIDTH 1

...

hello<<<NUM_BLOCKS, BLOCK_WIDTH-1>>>();

▶ output of executing the program without using the checking errors wrapper macro: 

$ ./hello_cuda

That's all!

▶ output of executing the program with using the checking errors wrapper macro:

$ ./hello_cuda

GPUassert: invalid configuration argument hello.cu 27



34

Exercise 3: CUDA-MEMCHECK

▶ check the compiled hello_cuda.cu (from Example 3)  with cuda-memcheck

▶ launch the utility from command-line with: 

$ cuda-memcheck ./hello_cuda

▶ compare the output with the output from CUDA API call checking



35

OpenCL API call checking

▶ checking errors in runtime API code through a handler function:
void checkErrors(cl_int status, char *label, int line)

{

  switch (status)

  {

      case CL_SUCCESS:

        return;

      case CL_BUILD_PROGRAM_FAILURE:

        fprintf(stderr, "OpenCL error (at %s, line %d): CL_BUILD_PROGRAM_FAILURE\n", label, line);

        break;

…

case CL_PROFILING_INFO_NOT_AVAILABLE:

        fprintf(stderr, "OpenCL error (at %s, line %d): CL_PROFILING_INFO_NOT_AVAILABLE\n", label, line);

        break;

  }

  exit(status);

}

▶ return status of the API call example:

ret = clEnqueueNDRangeKernel(commandQueue, kernel, 1, NULL, &globalItemSize,  

                             &localItemSize, 0, NULL, NULL);

checkErrors (ret, "clEnqueueNDRangeKernel", __LINE__);



36

Example 5: OpenCL API call checking

▶ checking for errors when executing the compiled hello_opencl.c example

▶ the code is compiled with kernel launch (..., 16, 3, ...):

size_t globalItemSize = 16;

size_t localItemSize = 3;

ret = clEnqueueNDRangeKernel(commandQueue, kernel, 1, NULL, &globalItemSize,   

                             &localItemSize, 0, NULL, NULL);

▶ output of executing the program without using the checking errors handler function: 

$ ./hello_opencl

That's all!

▶ output of executing the program with using the checking errors handler function:

$ ./hello_opencl

-OpenCL error (at clEnqueueNDRangeKernel, line 202): CL_INVALID_WORK_GROUP_SIZE



Co-funded by the Horizon 2020 programme 
of the European Union

This project has received funding from the European High-Performance Computing Joint Undertaking (JU) 
under grant agreement No 951732. The JU receives support from the European Union’s Horizon 2020 
research and innovation programme and Germany, Bulgaria, Austria, Croatia, Cyprus, Czech Republic, 
Denmark, Estonia, Finland, Greece, Hungary, Ireland, Italy, Lithuania, Latvia, Poland, Portugal, Romania, 
Slovenia, Spain, Sweden, United Kingdom, France, Netherlands, Belgium, Luxembourg, Slovakia, Norway, 
Switzerland, Turkey, Republic of North Macedonia, Iceland, Montenegro

Thanks!


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

