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GPU optimization

Optimization can be done on:

▶ algorithms

▶ memory access and usage

▶ execution configuration

▶ instruction performance
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Algorithm optimization

Algorithms should be designed for:

▶ maximizing independent parallelism

▶ maximizing arithmetic intensity (computation/bandwidth)

▶ minimizing data memory transfer to/from host

▶ minimizing memory caching
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Memory optimization

coalescing (source: cvw.cac.cornell.edu)

Memory access:

▶ ideally coalesced (combining multiple memory accesses into a single transaction)

▶ avoid high-degree bank conflicts in shared memory

Memory usage:

▶ shared memory (faster than global memory, threads can cooperate, for avoiding

non-coalesced access)

▶ effective bandwidth of memory transfer
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Execution optimization

▶ multiprocessor occupancy:

▶ hardware must be kept busy

▶ 100% occupancy: maximum number of warps of threads that can run concurrently

▶ limited by resource usage (shared memory, registers)

▶ blocks per multiprocessor ratio:

▶ all multiprocessors should have at least one block to execute

▶ to keep multiprocessors busy multiple blocks should be executed on them

▶ latency hiding:

▶ at least 192 threads (6 warps of 32 threads) per multiprocessor should be executed

▶ limited by number of registers per kernel and amount of shared memory

▶ threads per block

▶ should be a multiple of warp size (32 threads)

▶ 64 threads per block (minimum), better choice: 192 or 256 threads per block
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Instruction optimization

▶ instruction throughput dependent on:

▶ nominal instruction throughput

▶ memory latency and bandwidth

▶ maximizing usage of high-bandwidth memory by:

▶ maximizing use of shared memory

▶ minimizing accesses to global memory

▶ maximizing coalescing of global memory accesses

▶ overlapping memory accesses with computation:

▶ high ratio of computational operations to memory transactions

▶ concurrency of many threads
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Tools for performance evaluation

Tools capable of profiling and/or tracing CUDA and OpenCL codes:

▶ CUDA:

▶ nvprof: command line profiling tool from CUDA toolkit

▶ nvvp: visual profiler (GUI) tool from CUDA toolkit

▶ nvprof and nvvp deprecated in CUDA 11: replaced by Nsight Tools

▶ TAU (Tuning and Analysis Utilities): open source tool for profiling and tracing

▶ other tools: vampir, SCALASCA (for large scale applications)...

▶ OpenCL:

▶ on NVIDIA cards: OpenCL profiling not supported since CUDA 8

▶ on AMD cards: OpenCL profiling with Radeon GPU profiler

▶ TAU (Tuning and Analysis Utilities): open source tool for profiling and tracing

▶ other tools: vampir, Intel VTune Amplifier...
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Tools on HPCFS for GPU profiling/tracing

On HPCFS available:

▶ nvprof, nvvp, TAU for CUDA

▶ TAU for OpenCL

▶ clone the repository from bitbucket to your viz.hpc.fs.uni-lj.si account:

$ git clone https://bitbucket.org/lecad-peg/eurocc-accelerators.git

$ cd eurocc-accelerators/ex-3_riemann

▶ start the environment with profiling tools by following these steps on your viz.hpc.fs.uni-lj.si account:

$ module purge

$ module load tau/2.29.1-CUDA

$ module load jre

$ env --unset=LD_PRELOAD TMOUT=600 srun --time=1:0:0 --partition=gpu --x11 --pty bash -i

$ env --unset=LD_PRELOAD srun --partition=gpu nvprof ./riemann_cuda_double

running jobs: recommended

interactive session: not recommended

https://bitbucket.org/lecad-peg/eurocc-accelerators.git
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CUDA profiling with nvprof and nvvp

▶ executables to profile: riemann_cuda_double,  riemann_cuda_double_reduce

▶ compilation is done with:

$ nvcc -o riemann_cuda_double riemann_cuda_double.cu

$ nvcc -o riemann_cuda_double_reduce riemann_cuda_double_reduce.cu

▶ profiling is done with:

$ env --unset=LD_PRELOAD srun --partition=gpu nvprof ./riemann_cuda_double

$ env --unset=LD_PRELOAD srun --partition=gpu --x11 nvvp ./riemann_cuda_double 

(not recommended)

▶ nvprof available options and query metrics:

$ env --unset=LD_PRELOAD srun --partition=gpu nvprof -h

$ env --unset=LD_PRELOAD srun --partition=gpu nvprof --query-metrics
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CUDA profiling on login node with nvvp

▶ CUDA profiles visualization with nvvp is recommended on the login node

▶ create profile with nvprof:

$ env --unset=LD_PRELOAD srun --partition=gpu nvprof -s -o \ 

riemann_cuda_double.nvprof ./riemann_cuda_double

▶ start nvvp (on the login node): 

$ nvvp

▶ select the created profile (riemann_cuda_double.nvprof) and visualize it with:

File -> Import -> Nvprof (Select an import source) -> Multiple processes -> 

Browse... -> select "riemann_cuda_double.nvprof" -> OK -> Finish
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Example 1: CUDA profiling - riemann_cuda_double

outputs of nvprof:

$ env --unset=LD_PRELOAD srun --partition=gpu nvprof ./riemann_cuda_double
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Example 1: CUDA profiling – riemann_cuda_double (cont.)

outputs of nvprof:

$ env --unset=LD_PRELOAD srun --partition=gpu nvprof --metrics flop_count_dp \ 

--metrics dram_read_throughput --metrics dram_write_throughput –metrics \ 

achieved_occupancy ./riemann_cuda_double
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Example 1: CUDA profiling – riemann_cuda_double (cont.)

profiles/traces with nvvp:
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Example 1: CUDA profiling – riemann_cuda_double (cont.)

Analysis of profiles:

▶ bottleneck: memory transfer from device to host (Memcpy DtoH)

▶ multiprocessor occupancy: 91.1% (medianTrapezoid)

▶ device memory read throughput: 5.8172 MB/s (medianTrapezoid)

▶ device memory write throughput:  56.239 GB/s (medianTrapezoid)

▶ FLOPS for medianTrapezoid: 86000005646/162.37872*1000/10^9 = 529.63 GFLOPS

Possible optimizations:

▶ reducing memory transfer from device to host 

▶ increasing device memory throughput: 240.6 GB/s (theoretical memory bandwidth of Tesla K80)

▶ Increasing kernel throughput: 1371 GFLOPS (theoretical FP64 (double) performance of Tesla K80)
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Analyze the riemann_cuda_double_reduce executable with nvprof and nvvp:

▶ determine execution times, FLOPS, multiprocessor occupancy and read/write memory 

throughputs for both kernels (from nvprof output)

▶ determine memory transfers times to/from device (from nvprof output) and identify possible 

bottlenecks

▶ visualize the traces with nvvp: how are kernels deployed in the default stream?

▶ on the basis of the analysis suggest any possible optimizations

Exercise 1: CUDA profiling – riemann_cuda_double_reduce
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Solution (Exer. 1):
CUDA profiling – riemann_cuda_double_reduce

outputs of nvprof:
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outputs of nvprof:

Solution (Exer. 1):
CUDA profiling – riemann_cuda_double_reduce (cont.)
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profiles/traces with nvvp:

Solution (Exer. 1):
CUDA profiling – riemann_cuda_double_reduce (cont.)
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Analysis of profiles:

▶ minimal (just one double float) memory transfer from device to host (Memcpy DtoH)

▶ multiprocessor occupancy: 91.1% (medianTrapezoid), 50% (reducerSum)

▶ device memory read throughput: 5.766 MB/s (medianTrapezoid), 13.866 GB/s (reducerSum)

▶ device memory write throughput:  56.231 GB/s (medianTrapezoid), 524.000 B/s (reducerSum)

▶ FLOPS for medianTrapezoid: 86000005646/162.37872*1000/10^9 = 529.63 GFLOPS

▶ FLOPS for reducerSum: 1000001023/672.17*1000/10^9 = 1.488 GFLOPS

Possible further optimizations:

▶ sum reduce kernel with many blocks of threads instead of 1 block for achieving better device 

memory and kernel throughput

▶ combining both kernels into one kernel for achieving better overall device memory and kernel 

throughput

Solution (Exer. 1):
CUDA profiling – riemann_cuda_double_reduce (cont.)



20

Example 2: CUDA profiling with TAU

▶ executables to profile: riemann_cuda_double_reduce

▶ profiling is done with:

$ env --unset=LD_PRELOAD srun --partition=gpu tau_exec -T serial -cupti \ 

./riemann_cuda_double_reduce

$ pprof

$ paraprof

▶ tracing is done with:

$ env --unset=LD_PRELOAD srun --partition=gpu env TAU_TRACE=1 tau_exec -T \ 

serial -cupti ./riemann_cuda_double_reduce

$ tau_treemerge.pl

$ tau2slog2 tau.trc tau.edf -o tau.slog2

$ jumpshot tau.slog2
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profiles with paraprof:

Example 2: CUDA profiling with TAU (cont.)
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traces with jumpshot:

Example 2: CUDA profiling with TAU (cont.)
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Exercise 2: OpenCL profiling with TAU

▶ analyze the riemann_opencl_double_reduce  executable with TAU

▶ compilation is done with:

$ gcc -o riemann_opencl_double_reduce riemann_opencl_double_reduce.c -lOpenCL

▶ generate profiles with:

$ env --unset=LD_PRELOAD srun --partition=gpu tau_exec -T serial -opencl \ 

./riemann_opencl_double_reduce

▶ use pprof and paraprof for profiling

▶ generate traces with:

$ env --unset=LD_PRELOAD srun --partition=gpu env TAU_TRACE=1 tau_exec -T serial \

-opencl ./riemann_opencl_double_reduce

▶ use jumpshot for visualizing traces
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profiles with paraprof:

Solution (Exer. 2):
OpenCL profiling – riemann_opencl_double_reduce
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profiles with paraprof:

Solution (Exer. 2):
OpenCL profiling – riemann_opencl_double_reduce (cont.)
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traces with jumpshot:

Solution (Exer. 2):
OpenCL profiling – riemann_opencl_double_reduce (cont.)
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Multiple GPUs in CUDA  

In a multiple GPU set-up:

▶ all CUDA API calls are issued into a current GPU

▶ cudaSetDevice(ID): for changing the current GPU to GPU with id ID

▶ GPU IDs always in range [0, number of GPUs), GPUs count can be obtained with 

cudaGetDeviceCount() or by invoking nvidia-smi

▶ kernel calls and asynchronous memory copying functions are in principle non-blocking 

towards CPU thread execution and therefore towards switching GPUs
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Example 3: Domain decomposition on multiple GPUs 

__global__ void medianTrapezoid(double *a, int n, int dev)

{

  int idx = blockIdx.x * blockDim.x + threadIdx.x;

  double x = (double)(idx + n * dev) / (double)(2 * n);

 

  if(idx < n)

    a[idx] = (exp(-x * x / 2.0) + 

              exp(-(x + 1 / (double)(2 * n)) * 

              (x + 1 / (double)(2 * n)) / 2.0)) / 2.0;

}

Domain composition for numerical integration in 

CUDA  on two GPUs:

▶ the kernel medianTrapezoid is modified for 

calculations on two sub-domains (dev = 0, i.e. GPU with 

ID 0 calculates on the first sub-interval of the integrating 

domain, dev = 1, i.e. GPU with ID 1 calculates on the 

second sub-interval of the integrating domain)

▶ both GPUs return the array with trapezoid medians 

calculated on the specific sub-interval of the integrating 

domain
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Example 3: Domain decomposition on multiple GPUs (cont.) 

Code riemann_cuda_double_multiple (in eurocc-accelerators/multiple_gpus):

▶ uses normal host memory allocation with malloc() and synchronous memory transfer from 

device to host with cudaMemcpy()

▶ concurrency of medianTrapezoid kernel executions on GPUs is NOT achieved 
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Example 3: Domain decomposition on multiple GPUs (cont.) 

Code riemann_cuda_double_multiple_concurrency:

▶ uses pinned host memory allocation with cudaMallocHost() and asynchronous memory 

transfer from device to host with cudaMemcpyAsync()

▶ concurrency of medianTrapezoid kernel executions on GPUs IS achieved
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▶ Debugging possibilities:

▶ in-program checking:

▶ use of printf() in device code

▶ use of assert() in device code

▶ data checks

▶ CUDA/OpenCL API call checks

▶ tools for debugging:

▶ for CUDA: CUDA-MEMCHECK, CUDA-GDB (command-line or GUI in NVIDIA Nsight Eclipse 

Edition)...

▶ for OpenCL: Oclgrind, GDB...

Debugging applications (source: V. Venkataraman)

CUDA / OpenCL debugging
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CUDA API call checking

▶ checking errors in runtime API code through an assert style handler function and 

wrapper macro:#define gpuErrchk(ans) {gpuAssert((ans), __FILE__, __LINE__);}

inline void gpuAssert(cudaError_t code, const char *file, int line, bool abort=true)

{

   if (code != cudaSuccess) 

   {

      fprintf(stderr,"GPUassert: %s %s %d\n", cudaGetErrorString(code), file, line);

      if (abort) exit(code);

   }

}

▶ return status of the API call:

gpuErrchk(cudaMalloc(&a_d, size * sizeof(float)));

▶ checking errors in kernel launch:

kernel<<<1,1>>>(a);

gpuErrchk(cudaPeekAtLastError());

gpuErrchk(cudaDeviceSynchronize());
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Example 4: CUDA API call checking

▶ checking for errors when executing the compiled hello_cuda.cu example

▶ the code is compiled with kernel launch <<<16, 0>>>:

#define NUM_BLOCKS 16

#define BLOCK_WIDTH 1

...

hello<<<NUM_BLOCKS, BLOCK_WIDTH-1>>>();

▶ output of executing the program without using the checking errors wrapper macro: 

$ ./hello_cuda

That's all!

▶ output of executing the program with using the checking errors wrapper macro:

$ ./hello_cuda

GPUassert: invalid configuration argument hello.cu 27
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Exercise 3: CUDA-MEMCHECK

▶ check the compiled hello_cuda.cu (from Example 3)  with cuda-memcheck

▶ launch the utility from command-line with: 

$ cuda-memcheck ./hello_cuda

▶ compare the output with the output from CUDA API call checking
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OpenCL API call checking

▶ checking errors in runtime API code through a handler function:
void checkErrors(cl_int status, char *label, int line)

{

  switch (status)

  {

      case CL_SUCCESS:

        return;

      case CL_BUILD_PROGRAM_FAILURE:

        fprintf(stderr, "OpenCL error (at %s, line %d): CL_BUILD_PROGRAM_FAILURE\n", label, line);

        break;

…

case CL_PROFILING_INFO_NOT_AVAILABLE:

        fprintf(stderr, "OpenCL error (at %s, line %d): CL_PROFILING_INFO_NOT_AVAILABLE\n", label, line);

        break;

  }

  exit(status);

}

▶ return status of the API call example:

ret = clEnqueueNDRangeKernel(commandQueue, kernel, 1, NULL, &globalItemSize,  

                             &localItemSize, 0, NULL, NULL);

checkErrors (ret, "clEnqueueNDRangeKernel", __LINE__);
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Example 5: OpenCL API call checking

▶ checking for errors when executing the compiled hello_opencl.c example

▶ the code is compiled with kernel launch (..., 16, 3, ...):

size_t globalItemSize = 16;

size_t localItemSize = 3;

ret = clEnqueueNDRangeKernel(commandQueue, kernel, 1, NULL, &globalItemSize,   

                             &localItemSize, 0, NULL, NULL);

▶ output of executing the program without using the checking errors handler function: 

$ ./hello_opencl

That's all!

▶ output of executing the program with using the checking errors handler function:

$ ./hello_opencl

-OpenCL error (at clEnqueueNDRangeKernel, line 202): CL_INVALID_WORK_GROUP_SIZE
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