Accelerators

Profiling, debugging and optimization

EURO

Leon Bogdanović

University of Ljubljana, FME, LECAD lab

GPU optimization

Optimization can be done on:

- algorithms
- memory access and usage
- **execution** configuration
- **instruction** performance

Algorithm optimization

Algorithms should be designed for:

- maximizing independent parallelism
- maximizing arithmetic intensity (computation/bandwidth)
- minimizing data memory transfer to/from host
- minimizing memory caching

Memory optimization

coalescing (source: cvw.cac.cornell.edu)

- ideally coalesced (combining multiple memory accesses into a single transaction)
- avoid high-degree bank conflicts in shared memory

Memory usage:

- shared memory (faster than global memory, threads can cooperate, for avoiding non-coalesced access)
- effective bandwidth of memory transfer

Execution optimization

multiprocessor occupancy:

- hardware must be kept busy
- 100% occupancy: maximum number of warps of threads that can run concurrently
- limited by resource usage (shared memory, registers)
- blocks per multiprocessor ratio:
 - all multiprocessors should have at least one block to execute
 - to keep multiprocessors busy multiple blocks should be executed on them
- latency hiding:
 - at least 192 threads (6 warps of 32 threads) per multiprocessor should be executed
 - limited by number of registers per kernel and amount of shared memory
- threads per block
 - should be a multiple of warp size (32 threads)
 - 64 threads per block (minimum), better choice: 192 or 256 threads per block

Instruction optimization

- instruction throughput dependent on:
 - nominal instruction throughput
 - memory latency and bandwidth
- maximizing usage of high-bandwidth memory by:
 - maximizing use of shared memory
 - minimizing accesses to global memory
 - maximizing coalescing of global memory accesses
- overlapping memory accesses with computation:
 - high ratio of computational operations to memory transactions
 - concurrency of many threads

Tools for performance evaluation

Tools capable of profiling and/or tracing CUDA and OpenCL codes:

- CUDA:
 - **nvprof**: command line profiling tool from CUDA toolkit
 - **nvvp**: visual profiler (GUI) tool from CUDA toolkit
 - nvprof and nvvp deprecated in CUDA 11: replaced by Nsight Tools
 - **TAU** (Tuning and Analysis Utilities): open source tool for profiling and tracing
 - other tools: vampir, SCALASCA (for large scale applications)...
- ► OpenCL:
 - on NVIDIA cards: OpenCL profiling not supported since CUDA 8
 - on AMD cards: OpenCL profiling with Radeon GPU profiler
 - TAU (Tuning and Analysis Utilities): open source tool for profiling and tracing
 - other tools: vampir, Intel VTune Amplifier...

Tools on HPCFS for GPU profiling/tracing

On HPCFS available:

- nvprof, nvvp, TAU for CUDA
- TAU for OpenCL
- clone the repository from bitbucket to your viz.hpc.fs.uni-lj.si account:
 - \$ git clone <u>https://bitbucket.org/lecad-peg/eurocc-accelerators.git</u>
 - \$ cd eurocc-accelerators/ex-3_riemann
- start the environment with profiling tools by following these steps on your viz.hpc.fs.uni-lj.si account:
 - \$ module purge

\$ module load jre

\$ module load tau/2.29.1-CUDA

interactive session: not recommended

- \$ env --unset=LD_PRELOAD TMOUT=600 srun --time=1:0:0 --partition=gpu --x11 --pty bash -i
- \$ env --unset=LD_PRELOAD srun --partition=gpu nvprof ./riemann_cuda_double

running jobs: recommended

CUDA profiling with nvprof and nvvp

- executables to profile: riemann_cuda_double, riemann_cuda_double_reduce
- **compilation** is done with:
 - \$ nvcc -o riemann_cuda_double riemann_cuda_double.cu
 - \$ nvcc -o riemann_cuda_double_reduce riemann_cuda_double_reduce.cu
- **profiling** is done with:
 - \$ env --unset=LD_PRELOAD srun --partition=gpu nvprof ./riemann_cuda_double
 - \$ env --unset=LD_PRELOAD srun --partition=gpu --x11 nvvp ./riemann_cuda_double
 (not recommended)
- nvprof available options and query metrics:
 - \$ env --unset=LD_PRELOAD srun --partition=gpu nvprof -h
 - \$ env --unset=LD_PRELOAD srun --partition=gpu nvprof --query-metrics

CUDA profiling on login node with nvvp

- CUDA profiles visualization with nvvp is recommended on the login node
- **create profile** with nvprof:
 - \$ env --unset=LD_PRELOAD srun --partition=gpu nvprof -s -o \

riemann_cuda_double.nvprof ./riemann_cuda_double

start nvvp (on the login node):

\$ nvvp

select the created profile (riemann_cuda_double.nvprof) and visualize it with:

File -> Import -> Nvprof (Select an import source) -> Multiple processes ->
Browse... -> select "riemann_cuda_double.nvprof" -> OK -> Finish

Example 1: CUDA profiling - riemann_cuda_double

outputs of **nvprof**:

\$ env --unset=LD_PRELOAD srun --partition=gpu nvprof ./riemann_cuda_double

	_									
==40078== NVPR0F	is profil	ing process	; 40078, c	ommand: ./	riemann_cu	Ida_double				
Found GPU 'Tesla K80' with 11.173 GB of global memory, max 1024 threads per block, and 13 multiprocessors										
CUDA kernel 'medianTrapezoid' launch with 976563 blocks of 1024 threads										
Riemann sum CUDA	(double p	recision) 1	for N = 10	00000000	: 0.3413	4474606857	29			
Total time (measu					: 6.3200	00 s				
==40078== Profili		,	lemann cud	a double						
==40078== Profili			_	_						
	Time(%)		Calls	Avg	Min	Max	Name			
GPU activities:		2.93369s	1	2.93369s	2.93369s	2.93369s	[CUDA memcpy DtoH]			
	5.57%	173.20ms	1	173.20ms	173.20ms	173.20ms	<pre>medianTrapezoid(double*, int)</pre>			
API calls:	93.70%	3.10713s	1	3.10713s	3.10713s	3.10713s	cudaMemcpy			
	5.64%	187.00ms	1	187.00ms	187.00ms	187.00ms	cudaMalloc			
	0.22%	7.2943ms	1	7.2943ms	7.2943ms	7.2943ms	cudaFree			
	0.20%	6.5305ms	582	11.220us	308ns	425.41us	cuDeviceGetAttribute			
	0.18%	6.0319ms	6	1.0053ms	1.0032ms	1.0135ms	cuDeviceTotalMem			
	0.03%	1.0710ms	1	1.0710ms	1.0710ms	1.0710ms	cudaGetDeviceProperties			
	0.02%	526.71us	6	87.784us	85.138us	98.957us	cuDeviceGetName			
	0.01%	352.23us	1	352.23us	352.23us	352.23us	cudaLaunchKernel			
	0.00%	28.732us	6	4.7880us	2.7430us	11.986us	cuDeviceGetPCIBusId			
	0.00%	10.917us	1	10.917us	10.917us	10.917us	cudaSetDevice			
	0.00%	8.4950us	12	707ns	372ns	1.3430us	cuDeviceGet			
	0.00%	3.0550us	3	1.0180us	323ns	1.7320us	cuDeviceGetCount			
	0.00%	2.5450us	6	424ns	354ns	563ns	cuDeviceGetUuid			

Example 1: CUDA profiling – riemann_cuda_double (cont.)

outputs of **nvprof**:

\$ env --unset=LD_PRELOAD srun --partition=gpu nvprof --metrics flop_count_dp \

--metrics dram_read_throughput --metrics dram_write_throughput -metrics \

achieved_occupancy ./riemann_cuda_double

CUDA kernel 'medianTrapezoid' l	T3 GB of global memory, i aunch with 976563 blocks be replayed on device 0 i bid(double*, int)" (done) sion) for N = 1000000000	max 1024 threads per block, and 13 multiproce of 1024 threads n order to collect all events/metrics.	ssors		
Invocations	Metric Name	Metric Description	Min	Max	Avg
Device "Tesla K80 (0)"					
Kernel: medianTrapezoid(dou					
1	flop_count_dp	Floating Point Operations(Double Precision)			8.6000e+10
1	dram_read_throughput	Device Memory Read Throughput	5.7400MB/s	5.7400MB/s	5.7400MB/s
1	dram write throughput	Device Memory Write Throughput	56.288GB/s	56.288GB/s	56.288GB/s

Example 1: CUDA profiling – riemann_cuda_double (cont.)

SLING EURO

profiles/traces with **nvvp**:

-						
💺 NVIDIA Visual Profiler <@	@gpu01.hpc>					_ = ×
<u>F</u> ile <u>V</u> iew <u>W</u> indow <u>R</u> un <u>H</u> el	p					
🖆 📓 🖳 📑 🗣 🗣 📢 🗨	. 🔍 (🖃 (🖭 🥆 (🔣 📮 📮	. [& •				
🕵 *NewSession1 🛙						
	0 s	1 s	2 s	3 s	4 s	5 s
Process "riemann_cuda_double	" (4145)					
Thread 1817516800						
Runtime API			cudaMemcpy			
L Driver API) 🔳					
Profiling Overhead						
🖃 [0] Tesla K80						
Context 1 (CUDA)						
🗆 🍸 MemCpy (DtoH)		M	emcpy DtoH [sync]			
Compute						
- 🍸 100,0% medianTrapez	zoid(double*, int)					
🛨 Streams						
	4					>
🗔 Analysis 🔤 GPU Details (Sun	nmary) 🔀 🔠 CPU Details 🍞 C	penACC Details 🏢 O	penMP Details 📮 Conso	le 🗔 Settings	s [[e 🙏 🖾 🔻 🗖 🗖
Name	Invocations Avg. Duration Re	gs Static SMem Ave	g. Dynamic SMem Floatin	ng Point Operations(Do	uble Precision) Achieved	Occupancy
medianTrapezoid(double*, int)	1 162,37872 ms	26 0	0		86000005646	0,911

Example 1: CUDA profiling – riemann_cuda_double (cont.)

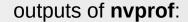
Analysis of profiles:

- bottleneck: memory transfer from device to host (Memcpy DtoH)
- multiprocessor occupancy: 91.1% (medianTrapezoid)
- device memory read throughput: 5.8172 MB/s (medianTrapezoid)
- device memory write throughput: 56.239 GB/s (medianTrapezoid)
- FLOPS for medianTrapezoid: 86000005646/162.37872*1000/10^9 = 529.63 GFLOPS

Possible optimizations:

- reducing memory transfer from device to host
- **increasing** device **memory throughput**: 240.6 GB/s (theoretical memory bandwidth of Tesla K80)
- Increasing kernel throughput: 1371 GFLOPS (theoretical FP64 (double) performance of Tesla K80)

Exercise 1: CUDA profiling – riemann_cuda_double_reduce



Analyze the riemann_cuda_double_reduce executable with nvprof and nvvp:

- determine execution times, FLOPS, multiprocessor occupancy and read/write memory throughputs for both kernels (from nvprof output)
- determine memory transfers times to/from device (from nvprof output) and identify possible bottlenecks
- visualize the traces with nvvp: how are kernels deployed in the default stream?
- on the basis of the analysis suggest any possible optimizations

Solution (Exer. 1): CUDA profiling – riemann_cuda_double_reduce

SLING EURO

==40407== NVPROF is profiling process 40407, command: ./riemann_cuda_double_reduce Found GPU 'Tesla K80' with 11.173 GB of global memory, max 1024 threads per block, and 13 multiprocessors CUDA kernel 'medianTrapezoid' launch with 976563 blocks of 1024 threads CUDA kernel 'reducerSum' launch with 1 blocks of 1024 threads

Riemann sum CUDA (double precision) for N = 1000000000 : 0.34134474606854243 Total time (measured by CPU) : 2.040000 s ==40407== Profiling application: ./riemann_cuda_double_reduce ==40407== Profiling result:

Туре	Time(%)	Time	Calls	Avg	Min	Max	Name
ties:	79.53%	672.68ms	1	672.68ms	672.68ms	672.68ms	reducerSum(double*, double*, int, int)
	20.47%	173.17ms	1	173.17ms	173.17ms	173.17ms	<pre>medianTrapezoid(double*, int)</pre>
	0.00%	6.2400us	1	6.2400us	6.2400us	6.2400us	[CUDA memcpy DtoH]
alls:	49.24%	1.01211s	3	337.37ms	7.1700us	1.00526s	cudaFree
	41.16%	845.92ms	1	845.92ms	845.92ms	845.92ms	cudaMemcpy
	8.92%	183.34ms	2	91.670ms	491.18us	182.85ms	cudaMalloc
	0.31%	6.2819ms	582	10.793us	287ns	412.87us	cuDeviceGetAttribute
	0.28%	5.6530ms	6	942.16us	935.95us	950.47us	cuDeviceTotalMem
	0.05%	1.0165ms	1	1.0165ms	1.0165ms	1.0165ms	cudaGetDeviceProperties
	0.03%	709.07us	6	118.18us	81.701us	276.88us	cuDeviceGetName
	0.01%	224.59us	2	112.29us	17.374us	207.22us	cudaLaunchKernel
	0.00%	28.150us	6	4.6910us	2.6080us	12.404us	cuDeviceGetPCIBusId
	0.00%	11.132us	1	11.132us	11.132us	11.132us	cudaSetDevice
	0.00%	7.7420us	12	645ns	322ns	1.3770us	cuDeviceGet
	0.00%	3.1880us	3	1.0620us	337ns	1.9930us	cuDeviceGetCount
	0.00%	2.3140us	6	385ns	330ns	515ns	cuDeviceGetUuid
	ties:	ties: 79.53% 20.47% 0.00% alls: 49.24% 41.16% 8.92% 0.31% 0.28% 0.05% 0.03% 0.01% 0.00% 0.00% 0.00% 0.00%	ties: 79.53% 672.68ms 20.47% 173.17ms 0.00% 6.2400us alls: 49.24% 1.01211s 41.16% 845.92ms 8.92% 183.34ms 0.31% 6.2819ms 0.28% 5.6530ms 0.05% 1.0165ms 0.03% 709.07us 0.01% 224.59us 0.00% 28.150us 0.00% 11.132us 0.00% 7.7420us 0.00% 3.1880us	ties: 79.53% 672.68ms 1 20.47% 173.17ms 1 0.00% 6.2400us 1 alls: 49.24% 1.01211s 3 41.16% 845.92ms 1 8.92% 183.34ms 2 0.31% 6.2819ms 582 0.28% 5.6530ms 6 0.05% 1.0165ms 1 0.03% 709.07us 6 0.01% 224.59us 2 0.00% 28.150us 6 0.00% 11.132us 1 0.00% 7.7420us 12 0.00% 3.1880us 3	ties: 79.53% 672.68ms 1 672.68ms 20.47% 173.17ms 1 173.17ms 0.00% 6.2400us 1 6.2400us calls: 49.24% 1.01211s 3 337.37ms 41.16% 845.92ms 1 845.92ms 8.92% 183.34ms 2 91.670ms 0.31% 6.2819ms 582 10.793us 0.28% 5.6530ms 6 942.16us 0.05% 1.0165ms 1 1.0165ms 0.05% 1.0165ms 1 1.0165ms 0.03% 709.07us 6 118.18us 0.01% 224.59us 2 112.29us 0.00% 28.150us 6 4.6910us 0.00% 11.132us 1 11.132us 0.00% 7.7420us 12 645ns 0.00% 3.1880us 3 1.0620us	ties:79.53%672.68ms1672.68ms672.68ms20.47%173.17ms1173.17ms173.17ms0.00%6.2400us16.2400us6.2400usalls:49.24%1.01211s3337.37ms7.1700us41.16%845.92ms1845.92ms845.92ms8.92%183.34ms291.670ms491.18us0.31%6.2819ms58210.793us287ns0.28%5.6530ms6942.16us935.95us0.05%1.0165ms11.0165ms1.0165ms0.03%709.07us6118.18us81.701us0.01%224.59us2112.29us17.374us0.00%28.150us64.6910us2.6080us0.00%11.132us111.132us11.132us0.00%7.7420us12645ns322ns0.00%3.1880us31.0620us337ns	ties:79.53%672.68ms1672.68ms672.68ms672.68ms20.47%173.17ms1173.17ms173.17ms173.17ms0.00%6.2400us16.2400us6.2400us6.2401.01211s3337.37ms7.1700us1.00526s41.16%845.92ms1845.92ms845.92ms8.92%183.34ms291.670ms491.18us182.85ms0.31%6.2819ms58210.793us287ns412.87us0.28%5.6530ms6942.16us935.95us950.47us0.05%1.0165ms11.0165ms1.0165ms1.0165ms0.03%709.07us6118.18us81.701us276.88us0.01%224.59us2112.29us17.374us207.22us0.00%28.150us64.6910us2.6080us12.404us0.00%11.132us111.132us11.132us11.132us0.00%3.1880us31.0620us337ns1.9930us

CUDA profiling – riemann_cuda_double_reduce (cont.)

outputs of nvprof:

==40131== NVPROF is profiling process 40131, command: ./riemann cuda double reduce Found GPU 'Tesla K80' with 11.173 GB of global memory, max 1024 threads per block, and 13 multiprocessors CUDA kernel 'medianTrapezoid' launch with 976563 blocks of 1024 threads ==40131== Some kernel(s) will be replayed on device 0 in order to collect all events/metrics. Replaying kernel "medianTrapezoid(double*, int)" (3 of 3)... fb subpl read sectors Replaying kernel "medianTrapezoid(double*, int)" (done) Replaying kernel "reducerSum(double*, double*, int, int)" (done) Riemann sum CUDA (double precision) for N = 1000000000: 0.34134474606854243 Total time (measured by CPU) : 35.070000 s ==40131== Profiling application: ./riemann cuda double reduce ==40131== Profiling result: ==40131== Metric result: Invocations Metric Name Metric Description Min Max Avg Device "Tesla K80 (0)" Kernel: medianTrapezoid(double*, int) flop count dp Floating Point Operations(Double Precision) 8.6000e+10 8.6000e+10 8.6000e+10 1 dram read throughput Device Memory Read Throughput 4.6853MB/s 4.6853MB/s 4.6853MB/s 1 dram write throughput Device Memory Write Throughput 56.183GB/s 56.183GB/s 56.183GB/s Kernel: reducerSum(double*, double*, int, int) flop count dp Floating Point Operations(Double Precision) 1000001023 1000001023 1000001023 dram read throughput 1 Device Memory Read Throughput 13.820GB/s 13.820GB/s 13.820GB/s dram write throughput Device Memory Write Throughput 807.000B/s 807.000B/s 806.000B/s 1

SLI: SLI: G EURO

Solution (Exer. 1): CUDA profiling – riemann_cuda_double_reduce (cont.)

SLING EURO

profiles/traces with **nvvp**:

💺 NVIDIA Visual Profiler <@gpu01	.hpc>									_ 8 ×
<u>F</u> ile <u>V</u> iew <u>W</u> indow <u>R</u> un <u>H</u> elp										
📸 🔄 🖷 🖬 🗣 🗣 • [🕂 🔍 🔍 [6	I [F 🔭 [📕 📮 📔 💈	2 -							
🕵 *NewSession1 🛙										
		0 s	0,25 s	0,5	s 0,75 s	1 s	1,25 s	1,5 s	1,7	5 s
Process "riemann_cuda_double_reduce"	(4831)					· · · · · · · · · · · · · · · · · · ·				
Thread 1168034560										
L Runtime API		С	udaMal	lloc	cudaMem	псру			cudaF	ree
L Driver API										
Profiling Overhead										
🖻 [0] Tesla K80										
Context 1 (CUDA)										
– 🍸 MemСру (DtoH)										
Compute				median	reducerSum(dou	ıble*, double*, i	nt, int)			
- 🍸 80,5% reducerSum(double*, d	ouble*, int, in	t)			reducerSum(dou	ıble*, double*, i	nt, int)			
- 🍸 19,5% medianTrapezoid(doub	le*, int)			median						
+ Streams										
		4								Þ
🔚 Analysis 🔤 GPU Details (Summary)	🔀 🖽 CPU D	etails 🚡 OpenA	CC De	tails 🝺 Oper	nMP Details 📮 Consol	le 🔚 Settings		s [🗄 🛃 🔤	~
Name	Invocations	Avg. Duration	Regs	Static SMem	Avg. Dynamic SMem	Floating Point	Operations(Double	Precision)	Achieved Oc	cupancy
medianTrapezoid(double*, int)	1	162,38435 ms	26	0	0		8600	00005646		0,911
reducerSum(double*, double*, int, int)	1	671,45803 ms	10	0	8192		100	00001023		0,5

Solution (Exer. 1): CUDA profiling – riemann_cuda_double_reduce (cont.)

Analysis of profiles:

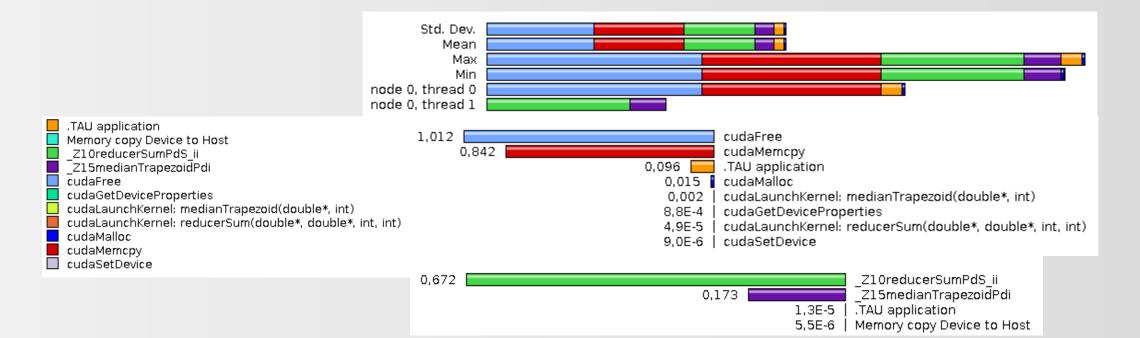
- minimal (just one double float) memory transfer from device to host (Memcpy DtoH)
- multiprocessor occupancy: 91.1% (medianTrapezoid), 50% (reducerSum)
- device memory read throughput: 5.766 MB/s (medianTrapezoid), 13.866 GB/s (reducerSum)
- device memory write throughput: 56.231 GB/s (medianTrapezoid), 524.000 B/s (reducerSum)
- FLOPS for medianTrapezoid: 86000005646/162.37872*1000/10^9 = 529.63 GFLOPS
- FLOPS for reducerSum: 1000001023/672.17*1000/10^9 = 1.488 GFLOPS

Possible further optimizations:

- sum reduce kernel with many blocks of threads instead of 1 block for achieving better device memory and kernel throughput
- combining both kernels into one kernel for achieving better overall device memory and kernel throughput

Example 2: CUDA profiling with TAU

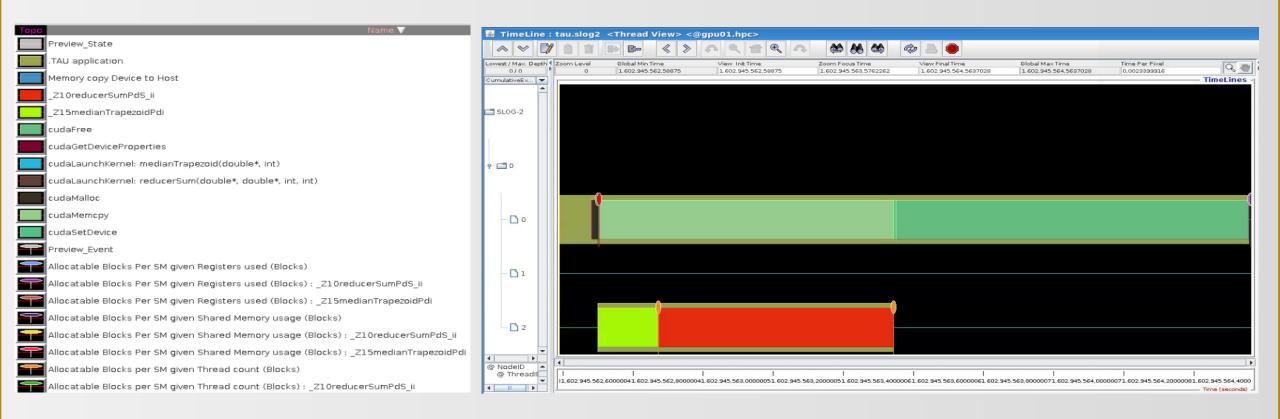
- executables to profile: riemann_cuda_double_reduce
- **profiling** is done with:
 - \$ env --unset=LD_PRELOAD srun --partition=gpu tau_exec -T serial -cupti \
 - ./riemann_cuda_double_reduce
 - \$ pprof
 - \$ paraprof
- **tracing** is done with:


```
$ env --unset=LD_PRELOAD srun --partition=gpu env TAU_TRACE=1 tau_exec -T \
```

- serial -cupti ./riemann_cuda_double_reduce
- \$ tau_treemerge.pl
- \$ tau2slog2 tau.trc tau.edf -o tau.slog2
- \$ jumpshot tau.slog2

Example 2: CUDA profiling with TAU (cont.)

profiles with **paraprof**:

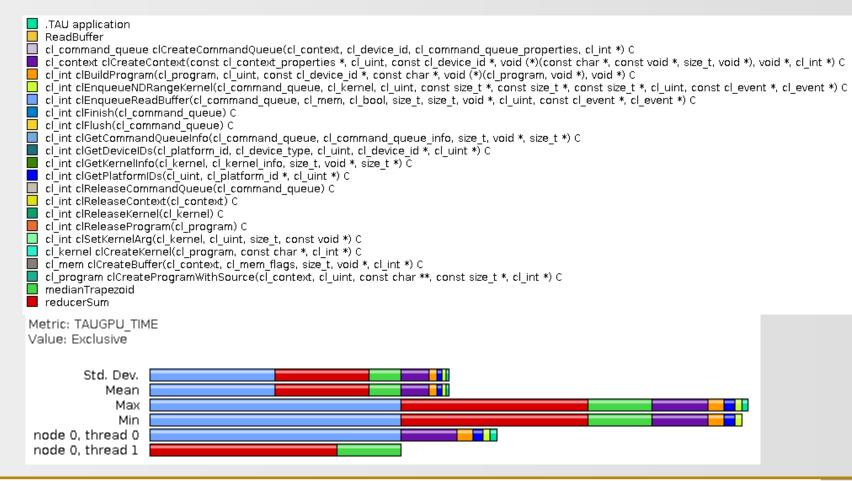


21

Example 2: CUDA profiling with TAU (cont.)

traces with jumpshot:

Exercise 2: OpenCL profiling with TAU


- analyze the riemann_opencl_double_reduce executable with TAU
- **compilation** is done with:
 - \$ gcc -o riemann_opencl_double_reduce riemann_opencl_double_reduce.c -l0penCL
- **generate** profiles with:
 - \$ env --unset=LD_PRELOAD srun --partition=gpu tau_exec -T serial -opencl \
 - ./riemann_opencl_double_reduce
- use pprof and paraprof for profiling
- **generate** traces with:
 - \$ env --unset=LD_PRELOAD srun --partition=gpu env TAU_TRACE=1 tau_exec -T serial \
 - -opencl ./riemann_opencl_double_reduce
- **use** jumpshot for visualizing traces

Solution (Exer. 2):

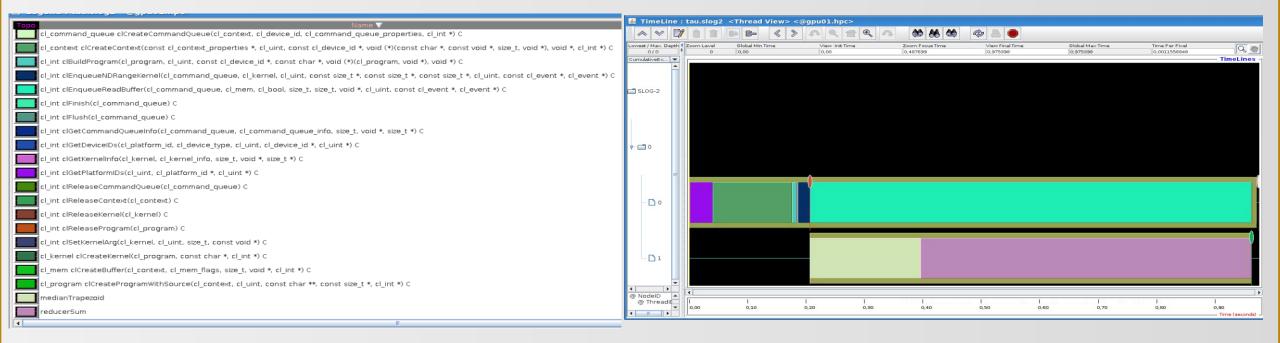
OpenCL profiling – riemann_opencl_double_reduce

SLING EURO

profiles with paraprof:

Solution (Exer. 2):

OpenCL profiling – riemann_opencl_double_reduce (cont.)


profiles with paraprof:

SLI: SIG EURO

Solution (Exer. 2): OpenCL profiling – riemann_opencl_double_reduce (cont.)

traces with jumpshot:

SLING EURO

Multiple GPUs in CUDA

In a multiple GPU set-up:

- all CUDA API calls are issued into a current GPU
- cudaSetDevice(ID): for changing the current GPU to GPU with id ID
- GPU IDs always in range [0, number of GPUs), GPUs count can be obtained with cudaGetDeviceCount() or by invoking nvidia-smi
- kernel calls and asynchronous memory copying functions are in principle non-blocking towards CPU thread execution and therefore towards switching GPUs


```
__global__ void medianTrapezoid(double *a, int n, int dev)
{
    int idx = blockIdx.x * blockDim.x + threadIdx.x;
```

```
double x = (double)(idx + n * dev) / (double)(2 * n);
```

Domain composition for numerical integration in CUDA on **two GPUs**:

- the kernel medianTrapezoid is modified for calculations on two sub-domains (dev = 0, i.e. GPU with ID 0 calculates on the first sub-interval of the integrating domain, dev = 1, i.e. GPU with ID 1 calculates on the second sub-interval of the integrating domain)
- both GPUs return the array with trapezoid medians
 calculated on the specific sub-interval of the integrating
 domain

Example 3: Domain decomposition on multiple GPUs (cont.)

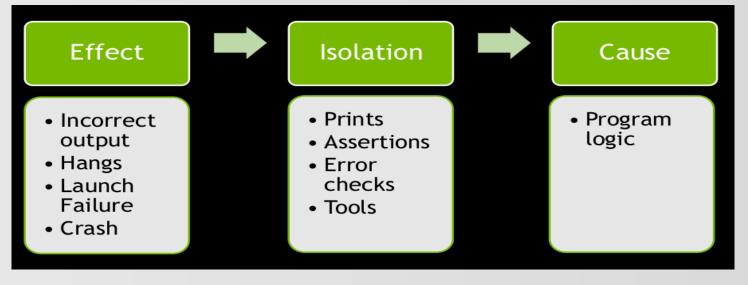
Code riemann_cuda_double_multiple (in eurocc-accelerators/multiple_gpus):

- uses normal host memory allocation with malloc() and synchronous memory transfer from device to host with cudaMemcpy()
- concurrency of medianTrapezoid kernel executions on GPUs is NOT achieved

NVIDIA Visual Profile	r <@gpu01	.hpc>									_ # ×
<u>File View W</u> indow <u>R</u> un	<u>H</u> elp										
😁 🖳 🖳 📭 🗣 • [+t, -t, -t, -t, -t, -t, -t, -t, -t, -t, -											
💺 *NewSession1 🛿											
	0 s	1 s	2 s	3 s	4 s	5 s	6 s	7 s	8 s	9 s	
L Runtime API			cudaMemcp	ру		cudaMemc	ру				
L Driver API											
Profiling Overhead											
🖃 [0] Tesla K80											
Context 1 (CUDA)											
- 🍸 MemCpy (DtoH)			Memcpy DtoH	[sync]							
🛨 Compute											
🛨 Streams											
🖃 [1] Tesla K80											
🖃 Context 2 (CUDA)											
🗆 🍸 MemCpy (DtoH)						Memcpy DtoH	l [sync]				
🛨 Compute											
🛨 Streams											-
	4										

Example 3: Domain decomposition on multiple GPUs (cont.)

Code riemann_cuda_double_multiple_concurrency:


- uses pinned host memory allocation with cudaMallocHost() and asynchronous memory transfer from device to host with cudaMemcpyAsync()
- concurrency of medianTrapezoid kernel executions on GPUs IS achieved

💲 NVIDIA Visual Profile	r <@gpu01.k	hpc>				_ 8 ×
<u>File View W</u> indow <u>R</u> un	<u>H</u> elp					
📸 🗟 🗑 🖬 🖬 🔷 • 🗆	£ Q € [⊟	F K 🔣 🚊 📇 🙏 •				
💺 *NewSession1 😫						- 0
	0 s	2,5 s	5 s	7,5 s	10 s	
L Runtime API		cudaMallocHost	cudaMallocHost	cudaDeviceSync		_
L Driver API						
Profiling Overhead						
📃 [0] Tesla K80						
🖃 Context 1 (CUDA)						
- 🍸 MemCpy (DtoH)				Memcpy DtoH		
🛨 Compute						
🛨 Streams						
🖃 [1] Tesla K80						
Context 2 (CUDA)						
L 🍸 MemCpy (DtoH)				Memcpy DtoH		
🛨 Compute				-		
🛨 Streams						-
	4					

CUDA / OpenCL debugging

- Debugging possibilities:
- **in-program** checking:
 - use of printf() in device code
 - use of assert() in device code
 - data checks
 - CUDA/OpenCL API call checks

Debugging applications (source: V. Venkataraman)

- tools for debugging:
 - for CUDA: CUDA-MEMCHECK, CUDA-GDB (command-line or GUI in NVIDIA Nsight Eclipse Edition)...
 - ► for OpenCL: Oclgrind, GDB...

CUDA API call checking

checking errors in runtime API code through an assert style handler function and

```
Wrapper macro:#define gpuErrchk(ans) {gpuAssert((ans), __FILE__, __LINE__);}
inline void gpuAssert(cudaError_t code, const char *file, int line, bool abort=true)
{
    if (code != cudaSuccess)
    {
      fprintf(stderr,"GPUassert: %s %s %d\n", cudaGetErrorString(code), file, line);
      if (abort) exit(code);
    }
}
```

return status of the API call:

```
gpuErrchk(cudaMalloc(&a_d, size * sizeof(float)));
```

checking errors in kernel launch:

```
kernel<<<1,1>>>(a);
```

```
gpuErrchk(cudaPeekAtLastError());
```

```
gpuErrchk(cudaDeviceSynchronize());
```

Example 4: CUDA API call checking

- checking for errors when executing the compiled hello_cuda.cu example
- the code is compiled with kernel launch <<<16, 0>>>: #define NUM_BLOCKS 16

```
#define BLOCK_WIDTH 1
```

```
hello<<<NUM_BLOCKS, BLOCK_WIDTH-1>>>();
```

output of executing the program without using the checking errors wrapper macro:

```
$ ./hello_cuda
```

That's all!

...

output of executing the program with using the checking errors wrapper macro:

```
$ ./hello_cuda
```

GPUassert: invalid configuration argument hello.cu 27

Exercise 3: CUDA-MEMCHECK

- check the compiled hello_cuda.cu (from Example 3) with cuda-memcheck
- **launch** the utility from command-line with:
 - \$ cuda-memcheck ./hello_cuda
- compare the output with the output from CUDA API call checking


```
checking errors in runtime API code through a handler function:
void checkErrors(cl_int status, char *label, int line)
 switch (status)
 {
     case CL_SUCCESS:
      return;
     case CL_BUILD_PROGRAM_FAILURE:
      fprintf(stderr, "OpenCL error (at %s, line %d): CL_BUILD_PROGRAM_FAILURE\n", label, line);
      break;
case CL_PROFILING_INFO_NOT_AVAILABLE:
      fprintf(stderr, "OpenCL error (at %s, line %d): CL_PROFILING_INFO_NOT_AVAILABLE\n", label, line);
      break;
 }
 exit(status);
}
  return status of the API call example:
ret = clEnqueueNDRangeKernel(commandQueue, kernel, 1, NULL, &globalItemSize,
                                        &localItemSize, 0, NULL, NULL);
   checkErrors (ret, "clEnqueueNDRangeKernel", __LINE__);
```

Example 5: OpenCL API call checking

- checking for errors when executing the compiled hello_opencl.c example
- the code is compiled with kernel launch (..., 16, 3, ...):

```
size_t globalItemSize = 16;
```

```
size_t localItemSize = 3;
```

ret = clEnqueueNDRangeKernel(commandQueue, kernel, 1, NULL, &globalItemSize,

```
&localItemSize, 0, NULL, NULL);
```

- output of executing the program without using the checking errors handler function:
 - \$./hello_opencl

That's all!

- output of executing the program with using the checking errors handler function:
 - \$./hello_opencl

-OpenCL error (at clEnqueueNDRangeKernel, line 202): CL_INVALID_WORK_GROUP_SIZE

Thanks!

This project has received funding from the European High-Performance Computing Joint Undertaking (JU) under grant agreement No 951732. The JU receives support from the European Union's Horizon 2020 research and innovation programme and Germany, Bulgaria, Austria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Greece, Hungary, Ireland, Italy, Lithuania, Latvia, Poland, Portugal, Romania, Slovenia, Spain, Sweden, United Kingdom, France, Netherlands, Belgium, Luxembourg, Slovakia, Norway, Switzerland, Turkey, Republic of North Macedonia, Iceland, Montenegro