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Derived Datatypes

1. MPI Overview
2. Process model and language bindings
3. Messages and point-to-point communication
4. Nonblocking communication
5. The New Fortran Module mpi_f08

6. Collective communication

7. Error Handling

8. Groups & communicators, environment management

9. Virtual topologies

10. One-sided communication

11. Shared memory one-sided communication

12.  Derived datatypes

▶ (1) transfer of any combination of typed data

▶ (2) advanced features, alignment, resizing
13. Parallel file I/O
14. MPI and threads
15. Probe, Persistent Requests, Cancel 
16. Process creation and management 
17. Other MPI features
18. Best Practice
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MPI Datatypes 

▶ In the previous chapters:

▶ A messages was a contiguous sequence of elements of basic types:

▶   buf, count, datatype_handle

▶ New goals in this course chapter:

▶ Transfer of  any data in memory in one message
▶ Strided data (portions of data with holes between the portions)

▶ Various basic datatypes within one message

▶ No multiple messages  no multiple latencies

▶ No copying of data into contiguous scratch arrays

 no waste of memory bandwidth

▶ Method:  Datatype handles 

▶ Memory layout of send / receive buffer
▶ Basic types / derived types: 

• vectors
• subarrays
• structs
• others

  

11  6.3632d+107c  22

Message passing: 
• Goal and reality may differ !!!

Parallel file I/O:
• Derived datatypes are important 

to express I/O patterns
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Data Layout and the Describing Datatype Handle

MPI_Send(&buffer, 1, buff_datatype, …)

struct buff_layout

 { int  i_val[3];

double d_val[5];

 }  buffer;

Compiler

int    double     

&buffer = the start
 address of the data

array_of_types[0]=MPI_INT;
array_of_blocklengths[0]=3;
array_of_displacements[0]=0;
array_of_types[1]=MPI_DOUBLE;
array_of_blocklengths[1]=5;
array_of_displacements[1]=…;

MPI_Type_create_struct(2, array_of_blocklengths, 
array_of_displacements, array_of_types, 
&buff_datatype);

MPI_Type_commit(&buff_datatype);

the datatype handle 
describes the data layout
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Derived Datatypes   —   Type Maps 

▶ A derived datatype is logically a pointer to a list of entries:

▶ basic datatype at displacement

▶ Matching datatypes:

▶ List of basic datatypes 

must be identical, 

▶ (Displacements irrelevant)

basic datatype 0 displacement of datatype 0

basic datatype 1 displacement of datatype 1

... ...

basic datatype n-1 displacement of datatype n-1

basic datatype 0 disp 0

basic datatype 1 disp 1

... ...

basic datatype n-1 disp n-
1
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Derived Datatypes   —   Type Maps 

Example: 11  6.36324d+107c  22
0 4 8 12 16 20 24

MPI_CHAR 0

MPI_INT 4

MPI_INT 8

MPI_DOUBLE 16

A derived datatype describes the 
memory layout of, e.g., 
structures, 
common blocks, 
subarrays, 
some variables in the memory

basic datatypedisplacement

derived datatype handle
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Contiguous Data

▶ The simplest derived datatype

▶ Consists of a number of contiguous items of the same datatype

▶ C/C++: int MPI_Type_contiguous(int count,  MPI_Datatype oldtype, 

MPI_Datatype  *newtype)

▶ Fortran: MPI_TYPE_CONTIGUOUS(count, oldtype, newtype, ierror) 

mpi_f08:    INTEGER :: count

   TYPE(MPI_Datatype) :: oldtype, newtype

   INTEGER, OPTIONAL :: ierror

mpi & mpif.h:    INTEGER count, oldtype, newtype, ierror

       

oldtype

newtype

C

Fortran

Handout only contains 
old style interface
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Committing and Freeing a Datatype

▶ Before a dataytype handle is used in message passing communication,

it needs to be committed with MPI_TYPE_COMMIT.

▶ This need be done only once (by each MPI process).

(More than once use equivalent to additional no-operations.)

▶ C/C++: int MPI_Type_commit(MPI_Datatype  *datatype);

▶ Fortran: MPI_TYPE_COMMIT(datatype, IERROR) 

mpi_f08:    TYPE(MPI_Datatype) :: datatype

   INTEGER, OPTIONAL :: ierror

mpi & mpif.h:    INTEGER datatype, ierror

▶ If usage is over, one may call MPI_TYPE_FREE() 

to free a datatype and its internal resources.

IN-OUT argument

C

Fortran
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Exercise 1  —  Derived Datatypes

▶ Use                     C/Ch12/derived-contiguous-skel.c

or                        F_30/Ch12/derived-contiguous-skel_30.f90

▶ We us a modified pass-around-the-ring exercise:

It sends a struct with two integers

▶ They are initialized with  my_rank  and  10*my_rank  

▶ Therefore we calulate two separate sums.

▶ Currently, the data is send with the description 

▶ “snd_buf, 2, MPI_INTEGER” 

▶ Please substitute this by using a 

▶ derived datatype

▶ with a type map of “two integers”

▶ Of course produced with the two routines on the previous slides

C

Fortran

E
xe

rc
is

e 
1
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Exercise 1  —  Derived Datatypes 

2

3

2

3

2

3

1

2 3 4

Initialization:
Each iteration:

s: 0    00

r:

my_rank

sum:

1

4

s: 2    20

r:

my_rank

sum:

1

4
s: 1    10

r:

my_rank

sum:

1

4

5

5

5 5

Sending both integers 
• with one instance of an

MPI_TYPE_CONTIGUOUS 
derived datatype

• containing two integers
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During the Exercise

Please stay here in the main room while you do this exercise

And have fun with this middle long exercise

Please do not look at the solution before you finished this exercise,

otherwise,

 90% of your learning outcome may be lost

As soon as you finished the exercise, 

please go to your breakout room

and continue your discussions with your fellow learners:

It looks easy, isn’t it?
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Vector Datatype

▶ C/C++: int MPI_Type_vector(int count,  int blocklength, int stride, 

MPI_Datatype oldtype, MPI_Datatype  *newtype)

▶ Fortran: MPI_TYPE_VECTOR( count, blocklength, stride,

oldtype, newtype, ierror)

mpi_f08:    INTEGER :: count, blocklength, stride

   TYPE(MPI_Datatype) :: oldtype, newtype

   INTEGER, OPTIONAL :: ierror

mpi & mpif.h:    INTEGER count, blocklength, stride, oldtype, newtype, ierror

oldtype

newtype

 

          

holes, that should not be transferred

blocklength = 3 elements per block

stride = 5 (element stride between blocks)

count = 2 blocks 

C

The newtype is without 
holes at the end!

Fortran
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Struct Datatype

oldtypes

newtype

 

holes, if double needs an 
8 byte alignment

block 0

MPI_INT  MPI_DOUBLE

         

block 1

addr_0 addr_1

▶ C/C++: int MPI_Type_create_struct(int count,  int *array_of_blocklengths,

MPI_Aint *array_of_displacements, 

MPI_Datatype *array_of_types, MPI_Datatype  *newtype)

▶ Fortran: MPI_TYPE_CREATE_STRUCT(count, 

array_of_blocklengths,  array_of_displacements 1) ,

 array_of_types,  newtype,  ierror)

count =   2
array_of_blocklengths = ( 3,5 )
array_of_displacements = ( 0,addr_1 – addr_0 )
array_of_types = ( MPI_INT, MPI_DOUBLE )

C

Fortran

1) INTEGER(KIND=MPI_ADDRESS_KIND) array_of_displacements 
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Memory Layout of Struct Datatypes 

Fixed memory layout:
▶ C

struct buff
     { int i_val[3];
double d_val[5];
     }

▶ Fortran, common block
integer i_val(3)
double precision d_val(5)
common /bcomm/ i_val, d_val

▶ Fortran, derived types
TYPE buff_type
  SEQUENCE
  INTEGER, DIMENSION(3):: i_val
  DOUBLE PRECISION, &
                   DIMENSION(5):: d_val
END TYPE buff_type
TYPE (buff_type) :: buff_variable

int    double     buf_datatype

Alternatively, arbitrary memory layout:
▶ Each array is allocated independently.
▶ Each buffer is a pair of a 

3-int-array and a 5-double-array.
▶ The length of the hole may be any 

arbitrary positive or negative value!
▶ For each buffer, one needs a specific 

datatype handle
▶ CAUTION – Fortran register optimi.:

MPI_Send & _Recv of …d_val is invi-
sible for the compiler  add MPI_Address

          

         

in_buf_datatype

out_buf_datatype

in_d_valin_i_val

out_i_val out_d_val

C

Fortran

Not portable, because address differences are 
allowed only inside of structures or arrays  MPI-3.1, 

4.1.12 

!!!

Alternative, in MPI-3.0:
   TYPE, BIND(C) :: buff_type
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How to compute the displacement (1) 

▶ array_of_displacements[i] := address(block_i) – address(block_0)

Retrieve an absolute address:

▶ C/C++: int MPI_Get_address(void* location, MPI_Aint *address)

▶ Fortran: MPI_GET_ADDRESS(location, address, ierror)

mpi_f08:   TYPE(*), DIMENSION(..), ASYNCHRONOUS :: location

  INTEGER(KIND=MPI_ADDRESS_KIND) :: address  

  INTEGER, OPTIONAL :: ierror

mpi & mpif.h:   <type>     location(*)

  INTEGER(KIND=MPI_ADDRESS_KIND) address

  INTEGER ierror

C

Fortran
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How to compute the displacement (2) 

Relative displacement:= absolute address 1 – absolute address 2

▶ C/C++: MPI_Aint  MPI_Aint_diff(MPI_Aint addr1, MPI_Aint addr2)

▶ Fortran: MPI_Aint_diff(addr1, addr2)

mpi_f08:   INTEGER(KIND=MPI_ADDRESS_KIND) :: addr1, addr2

mpi & mpif.h:   INTEGER(KIND=MPI_ADDRESS_KIND) addr1, addr2

C

Fortran

New in MPI-3.1

C

Fortran

New in MPI-3.1

New absolute address := existing absolute address + relative displacement:
 C/C++: MPI_Aint  MPI_Aint_add(MPI_Aint base, MPI_Aint disp)
 Fortran:MPI_Aint_add(base, disp)

mpi_f08:   INTEGER(KIND=MPI_ADDRESS_KIND) :: base, disp

mpi & mpif.h:   INTEGER(KIND=MPI_ADDRESS_KIND) base, disp
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Example for array_of_displacements[i] 
:= address(block_i) – address(block_0)

Fortran

C

New in MPI-3.1

New in MPI-3.1

struct buff

     { int i[3];

double d[5];

     } snd_buf;

MPI_Aint iaddr0, iaddr1, disp;

MPI_Get_address( &snd_buf.i[0], &iaddr0);  // the address value &snd_buf.i[0] 

                                                                        // is stored into variable iaddr0

MPI_Get_address(  &snd_buf.d[0], &iaddr1); 

disp = MPI_Aint_diff(iaddr1, iaddr0);    // MPI-3.0 & former: disp = iaddr1–iaddr0

TYPE buff_type

  SEQUENCE

  INTEGER,                    DIMENSION(3) :: i

  DOUBLE PRECISION, DIMENSION(5) :: d

END TYPE buff_type

TYPE (buff_type) :: snd_buf

INTEGER(KIND=MPI_ADDRESS_KIND) iaddr0, iaddr1, disp;  INTEGER ierror

CALL MPI_GET_ADDRESS( snd_buf%i(1), iaddr0, ierror) ! The address of snd_buf%i(1)

 ! is stored in iaddr0

CALL MPI_GET_ADDRESS(snd_buf%d(1), iaddr1, ierror)  

disp = MPI_Aint_diff(iaddr1, iaddr0) ! MPI-3.0 & former: disp = iaddr2–iaddr1

See also MPI-3.1, Example 4.8, page 102 and Example 4.17, pp 125-127
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Performance options

Which is the fastest neighbor communication with strided data?

▶ Using derived datatype handles

▶ Copying the strided data in a contiguous scratch send-buffer,

communicating this send-buffer into a contiguous recv-buffer, and

copying the rcv-buffer back into the strided application array

▶ And which of the communication routines should be used?

No answer by the MPI standard, because:

MPI targets portable and efficient message-passing programming

but

efficiency of MPI application-programming is not portable!
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Exercise 2  —  Derived Datatypes 

▶ Modify the pass-around-the-ring exercise.

▶ Use the following skeletons to reduce software-coding time:

 cd  ~/MPI/tasks/C/Ch12/ ;        cp  -p  derived-struct-skel.c           derived-struct.c

cd  ~/MPI/tasks/F_30/Ch12/ ;  cp  -p  derived-struct-skel_30.f90  derived-struct_30.f90

▶ Calculate two separate sums:

▶ rank integer sum (as before)

▶ rank floating point sum

▶ Use a struct datatype for this

▶ with same fixed memory layout for send and receive buffer.

▶ Substitute all ___ within the skeleton 

and modify the second part, i.e., steps 1-5 of the ring example

C

Fortran

E
xe

rc
is

e 
2-

4
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Exercise 2  —  Derived Datatypes 

2

3

2

3

2

3

1

2 3 4

Initialization:
Each iteration:

s: 0   0.0

r:

my_rank

sum:

1

4

s: 2   2.0

r:

my_rank

sum:

1

4
s: 1   1.0

r:

my_rank

sum:

1

4

5

5

5 5
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During the Exercise

Please stay here in the main room while you do this exercise

And have fun with this middle long exercise

Please do not look at the solution before you finished this exercise,

otherwise,

 90% of your learning outcome may be lost

As soon as you finished the exercise, 

please go to your breakout room

and continue your discussions with your fellow learners:

If you want, you can share your thoughts about 

whether you would use MPI derived datatypes
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Exercises 3+4 (advanced)  —  Sendrecv & Sendrecv_replace

3. Substitute your Issend–Recv–Wait method by MPI_Sendrecv in your ring-with-datatype program:

▶ MPI_Sendrecv is a deadlock-free combination of MPI_Send and MPI_Recv: 

▶ MPI_Sendrecv is described in the MPI standard.

(You can find MPI_Sendrecv by looking at the function index on the last pages of the standard document.)

▶ Solution: MPI/tasks/C/Ch12/solutions/derived-struct-advanced-sendrecv.c

and         MPI/tasks/F_30/Ch12/solutions/derived-struct-advanced-sendrecv_30.f90 

4. Substitute MPI_Sendrecv by MPI_Sendrecv_replace:

▶ Three steps are now combined:

▶ The receive buffer (rcv_buf) must be removed.

▶ The iteration is now reduced to three statements:

▶ MPI_Sendrecv_replace to pass the ranks around the ring,

▶ computing the integer sum,

▶ computing the floating point sum.

▶ Solution: MPI/tasks/C/Ch12/solutions/derived-struct-advanced-sendrecv-replace.c

and         MPI/tasks/F_30/Ch12/solutions/derived-struct-advanced-sendrecv-replace_30.f90 

2 3

2 3 4
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Derived Datatypes (2nd part)

1. MPI Overview
2. Process model and language bindings
3. Messages and point-to-point communication

4. Nonblocking communication

5. The New Fortran Module mpi_f08

6. Collective communication

7. Error Handling

8. Groups & communicators, environment management

9. Virtual topologies

10. One-sided communication

11. Shared memory one-sided communication

12.  Derived datatypes

▶ (1) transfer of any combination of typed data

▶ (2) alignment, resizing, large counts, other derived types, MPI_Pack, MPI_BOTTOM

13. Parallel file I/O
14. MPI and threads
15. Probe, Persistent Requests, Cancel 
16. Process creation and management 
17. Other MPI features
18. Best Practice

MPI_Init()
MPI_Comm_rank()

• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
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Size, Extent and True Extent of a Datatype, I.

▶ Size:= number of bytes that have to be transferred. 

▶ Extent := spans from first to last byte (including all holes).

▶ True extent := spans from first to last true byte (excluding holes at begin+end)

▶ Automatic holes at the end for necessary alignment purpose 

▶ Additional holes at begin and by lb and ub markers: MPI_TYPE_CREATE_RESIZED

▶ Basic datatypes:  Size = Extent = number of bytes used by the compiler.

Example:s

oldtype

newtype

 

          

lb marker

ub markersize := 5 * size(oldtype)

lb address true lb address

true extent := 7 * extent(oldtype)
(if oldtype has no holes at begin or end)

extent := 10 * extent(oldtype)

 
alignment hole
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Fortran derived types and MPI_Type_create_struct

▶ SEQUENCE  and BIND(C)  derived application types can be used as buffers in MPI operations.

▶ Alignment calculation of basic datatypes:

▶ In MPI-2.2, it was undefined in which environment the alignments are taken.

▶ There is no sentence in the standard. 

▶ It may depend on compilation options!

▶ In MPI-3.0 and MPI-3.1, still undefined, but recommended to use a BIND(C) environment.
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Alignment rule, holes and resizing of structures (1)

▶ The compiler may add additional alignment holes

▶ within a structure (e.g., between a float and a double) 

▶ at the end of a structure (after elements different sizes)!

▶ See MPI-3.0 / MPI-3.1, Sect. 4.1.6, Advice to users on page 106

▶ Alignment hole at the end is important when using an array of structures!

▶ Implication (for C and Fortran!):

▶ If an array of structures (in C/C++) or derived types (in Fortran) should be communicated,  it is recommended that 

▶ the user creates a portable datatype handle and 

▶ applies additionally MPI_TYPE_CREATE_RESIZED to this datatype handle.

▶ See Example in MPI-3.0 / MPI-3.1, Sect. 17.1.15 on pages 629-630 / 637-638. 

▶ Holes (e.g., due to alignment gaps) may cause significant loss of bandwidth

▶ By definition, MPI is not allowed to transfer the holes.

▶ Therefore the user should fill holes with dummy elements.

▶ See Example MPI-3.0 / MPI-3.1, Sect. 4.1.6, Advice to users on page 106 / 106
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Alignment rule, holes and resizing of structures (2)

▶ Correctness problem with array of structures:

▶ Possibility: MPI extent of a structure  !=   real size of the structure

▶ Reason: MPI adds at the end an alignment hole because
the MPI library has wrong expectations about compiler rules

▶ For a basic datatype  within the structure

▶ For the allowed size of the whole structure (e.g. multiple of 16)

▶ Solution in C: Call MPI_Type_create_resized with  lb=0  and
new_extent=sizeof(one structure),  or use the following method:

▶ & in Fortran: INTEGER(KIND=MPI_ADDRESS_KIND)  &
      :: address1,  address2,  lb,  new_extent 
CALL  MPI_Get_address( my_struct(1), address1, ierror)
CALL  MPI_Get_address( my_struct(2), address2, ierror)
new_extent  =  MPI_Aint_diff( address2, address1);  lb = 0 
CALL  MPI_Type_create_resized ( &
      old_struct_type, lb, new_extent, correct_struct_type, ierror) 
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Alignment rule, holes and resizing of structures (3)

▶ Correctness problem with array of structures (continued):

▶ Example in C with [double+int]-structure:

▶ MPI/tasks/C/Ch12/derived-struct-double+int.c

▶ Compiled and run on Cray with Intel compiler
▶ module  switch  PrgEnv-cray  PrgEnv-intel
▶ cc  –Zp4  –o  a.out   ~/MPI/tasks/C/Ch12/derived-struct-double+int.c
▶ aprun  –n  4  ./a.out   |  sort

▶ Result:
▶ MPI_Type_get_extent: 16
▶ sizeof: 12
▶ real size is: 12

With default alignment, all 
works on the tested platform 
(in Nov. 2015)

For portable & correct 
applications

with arrays of structures,
the datatypes should be always 

resized! 
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Alignment rule, holes and resizing of structures (4)

▶ Correctness problem with array of structures (continued):

▶ Example in Fortran with [double precision + integer]-structure:

▶ MPI/tasks/F_30/Ch12/derived_struct_dp+integer_30.f90

▶ Compiled and run on Cray with Intel compiler
▶ module  switch  PrgEnv-cray  PrgEnv-intel
▶ ftn  –o  a.out   ~/MPI/tasks/F_30/Ch12/derived-struct-dp+integer_30.f90
▶ aprun  –n  4  ./a.out   |  sort

▶ Result:
▶ MPI_Type_get_extent: 16
▶ real size is: 12

▶ Surprise (?):

▶ ~/MPI/tasks/F_30/Ch12/derived-struct-dp+integer-bindC_30.f90
▶ MPI_Type_get_extent: 16
▶ real size is: 16

▶ 2nd Surprise: With PrgEnv-cray, all sizes are 16 bytes

Fortran struct with SEQUENCE 
attribute

Fortran struct with BIND(C)
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Alignment rule, holes and resizing of structures (5)

▶ Performance problem with holes in structures:

▶ Correct solution for homogeneous and heterogeneous environments:

▶ Add dummy elements to fill the holes 
 (in the structure and in the datatype) 

▶ In a homogeneous environment:

▶ One may use MPI_BYTE

▶ Transfer whole structure as an array of bytes

▶ CAUTION: No data conversion of different data representations
                   (e.g., big and little endian) in heterogeneous environments
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Large Counts with MPI_Count, …

▶ MPI uses different integer types

▶ int and INTEGER

▶ MPI_Aint= INTEGER(KIND=MPI_ADDRESS_KIND)

▶ MPI_Offset = INTEGER(KIND=MPI_OFFSET_KIND)

▶ MPI_Count = INTEGER(KIND=MPI_COUNT_KIND)

▶ sizeof(int)  ≤                                     ≤      sizeof(MPI_Count)

▶ All count arguments are  int  or  INTEGER.

▶ Real message sizes may be larger due to datatype size.

▶ MPI_TYPE_GET_EXTENT, MPI_TYPE_GET_TRUE_EXTENT, 
MPI_TYPE_SIZE, MPI_TYPE_GET_ELEMENTS  
return  MPI_UNDEFINED if value is too large

▶ MPI_TYPE_GET_EXTENT_X, MPI_TYPE_GET_TRUE_EXTENT_X, 
MPI_TYPE_SIZE_X, MPI_TYPE_GET_ELEMENTS_X 

return values as MPI_Count

sizeof(MPI_Aint)
sizeof(MPI_Offset)

New in MPI-3.0

New in MPI-3.0

New in MPI-3.0

New in 
MPI-3.0
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All Derived Datatype Creation Routines (1)

▶ MPI_Type_contiguous()

 already discussed

▶ MPI_Type_vector() MPI_Type_create_hvector()

 already discussed  stride as byte size

▶ MPI_Type_indexed() MPI_Type_create_hindexed()

 similar to .._struct(),  with byte displacements

    same oldtype for all sub-blocks, 

    displacements based on 0-based index in “array of oldtype”

▶ MPI_Type_create_indexed_block()MPI_Type_create_hindexed_block()

 same as MPI_Type_indexed() with byte displacements

    but same block length 

    for each sub-block

▶ MPI_Type_create_struct() 

 already discussed

— skipped —
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All Derived Datatype Creation Routines (2)

▶ MPI_Type_create_subarray()

▶ Extracts a subarray of an n-dimensional array

▶ All the rest are holes

▶ Ideal for halo exchange with n-dimensional Cartesian data-sets

▶ Similar to MPI_Type_vector(), which works primarily for 2-dim arrays

▶ Example, see course Chapter 13 Parallel File I/O

▶ MPI_Type_create_darray()

▶ A generalization of MPI_Type_create_subarray()

▶ Example, see course Chapter 13 Parallel File I/O

Removed MPI-1 interfaces substituted by

▶ MPI_Address MPI_Get_address

▶ MPI_Type_extent MPI_Type_get_extent

▶ MPI_Type_hvector MPI_Type_create_hvector

▶ MPI_Type_hindexed MPI_Type_create_hindexed

▶ MPI_Type_struct MPI_Type_create_struct

▶ MPI_Type_LB / _UB MPI_Type_get_extent

▶ Constant MPI_LB / _UB MPI_Type_resized

New in MPI-2.0 to solve Fortran 
problem with small integer:

• Unchanged argument list in C.
• Modified length arguments in 

Fortran.

Better  usable interface

Subarray and darray:
newtype 

may contain holes at 
begin and end !!! 

Important for filetypes
 Parallel File I/O 
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Other MPI features: Pack/Unpack

▶ MPI_Pack & MPI_Unpack

▶ Pack several data into a message buffer

▶ Communicate the buffer with datatype = MPI_PACKED

▶ Canonical Pack & Unpack

▶ Header-free packing in “external32” data representation

▶ Only useful for cross-messaging between different MPI libraries!

▶ Communicate the buffer with datatype = MPI_BYTE
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Other MPI features: MPI_BOTTOM and absolute addresses

▶ MPI_BOTTOM in point-to-point and collective communication:

▶ Buffer argument is MPI_BOTTOM

▶ Then absolute addresses can be used in

▶ Communication routines with byte displacement arguments

▶ Derived datatypes with byte displacements

▶ Displacements must be retrieved with MPI_GET_ADDRESS()

▶ MPI_BOTTOM is an address,

i.e., cannot be assigned to a Fortran variable!

▶ MPI-3.0 / MPI-3.1, Section 2.5.4, page 15 line 42/45 – page 16 line 3/6

shows all such address constants 

that cannot be used in expressions or assignments in Fortran, e.g.,

▶ MPI_STATUS_IGNORE ( point-to-point comm.)

▶ MPI_IN_PLACE ( collective comm.)

▶ Fortran: Using MPI_BOTTOM & absolute displacement of variable X 

 MPI_F_SYNC_REG is needed:

▶ MPI_BOTTOM in a blocking MPI routine  MPI_F_SYNC_REG before and after this routine

▶ in a nonblocking routine  MPI_F_SYNC_REG before this routine & after final WAIT/TEST

Fortran

Already 
discussed
in course 
Chapter 9
Virtual 
Topologies
 
Exercise 
with MPI_
NEIGHBOR_
ALLTOALLW
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Performance options  [already mentioned at the end of 12-(1)]

Which is the fastest neighbor communication with strided data?

▶ Using derived datatype handles

▶ Copying the strided data in a contiguous scratch send-buffer,

communicating this send-buffer into a contiguous recv-buffer, and

copying the rcv-buffer back into the strided application array

▶ And which of the communication routines should be used?

No answer by the MPI standard, because:

MPI targets portable and efficient message-passing programming

but

efficiency of MPI application-programming is not portable!
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Exercise 5+6  —  Resizing a Derived Datatypes

Use the following examples for testing and as code-basis:

▶ MPI/tasks/C/Ch12/derived-struct-double+int.c   or

▶ MPI/tasks/F_30/Ch12/derived-struct-dp+integer_30.f90   and

▶ MPI/tasks/F_30/Ch12/derived-struct-dp+integer-bindC_30.f90

5. Compile and test with different compilers and accompanying MPI libraries

▶ Pipe the stdout to:   | sort +0 -1  -n  +1 -2

▶ Example: 

mpiexec –n 4 ./a.out | sort +0 -1  -n  +1 -2

6. Implement a new datatype handle by resizing the old one.

▶ Don’t forget to substitute the datatype handle in all communication calls.

C

Fortran

E
xe

rc
is

es
 5

+
6
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During the Exercise
Please stay here in the main room while you do this exercise

And have fun with this middle long exercise

Please do not look at the solution before you finished this exercise,

otherwise,

 90% of your learning outcome may be lost

As soon as you finished the exercise, 

please go to your breakout room

and continue your discussions with your fellow learners:

I recommend that you     directly go to your breakout room

to        exchange your       questions, remarks       and results       with your colleagues.
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APPENDIX: Solution to exercises
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Chapter 12-(1), Exercise 1:  MPI_TYPE_CONTIGUOUS

Fortran
MPI/tasks/F_30/Ch12/solutions/derived_contiguous_30.f90

Provided in
the skeleton

TYPE t
   SEQUENCE
   INTEGER :: i
   INTEGER :: j
END TYPE t

MPI_Datatype send_recv_type;

MPI_Type_contiguous(2, MPI_INT, &send_recv_type);
CALL MPI_Type_commit(send_recv_type)

sum%i = 0           ; sum%r = 0 ; 
snd_buf%i = my_rank ; snd_buf%j = my_rank
DO i = 1, size
  CALL MPI_Issend(snd_buf,1,send_recv_type,right,17,MPI_COMM_WORLD,request)
  CALL MPI_Recv ( rcv_buf,1,send_recv_type,left, 17,MPI_COMM_WORLD,status)
  CALL MPI_Wait(request, status)
  IF (.NOT.MPI_ASYNC_PROTECTS_NONBLOCKING) CALL MPI_F_sync_reg(snd_buf)
  snd_buf = rcv_buf
  sum%i = sum%i + rcv_buf%i ;  sum%j = sum%j + rcv_buf%j
END DO
WRITE(*,*) 'PE', my_rank, ': Sum%i =', sum%i, ' Sum%j =', sum%j
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Chapter 12-(1), Exercise 2:  Halo-copy with derived types

C
struct buff{
     int   i;
     float f;
} snd_buf, rcv_buf, sum;

int      array_of_blocklengths[2];
MPI_Aint array_of_displacements[2], first_var_address, second_var_address;
MPI_Datatype array_of_types[2], send_recv_type;

array_of_types[0] = MPI_INT;  array_of_types[1] = MPI_FLOAT;
array_of_blocklengths[0] = 1;  array_of_blocklengths[1] = 1;
MPI_Get_address(&snd_buf.i, &first_var_address);
MPI_Get_address(&snd_buf.f, &second_var_address);
array_of_displacements[0] = (MPI_Aint) 0;
array_of_displacements[1]=MPI_Aint_diff(second_var_address-first_var_address);

MPI_Type_create_struct(2, array_of_blocklengths,  array_of_displacements, 
                          array_of_types, &send_recv_type);
MPI_Type_commit(&send_recv_type);

sum.i = 0;            sum.f = 0;
snd_buf.i = my_rank;  snd_buf.f = 10*my_rank;

for( i = 0; i < size; i++) 
{ MPI_Issend(&snd_buf,1,send_recv_type,right,17,MPI_COMM_WORLD, &request);
  MPI_Recv ( &rcv_buf,1,send_recv_type,left, 17,MPI_COMM_WORLD, &status);
  MPI_Wait(&request, &status);
  snd_buf = rcv_buf;
  sum.i += rcv_buf.i;  sum.f += rcv_buf.f;
}

printf ("PE %i: Sum = %i and %f \n", my_rank, sum.i, sum.f);

Provided in
the skeleton

MPI/tasks/C/Ch12/solutions/derived-struct.c
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Chapter 12-(1), Exercise 2:  Halo-copy with derived types

Fortran
TYPE t
   SEQUENCE
   INTEGER :: i
   REAL    :: r
END TYPE t
TYPE(t), ASYNCHRONOUS :: snd_buf
TYPE(t) :: rcv_buf, sum
TYPE(MPI_Datatype) :: send_recv_type

INTEGER(KIND=MPI_ADDRESS_KIND) :: array_of_displacements(2)
INTEGER(KIND=MPI_ADDRESS_KIND) :: first_var_address, second_var_address

CALL MPI_Get_address(snd_buf%i, first_var_address)
CALL MPI_Get_address(snd_buf%r, second_var_address)
array_of_displacements(1) = 0
array_of_displacements(2)=MPI_Aint_diff(second_var_address-first_var_address)

CALL MPI_Type_create_struct(2, (/1,1/), &
 &     array_of_displacements, (/MPI_INTEGER,MPI_REAL/), send_recv_type)
CALL MPI_Type_commit(send_recv_type)

sum%i = 0           ; sum%r = 0 ; 
snd_buf%i = my_rank ; snd_buf%r = REAL(10*my_rank)
DO i = 1, size
  CALL MPI_Issend(snd_buf,1,send_recv_type,right,17,MPI_COMM_WORLD,request)
  CALL MPI_Recv ( rcv_buf,1,send_recv_type,left, 17,MPI_COMM_WORLD,status)
  CALL MPI_Wait(request, status)
  IF (.NOT.MPI_ASYNC_PROTECTS_NONBLOCKING) CALL MPI_F_sync_reg(snd_buf)
  snd_buf = rcv_buf
  sum%i = sum%i + rcv_buf%i ;  sum%r = sum%r + rcv_buf%r
END DO
WRITE(*,*) 'PE', my_rank, ': Sum%i =', sum%i, ' Sum%r =', sum%r

Provided in
the skeleton

MPI/tasks/F_30/Ch12/solutions/derived_struct_30.f90
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Chapter 12-(2), Exercises 5+6:Resizing of derived types (major 
changes)

MPI/tasks/C/Ch12/solutions/derived-struct-double+int-resized.c

MPI_Datatype ... send_recv_type, send_recv_resized;

MPI_Type_create_struct(COUNT, ..., &send_recv_type);

MPI_Type_create_resized(send_recv_type, 

         (MPI_Aint) 0, (MPI_Aint) sizeof(snd_buf[0]), &send_recv_resized);

MPI_Type_commit(&send_recv_resized);

  MPI_Issend(&snd_buf, arr_lng-1, send_recv_resized, ...

 

TYPE(MPI_Datatype) :: send_recv_type, send_recv_resized

CALL MPI_Type_create_struct(2, ..., send_recv_type)

CALL MPI_Get_address(snd_buf(1), first_var_address)

CALL MPI_Get_address(snd_buf(2), second_var_address)

lb = 0;   extent = MPI_Aint_diff(second_var_address, first_var_address)

CALL MPI_Type_create_resized(send_recv_type, lb,extent, send_recv_resized)

CALL MPI_Type_commit(send_recv_resized)

   CALL MPI_Issend(snd_buf, arr_lng-1, send_recv_resized, ...

MPI/tasks/F_30/Ch12/solutions/derived-struct-dp+integer-resized_30.f90
MPI/tasks/F_30/Ch12/solutions/derived-struct-dp+integer-bindC-resized_30.f90

Fortran

C
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