
Advanced MPI
Parallel File I/O

Leon Kos
University of Ljubljana, FME, LECAD lab

2

Acknowledgments

▶ Parallel File I/O is Chapter 13 from Introduction to the Message Passing Interface (MPI) course by Rolf

Rabenseifner from University of Stuttgart and High-Performance Computing-Center Stuttgart (HLRS)

▶ The MPI-1.1 part of this course is partially based on the MPI course developed by the EPCC Training

and Education Centre, Edinburgh Parallel Computing Centre, University of Edinburgh.

▶ Thanks to the EPCC, especially to Neil MacDonald, Elspeth Minty,

Tim Harding, and Simon Brown.

▶ Course Notes and exercises of the EPCC course can be used together with this slides.

▶ The MPI-2.0 part is partially based on the MPI-2 tutorial at the MPIDC 2000 by Anthony Skjellum,

Purushotham Bangalore, Shane Hebert (High Performance Computing Lab, Mississippi State

University, and Rolf Rabenseifner (HLRS)

▶ Some MPI-3.0 detailed slides are provided by the MPI-3.0 ticket authors, chapter authors, or chapter

working groups, Richard Graham (chair of MPI-3.0), and Torsten Hoefler (additional example about

new one-sided interfaces)

▶ Thanks to Dr. Claudia Blaas-Schenner from TU Wien (Vienna) and many other trainers and

participants for all their helpful hints for optimizing this course over so many years.

3

Chap.13 Parallel File I/O

1. MPI Overview
2. Process model and language bindings
3. Messages and point-to-point communication

4. Nonblocking communication

5. The New Fortran Module mpi_f08

6. Collective communication

7. Error Handling

8. Groups & communicators, environment management

9. Virtual topologies

10. One-sided communication

11. Shared memory one-sided communication

12. Derived datatypes

13. Parallel file I/O

▶ Writing and reading a file in parallel

by many processes
14. MPI and threads
15. Probe, Persistent Requests, Cancel
16. Process creation and management
17. Other MPI features
18. Best Practice

P
a

ra
lle

l F
ile

 I/
O

mpi processes of a communicator

file, physical view

file, logical view

addressed
only by hints

scope of
MPI-I/O

• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •

put

get

MPI_Init()
MPI_Comm_rank()

4

Outline

▶ Block 1

▶ Introduction [323]

▶ Definitions [328]

▶ Open / Close [330]

▶ WRITE / Explicit Offsets [335]

▶ Exercise 1 [336]

▶ Block 2

▶ File Views [338]

▶ Subarray & Darray [342]

▶ I/O Routines Overview [350]

▶ READ / Explicit Offsets [352]

▶ Individual File Pointer [353]

▶ Exercise 2 [355]

▶ Block 3

▶ Shared File Pointer [358]

▶ Collective [360]

▶ Non-Blocking / Split Collective [364/365]

▶ Other Routines [368]

▶ Error Handling [369]

▶ Implementation Restrictions [370]

▶ Summary [371]

▶ Exercise 3 [372]

▶ Exercise 4 [373]

I/O
 –

 O
ut

lin
e

 /

 B

lo
ck

 1

5

Motivation, I.

▶ Many parallel applications need

▶ coordinated parallel access to a file by a group of processes

▶ simultaneous access

▶ all processes may read/write many (small) non-contiguous pieces of the file,

i.e. the data may be distributed amongst the processes according to a partitioning scheme

▶ all processes may read the same data

▶ Efficient collective I/O based on

▶ fast physical I/O by several processors, e.g. striped

▶ distributing (small) pieces by fast message passing

6

Motivation, II.

▶ Analogy: writing / reading a file is like

sending/receiving a message

▶ Handling parallel I/O needs

▶ handling groups of processes -> MPI topologies and groups

▶ collective operations -> file handle defined like

communicators

▶ nonblocking operations -> MPI_I..., MPI_Wait, ...

to overlap computation & I/O new split collective

 interface

▶ non-contiguous access -> MPI derived datatypes

7

MPI-I/O Features

▶ Provides a high-level interface to support

▶ data file partitioning among processes

▶ transfer global data between memory and files (collective I/O)

▶ asynchronous transfers

▶ strided access

▶ MPI derived datatypes used to specify common data access patterns for maximum flexibility and

expressiveness

8

MPI-I/O Principles

▶ MPI file contains elements of a single MPI datatype (etype)

▶ partitioning the file among processes with an access template (filetype)

▶ all file accesses transfer to/from a contiguous or

non-contiguous user buffer (MPI datatype)

▶ nonblocking / blocking and collective / individual read / write routines

▶ individual and shared file pointers, explicit offsets

▶ binary I/O

▶ automatic data conversion in heterog. systems

▶ file interoperability with external representation

9

Logical view / Physical view

mpi processes of a communicator

file, physical view

file, logical view

addressed
only by hints

scope of
MPI-I/O

10

Definitions

etype (elementary datatype)

filetype process 2

file displacement (number of header bytes)

filetype process 0

filetype process 1

file

holes

tiling a file with filetypes:

0 5

1 6

2 3 4 7 8 9 view of process 2

view of process 0
view of process 1

0 1 2 3 4 5 6 7 8 9

I/O
 –

 D
ef

in
iti

on
s

11

Comments on Definitions

file - an ordered collection of typed data items

etypes - is the unit of data access and positioning / offsets
- can be any basic or derived datatype

(with non-negative, monotonically non-decreasing, non-absolute displacem.)

- generally contiguous, but need not be
- typically same at all processes

filetypes - the basis for partitioning a file among processes
- defines a template for accessing the file
- different at each process
- the etype or derived from etype (displacements:

non-negative, monoton. non-decreasing, non-abs., multiples of etype extent)

view - each process has its own view, defined by:
a displacement, an etype, and a filetype.

- The filetype is repeated, starting at displacement

offset - position relative to current view, in units of etype

12

Opening an MPI File

▶ MPI_FILE_OPEN is collective over comm
▶ filename’s namespace is

implementation-dependent!
▶ filename must reference the same file

on all processes
▶ process-local files can be opened by passing MPI_COMM_SELF as comm
▶ returns a file handle fh

[represents the file, the process group of comm, and the current view]

I/O
 –

 O
pe

n
/ C

lo
se

MPI_FILE_OPEN(comm, filename, amode, info, fh)

C/C++Fortran language bindings – see MPI Standard

13

Default View

▶ Default:
▶ displacement = 0 each process
▶ etype = MPI_BYTE has access to
▶ filetype = MPI_BYTE the whole file

▶ Sequence of MPI_BYTE matches with any datatype
(see MPI-3.0, Section 13.6.5 on page 544 / MPI-3.1, Section 13.6.6 on page 549)

▶ Binary I/O (no ASCII text I/O)

file0 1 2 3 4 5 6 7 8 9

view of process 00 1 2 3 4 5 6 7 8 9

view of process 10 1 2 3 4 5 6 7 8 9

view of process 20 1 2 3 4 5 6 7 8 9

MPI_FILE_OPEN(comm, filename, amode, info, fh)

14

Access Modes

▶ same value of amode on all processes in MPI_FILE_OPEN
▶ Bit vector OR of integer constants (Fortran 77: +)

▶ MPI_MODE_RDONLY - read only
▶ MPI_MODE_RDWR - reading and writing
▶ MPI_MODE_WRONLY - write only
▶ MPI_MODE_CREATE - create if file doesn’t exist
▶ MPI_MODE_EXCL - error creating a file that exists
▶ MPI_MODE_DELETE_ON_CLOSE - delete on close
▶ MPI_MODE_UNIQUE_OPEN - file not opened concurrently
▶ MPI_MODE_SEQUENTIAL - file only accessed sequentially:

mandatory for sequential stream files (pipes, tapes, ...)
▶ MPI_MODE_APPEND - all file pointers set to end of file

[caution: reset to zero by any subsequent MPI_FILE_SET_VIEW]

15

File Info: Reserved Hints

▶ Argument in MPI_FILE_OPEN, MPI_FILE_SET_VIEW, MPI_FILE_SET_INFO

▶ reserved key values:
▶ collective buffering

▶ “collective_buffering”: specifies whether the application may benefit from collective
buffering

▶ “cb_block_size”: data access in chunks of this size
▶ “cb_buffer_size”: on each node, usually a multiple of block size
▶ “cb_nodes”: number of nodes used for collective buffering

▶ disk striping (only relevant in MPI_FILE_OPEN)
▶ “striping_factor”: number of I/O devices used for striping
▶ “striping_unit”: length of a chunk on a device (in bytes)

▶ MPI_INFO_NULL may be passed

16

Closing and Deleting a File

▶ Close: collective

▶ Delete:

▶ automatically by MPI_FILE_CLOSE

if amode=MPI_DELETE_ON_CLOSE | ...

was specified in MPI_FILE_OPEN

▶ deleting a file that is not currently opened:

MPI_FILE_CLOSE(fh)

MPI_FILE_DELETE(filename, info)

[same implementation-dependent rules as in MPI_FILE_OPEN]

17

Writing with Explicit Offsets

▶ writes count elements of datatype from memory buf to the file
▶ starting offset * units of etype

from begin of view
▶ the elements are stored into the locations of the current view
▶ the sequence of basic datatypes of datatype

(= signature of datatype)
must match
contiguous copies of the etype of the current view

MPI_FILE_WRITE_AT(fh,offset,buf,count,datatype,status)

I/O
 –

 W
R

IT
E

 /

E
xp

lic
it

O
ffs

et
s

18

MPI–IO Exercise 1: Four processes write a file in parallel

I/O
 –

 E
xe

rc
is

e
1

▶ each process should write its rank (as one character) ten times

to the offsets = my_rank + i * size_of_MPI_COMM_WORLD, i=0..9

▶ Result: “0123012301230123012301230123012301230123“

▶ Each process uses the default view

▶ please, use skeleton:

cp ~/MPI/tasks/C/Ch13/mpi_io_exa1_skel.c my_exa1.c

cp ~/MPI/tasks/F_30/Ch13/mpi_io_exa1_skel_30.f90 my_exa1_30.f90

writing
1 1 1 1 1 1 ...

writing
2 2 2 2 2 2 ...

writing
3 3 3 3 3 3 ...

writing
0 0 0 0 0 0 ...

mpi processes of a
communicator

file

19

During the Exercise

Please stay here in the main room while you do this exercise

And have fun with this short exercise

Please do not look at the solution before you finished this exercise,

otherwise,

 90% of your learning outcome may be lost

As soon as you finished the exercise,

please go to your breakout room

and continue your discussions with your fellow learners:

Who of you uses NetCDF or HDF5?

As far as I know, both use MPI-I/O.

20

Outline – Block 2

I/O
 –

 O
ut

lin
e

 /

 B

lo
ck

 2
▶ Block 1

▶ Introduction [323]

▶ Definitions [328]

▶ Open / Close [330]

▶ WRITE / Explicit Offsets [335]

▶ Exercise 1 [336]

▶ Block 2

▶ File Views [338]

▶ Subarray & Darray [342]

▶ I/O Routines Overview [350]

▶ READ / Explicit Offsets [352]

▶ Individual File Pointer [353]

▶ Exercise 2 [355]

▶ Block 3

▶ Shared File Pointer [358]

▶ Collective [360]

▶ Non-Blocking / Split Collective [364/365]

▶ Other Routines [368]

▶ Error Handling [369]

▶ Implementation Restrictions [370]

▶ Summary [371]

▶ Exercise 3 [372]

▶ Exercise 4 [373]

21

File Views

▶ Provides a visible and accessible set of data from an open file

▶ A separate view of the file is seen by each process through triple := (displacement, etype, filetype)

▶ User can change a view during the execution of the program - but collective operation

▶ A linear byte stream, represented by the triple

(0, MPI_BYTE, MPI_BYTE), is the default view

I/O
 –

 F
ile

 V
ie

w
s

22

Set/Get File View

▶ Set view

▶ changes the process’s view of the data

▶ local and shared file pointers are reset to zero

▶ collective operation

▶ etype and filetype must be committed

▶ datarep argument is a string that specifies the format

in which data is written to a file:

“native”, “internal”, “external32”, or user-defined

▶ same etype extent and same datarep on all processes

▶ Get view

▶ returns the process’s view of the data

MPI_FILE_SET_VIEW(fh, disp, etype, filetype, datarep, info)

MPI_FILE_GET_VIEW(fh, disp, etype, filetype, datarep)

23

Data Representation, I.

▶ “native”
▶ data stored in file identical to memory
▶ on homogeneous systems no loss in precision or I/O performance due to type

conversions
▶ on heterogeneous systems loss of interoperability
▶ no guarantee that MPI files accessible from C/Fortran

▶ “internal”
▶ data stored in implementation specific format
▶ can be used with homogeneous or heterogeneous environments
▶ implementation will perform type conversions if necessary
▶ no guarantee that MPI files accessible from C/Fortran

24

Data Representation, II.

▶ “external32”
▶ follows standardized representation (IEEE)
▶ all input/output operations are converted from/to the “external32” representation
▶ files can be exported/imported between different MPI environments
▶ due to type conversions from (to) native to (from) “external32” data precision and I/O performance

may be lost
▶ “internal” may be implemented as equal to “external32”
▶ can be read/written also by non-MPI programs

▶ user-defined

No information about the default,
i.e., datarep without MPI_File_set_view() is not defined

25

Fileview examples with SUBARRAY and DARRAY

▶ Task

▶ reading a global matrix from a file

▶ storing a subarray into a local array on each process

▶ according to a given distribution scheme

I/O
 –

 S
ub

ar
ra

y
 &

 D
ar

ra
y

26

Example with Subarray, I.

▶ 2-dimensional distribution scheme: (BLOCK,BLOCK)

▶ garray on the file 20x30:

▶ Contiguous indices is language dependent:

▶ in Fortran:(1,1), (2,1), (3,1), ... , (1,10), (2,20), (3,10), ..., (20,30)

▶ in C/C++: [0][0], [0][1], [0][2], ... , [10][0], [10][1], [10][2], ..., [19][29]

▶ larray = local array in each MPI process

= subarray of the global array

▶ same ordering on file (garray) and in memory (larray)

27

Example with Subarray, II. — Distribution

▶ Process topology: 2x3

▶ global array on the file: 20x30

▶ distributed on local arrays in each processor: 10x10

(1,1)

(20,30)

F
o

rt
ra

n

C / C++ (contiguous indices on the file and in the memory)

28

Example with Subarray, III. — Reading the file

!!!! real garray(20,30) ! these HPF-like comment lines !
!!!! PROCESSORS procs(2, 3) ! explain the data distribution !
!!!! DISTRIBUTE garray(BLOCK,BLOCK) onto procs ! used in this MPI program !

real larray(10,10) ; integer (kind=MPI_OFFSET_KIND) disp,offset; disp=0; offset=0

ndims=2 ; psizes(1)=2 ; period(1)=.false. ; psizes(2)=3 ; period(2)=.false.
call MPI_CART_CREATE(MPI_COMM_WORLD, ndims, psizes, period,

 .TRUE., comm, ierror)call MPI_COMM_RANK(comm, rank, ierror)
call MPI_CART_COORDS(comm, rank, ndims, coords, ierror)

gsizes(1)=20 ; lsizes(1)= 10 ; starts(1)=coords(1)*lsizes(1)
gsizes(2)=30 ; lsizes(2)= 10 ; starts(2)=coords(2)*lsizes(2)
call MPI_TYPE_CREATE_SUBARRAY(ndims, gsizes, lsizes, starts,

 MPI_ORDER_FORTRAN, MPI_REAL, subarray_type, ierror)
call MPI_TYPE_COMMIT(subarray_type , ierror)

call MPI_FILE_OPEN(comm, 'exa_subarray_testfile', MPI_MODE_CREATE +
 MPI_MODE_RDWR, MPI_INFO_NULL, fh, ierror)

call MPI_FILE_SET_VIEW (fh, disp, MPI_REAL, subarray_type, 'native',
 MPI_INFO_NULL, ierror)

call MPI_FILE_READ_AT_ALL(fh, offset, larray, lsizes(1)*lsizes(2), MPI_REAL,
 status, ierror)

29

Example with Subarray, IV.

▶ All MPI coordinates and indices start with 0,

even in Fortran, i.e. with MPI_ORDER_FORTRAN

▶ MPI indices (here starts) may differ () from Fortran indices

▶ Block distribution on 2*3 processes:

rank = 0
coords = (0, 0)
starts = (0, 0)
garray(1:10, 1:10)

= larray (1:10, 1:10)

rank = 1
coords = (0, 1)
starts = (0, 10)
garray(1:10, 11:20)

= larray (1:10, 1:10)

rank = 2
coords = (0, 2)
starts = (0, 20)
garray(1:10, 21:30)

= larray (1:10, 1:10)

rank = 3
coords = (1, 0)
starts = (10, 0)
garray(11:20, 1:10)

= larray (1:10, 1:10)

rank = 4
coords = (1, 1)
starts = (10, 10)
garray(11:20, 11:20)

= larray (1:10, 1:10)

rank = 5
coords = (1, 2)
starts = (10, 20)
garray(11:20, 21:30)

= larray (1:10, 1:10)

30

Example with Darray, I.

▶ Distribution scheme: (CYCLIC(2), BLOCK)

▶ Cyclic distribution in first dimension with strips of length 2

▶ Block distribution in second dimension

▶ distribution of global garray onto the larray in each of the 2x3 processes

▶ garray on the file: • e.g., larray on process (0,1):

(1,1)

(20,30)

31

Example with Darray, II.

!!!! real garray(20,30) ! these HPF-like comment lines !
!!!! PROCESSORS procs(2, 3) ! explain the data distribution !
!!!! DISTRIBUTE garray(CYCLIC(2),BLOCK) onto procs !used in this MPI program!

real larray(10,10); integer (kind=MPI_OFFSET_KIND) disp, offset; disp=0; offset=0

call MPI_COMM_SIZE(comm, size, ierror)
ndims=2 ; psizes(1)=2 ; period(1)=.false. ; psizes(2)=3 ; period(2)=.false.
call MPI_CART_CREATE(MPI_COMM_WORLD, ndims, psizes, period,

 .TRUE., comm, ierror)call MPI_COMM_RANK(comm, rank, ierror)
call MPI_CART_COORDS(comm, rank, ndims, coords, ierror)

gsizes(1)=20 ; distribs(1)= MPI_DISTRIBUTE_CYCLIC; dargs(1)=2
gsizes(2)=30 ; distribs(2)= MPI_DISTRIBUTE_BLOCK; dargs(2)=
 MPI_DISTRIBUTE_DFLT_DARG
call MPI_TYPE_CREATE_DARRAY(size, rank, ndims, gsizes, distribs, dargs,

 psizes, MPI_ORDER_FORTRAN, MPI_REAL, darray_type, ierror)
call MPI_TYPE_COMMIT(darray_type , ierror)

call MPI_FILE_OPEN(comm, 'exa_subarray_testfile', MPI_MODE_CREATE +
 MPI_MODE_RDWR, MPI_INFO_NULL, fh, ierror)

call MPI_FILE_SET_VIEW (fh, disp, MPI_REAL, darray_type, 'native',
 MPI_INFO_NULL, ierror)

call MPI_FILE_READ_AT_ALL(fh, offset, larray, 10*10, MPI_REAL, istatus, ierror)

32

Example with Darray, III.

▶ Cyclic distribution in first dimension with strips of length 2

▶ Block distribution in second dimension

▶ Processes’ tasks:

rank = 0
coords = (0, 0)

garray(, 1:10)

= larray (1:10, 1:10)

rank = 1
coords = (0, 1)

garray(, 11:20)

= larray (1:10, 1:10)

rank = 2
coords = (0, 2)

garray(, 21:30)

= larray (1:10, 1:10)

rank = 3
coords = (1, 0)

garray(, 1:10)

= larray (1:10, 1:10)

rank = 4
coords = (1, 1)

garray(, 11:20)

= larray (1:10, 1:10)

rank = 5
coords = (1, 2)

 garray(, 21:30)

= larray (1:10, 1:10)

 1: 2
 5: 6
 9:10
13:14
17:18

 3: 4
 7: 8
11:12
15:16
19:20

 1: 2
 5: 6
 9:10
13:14
17:18

 1: 2
 5: 6
 9:10
13:14
17:18

 3: 4
 7: 8
11:12
15:16
19:20

 3: 4
 7: 8
11:12
15:16
19:20

33

5 Aspects of Data Access

▶ Direction: Read / Write
▶ Positioning [realized via routine names]

▶ explicit offset (_AT)
▶ individual file pointer (no positional qualifier)
▶ shared file pointer (_SHARED or _ORDERED)

(different names used depending on whether non-collective or collective)
▶ Coordination

▶ non-collective
▶ collective (_ALL)

▶ Synchronism
▶ blocking
▶ nonblocking (I) and split collective (_BEGIN, _END)

▶ Atomicity, [realized with a separate API: MPI_File_set_atomicity]
▶ non-atomic (default)
▶ atomic: to achieve sequential consistency for conflicting accesses

on same fh in different processes

I/O
 –

 R
ou

tin
es

 O
ve

rv
ie

w

34

All Data Access Routines

Read e.g. MPI_FILE_READ_AT

positioning synchronism coordination

 noncollective collective split collective

explicit blocking READ_AT READ_AT_ALL READ_AT_ALL_BEGIN

offsets WRITE_AT WRITE_AT_ALL READ_AT_ALL_END

 nonblocking IREAD_AT IREAD_AT_ALL WRITE_AT_ALL_BEGIN

 IWRITE_AT IWRITE_AT_ALL WRITE_AT_ALL_END

individual blocking READ READ_ALL READ_ALL_BEGIN

file pointers WRITE WRITE_ALL READ_ALL_END

 nonblocking IREAD IREAD_ALL WRITE_ALL_BEGIN

 IWRITE IWRITE_ALL WRITE_ALL_END

shared blocking READ_SHARED READ_ORDERED READ_ORDERED_BEGIN

file pointer WRITE_SHARED WRITE_ORDERED READ_ORDERED_END

 nonblocking IREAD_SHARED N/A WRITE_ORDERED_BEGIN

 IWRITE_SHARED WRITE_ORDERED_END

New in MPI-3.1New in MPI-3.1

35

Explicit Offsets

e.g. MPI_FILE_READ_AT(fh,offset,buf,count,datatype,status)

▶ attempts to read count elements of datatype
▶ starting offset * units of etype

from begin of view (= displacement)
▶ the sequence of basic datatypes of datatype

(= signature of datatype)
must match
contiguous copies of the etype of the current view

▶ EOF can be detected by noting that the amount of data read is less than count
▶ i.e. EOF is no error!
▶ use MPI_GET_COUNT(status,datatype,recv_count)I/O

 –
 R

E
A

D

36

Individual File Pointer, I.

e.g. MPI_FILE_READ(fh, buf,count,datatype,status)

▶ same as “Explicit Offsets”, except:

▶ the offset is the current value of the
individual file pointer of the calling process

▶ the individual file pointer is updated by

new_fp = old_fp + elements(datatype) * count

i.e. it points to the next etype after the last one that will be accessed

(formula is not valid if EOF is reached)

I/O
 –

 I
nd

iv
id

ua
l F

ile
 P

oi
nt

er

37

Individual File Pointer, II.

▶ set individual file pointer fp:

▶ set fp to offset – if whence=MPI_SEEK_SET

▶ advance fp by offset – if whence=MPI_SEEK_CUR

▶ set fp to EOF+offset – if whence=MPI_SEEK_EOF

MPI_FILE_SEEK(fh, offset, whence)

MPI_FILE_GET_POSITION(fh, offset)

MPI_FILE_GET_BYTE_OFFSET(fh, offset, disp)

▶ to inquire offset

▶ to convert offset into byte displacement

[e.g. for disp argument in a new view]

38

MPI–IO Exercise 2:
Using fileviews and individual filepointers

▶ Copy to your local directory:

cp ~/MPI/tasks/C/Ch13/mpi_io_exa2_skel.c my_exa2.c

cp ~/MPI/tasks/F_30/Ch13/mpi_io_exa2_skel_30.f90 my_exa2_30.f90

▶ Tasks:

▶ Each MPI-process of my_exa2 should write one character to a file:

▶ process “rank=0” should write an ‘a’

▶ process “rank=1” should write an ‘b’

▶ ...

▶ Use a 1-dimensional fileview with MPI_TYPE_CREATE_SUBARRAY

▶ The pattern should be repeated 3 times, i.e., four processes should write: “abcdabcdabcd”

▶ Please, substitute “____” in your my_exa2.c / _30.f90

▶ Compile and run your my_exa2.c / _30.f90

I/O
 –

 E
xe

rc
is

e
2

39

MPI–IO Exercise 2:
Using fileviews and individual filepointers, continued

etype = MPI_CHARACTER / MPI_CHAR

filetype process 2

file displacement = 0 (number of header bytes)

filetype process 0

filetype process 1

file
tiling a file with filetypes:

view of process 2

view of process 0
view of process 1

filetype process 3

holes

a b c d a b c d a b c d

b b b
a a a

d d d
c c c

view of process 3

40

During the Exercise

Please stay here in the main room while you do this exercise

And have fun with this short exercise

Please do not look at the solution before you finished this exercise,

otherwise,

 90% of your learning outcome may be lost

As soon as you finished the exercise,

please go to your breakout room

and continue your discussions with your fellow learners:

Ask yourself, whether the datatype is a 1- or higher-dimensional array?

And don’t forget that counts are normally elements and not bytes!

And to look at the declaration of the buffer is also helpful

to answer tha last ____ question

41

Outline – Block 3

▶ Block 1

▶ Introduction [323]

▶ Definitions [328]

▶ Open / Close [330]

▶ WRITE / Explicit Offsets [335]

▶ Exercise 1 [336]

▶ Block 2

▶ File Views [338]

▶ Subarray & Darray [342]

▶ I/O Routines Overview [350]

▶ READ / Explicit Offsets [352]

▶ Individual File Pointer [353]

▶ Exercise 2 [355]

▶ Block 3

▶ Shared File Pointer [358]

▶ Collective [360]

▶ Non-Blocking / Split Collective [364/365]

▶ Other Routines [368]s

▶ Error Handling [369]

▶ Implementation Restrictions [370]

▶ Summary [371]

▶ Exercise 3 [372]

▶ Exercise 4 [373]I/O
 –

 O
ut

lin
e

 /

 B

lo
ck

 3

42

Shared File Pointer, I.

▶ same view at all processes mandatory!

▶ the offset is the current, global value of the

shared file pointer of fh

▶ multiple calls [e.g. by different processes] behave as if the calls were serialized

▶ non-collective, e.g.

▶ collective calls are serialized in the order of the processes’ ranks, e.g.:

MPI_FILE_READ_SHARED(fh, buf, count, datatype, status)

MPI_FILE_READ_ORDERED(fh,buf,count,datatype,status)I/O
 –

 S
ha

re
d

F
ile

 P
oi

nt
er

43

Shared File Pointer, II.

▶ same rules as with individual file pointers

MPI_FILE_SEEK_SHARED(fh, offset, whence)

MPI_FILE_GET_POSITION_SHARED(fh, offset)

MPI_FILE_GET_BYTE_OFFSET(fh, offset, disp)

44

Collective Data Access

▶ Explicit offsets / individual file pointer:

▶ same as non-collective calls by all processes “of fh”

▶ opportunity for best speed!!!

▶ shared file pointer:

▶ accesses are ordered by the ranks of the processes

▶ optimization opportunity:

▶ first, locations within the file for all processes can be computed

▶ then parallel physical data access by all processes

I/O
 –

 C
ol

le
ct

iv
e

45

Application Scenery, I.

▶ Scenery A:

▶ Task: Each process has to read the whole file

▶ Solution: MPI_FILE_READ_ALL

= collective with individual file pointers,

with same view (displacement+etype+filetype)

on all processes

[internally: striped-reading by several process, only once

from disk, then distributing with bcast]

▶ Scenery B:

▶ Task: The file contains a list of tasks,

each task requires different compute time

▶ Solution: MPI_FILE_READ_SHARED

= non-collective with a shared file pointer

 (same view is necessary for shared file p.)

46

Application Scenery, II.

▶ Scenery C:

▶ Task: The file contains a list of tasks,

each task requires the same compute time

▶ Solution: MPI_FILE_READ_ORDERED

= collective with a shared file pointer

 (same view is necessary for shared file p.)

▶ or: MPI_FILE_READ_ALL

= collective with individual file pointers,

different views: filetype with

MPI_TYPE_CREATE_SUBARRAY(1,nproc,

 1, myrank, ..., datatype_of_task, filetype)

[internally: both may be implemented the same

and equally with following scenery D]

47

Application Scenery, III.

▶ Scenery D:

▶ Task: The file contains a matrix,

block partitioning,

each process should get a block

▶ Solution: generate different filetypes with

MPI_TYPE_CREATE_DARRAY,

the view on each process represents the block

that should be read by this process,

MPI_FILE_READ_AT_ALL with offset=0

(= collective with explicit offsets)

reads the whole matrix collectively

[internally: striped-reading of contiguous blocks

by several process,

then distributed with “alltoall”]

48

Nonblocking Data Access

▶ analogous to MPI-1 nonblocking

e.g. MPI_FILE_IREAD(fh, buf, count, datatype, request)

MPI_WAIT(request, status)

MPI_TEST(request, flag, status)

I/O
 –

 N
on

-B
lo

ck
in

g
 /

 S
pl

it
C

ol
le

ct
iv

e

49

Split Collective Data Access, I.

▶ collective operations may be split into two parts:

▶ start the split collective operation

▶ complete the operation and return the status

e.g. MPI_FILE_READ_ALL_BEGIN(fh, buf, count, datatype)

MPI_FILE_READ_ALL_END(fh, buf, status)

50

Split Collective Data Access, II.

▶ Rules and Restrictions:

▶ the MPI_...BEGIN calls are collective

▶ the MPI_...END calls are collective, too

▶ only one active (pending) split or regular collective operation per file handle at any time

▶ split collective does not match ordinary collective

▶ same buf argument in MPI_...BEGIN and ..._END call

▶ opportunity to overlap file I/O and computation

▶ but also a valid implementation:

▶ does all work within the MPI_...BEGIN routine,

passes status in the MPI_...END routine

▶ passes arguments from MPI_...BEGIN to MPI_...END,

does all work within the MPI_...END routine

51

Scenery – Split Collective

▶ Scenery A:

▶ Task:Each process has to read the whole file

▶ Solution: o MPI_FILE_READ_ALL_BEGIN

= collective with individual file pointers,

with same view (displacement+etype+filetype)

on all processes

[internally: starting asynchronous striped-reading

by several process]

o then computing some other initialization,

o MPI_FILE_READ_ALL_END.
[internally: waiting until striped-reading finished,

then distributing the data with bcast]

52

Other File Manipulation Routines

▶ Pre-allocating space for a file [collective call, may be expensive]
MPI_FILE_ PREALLOCATE(fh, size)

▶ Resizing a file [collective call, may speed up first writing on a file]
MPI_FILE_SET_SIZE(fh, size)

▶ Querying file size
MPI_FILE_GET_SIZE(filename, size)

▶ Querying file parameters
MPI_FILE_GET_GROUP(fh, group)
MPI_FILE_GET_AMODE(fh, amode)

▶ File info object
MPI_FILE_SET_INFO(fh, info) [collective call]
MPI_FILE_GET_INFO(fh, info_used)

Returns a new info object that contains
the current setting of all hints used by
the system related to this open file:
• provided by the application, and
• provided by the system

I/O
 –

 O
th

er
 R

ou
tin

es

53

MPI I/O Error Handling

▶ File handles have their own error handler

▶ Default is MPI_ERRORS_RETURN,

i.e. non-fatal

[vs message passing: MPI_ERRORS_ARE_FATAL]

▶ Default is associated with MPI_FILE_NULL

[vs message passing: with MPI_COMM_WORLD]

▶ Changing the default, e.g., after MPI_Init:

 MPI_File_set_errhandler(MPI_FILE_NULL, MPI_ERRORS_ARE_FATAL);

 CALL MPI_FILE_SET_ERRHANDLER(MPI_FILE_NULL,MPI_ERRORS_ARE_FATAL,ierr)

▶ MPI is undefined after first erroneous MPI call

▶ but a high quality implementation

will support I/O error handling facilities

I/O
 –

 E
rr

or
-H

an
dl

in
g

54

Implementation-Restrictions

▶ ROMIO based MPI libraries:

▶ datarep = “internal” and “external32” is still not implemented

▶ User-defined data representations are not supported

I/O
 –

 I
m

pl
em

en
ta

tio
n-

R
es

tr
ic

tio
ns

55

MPI-I/O: Summary

▶ Rich functionality provided to support various data representation and access

▶ MPI I/O routines provide flexibility as well as portability

▶ Collective I/O routines can improve I/O performance

▶ Initial implementations of MPI I/O available

(eg, ROMIO from Argonne)

▶ Available nearly on every MPI implementation

I/O
 –

 S
um

m
ar

y

56

MPI–IO Exercise 3: Collective ordered I/O

▶ Copy to your local directory:

cp ~/MPI/tasks/C/Ch13/mpi_io_exa3_skel.c my_exa3.c

cp ~/MPI/tasks/F_30/Ch13/mpi_io_exa3_skel_30.f90 my_exa3_30.f90

▶ Tasks:

▶ Substitute the write call with individual filepointers

by a collective write call with shared filepointers

▶ Compile and run your my_exa3.c / _30.f90

I/O
 –

 E
xe

rc
is

e
3

57

During the Exercise

Please stay here in the main room while you do this exercise

And have fun with this short exercise

Please do not look at the solution before you finished this exercise,

otherwise,

 90% of your learning outcome may be lost

As soon as you finished the exercise,

please go to your breakout room

and continue your discussions with your fellow learners:

This exercise is mainly removing all about the fileview.

With the shared file pointer and collective writing, this exercise

is a one-line problem, isn’t it?

Good luck!

58

MPI–IO Exercise 4: I/O Benchmark

▶ Use:

MPI/tasks/F_30/Ch13/mpi_io_exa4_30.f90

(my apologies that there is only a Fortran version)

▶ Tasks:

▶ Compile and execute mpi_io_exa4 on 2, 4 and 8 MPI processes.

▶ Duplicate “WRITE_ALL & READ_ALL” block

and substitute by non-collective “WRITE & READ”.

▶ Compare collective and non-collective I/O.

▶ Double the value of gsize and compile and execute again.

I/O
 –

 E
xe

rc
is

e
4

59

Chapter 12-(1), Exercise 1:
MPI_TYPE_CONTIGUOUS Scenery, III.

C struct buff{
 int i;
 int j;
} snd_buf, rcv_buf, sum;

TYPE(MPI_Datatype) :: send_recv_type

CALL MPI_Type_contiguous(2, MPI_INTEGER, send_recv_type)
CALL MPI_Type_commit(send_recv_type)

sum.i = 0; sum.f = 0;
snd_buf.i = my_rank; snd_buf.j = 10*my_rank;

for(i = 0; i < size; i++)
{ MPI_Issend(&snd_buf,1,send_recv_type,right,17,MPI_COMM_WORLD, &request);
 MPI_Recv (&rcv_buf,1,send_recv_type,left, 17,MPI_COMM_WORLD, &status);
 MPI_Wait(&request, &status);
 snd_buf = rcv_buf;
 sum.i += rcv_buf.i; sum.j += rcv_buf.j;
}

printf ("PE %i: Sum = %i and %i \n", my_rank, sum.i, sum.j);

Provided in
the skeleton

MPI/tasks/C/Ch12/solutions/derived-contiguous.c

60

APPENDIX: Solution to exercises

61

Chapter 13-(1):
Parallel file I/O exercise 1 – explicit file-pointer

Fortran

C
MPI_Offset

KIND=MPI_OFFSET_KIND

or MPI_MODE_WRONLY

or MPI_MODE_WRONLY

_RDWR _CREATE

_RDWR _CREATE

my_rank + size*i

my_rank + size*(i-1)

1, MPI_CHAR

1, MPI_CHARACTER

MPI/tasks/C/Ch13/solutions/mpi_io_exa1.c

MPI/tasks/F_30/Ch13/solutions/mpi_io_exa1.f

 offset;
…

 MPI_File_open(MPI_COMM_WORLD, "my_test_file",
 MPI_MODE | MPI_MODE ,
 MPI_INFO_NULL, &fh);

 for (i=0; i<10; i++) {
 buf = '0' + (char)my_rank;
 offset = ;
 MPI_File_write_at(fh, offset, &buf, , , &status);
 }

 INTEGER () offset
 …

 CALL MPI_FILE_OPEN(MPI_COMM_WORLD, 'my_test_file',
 & IOR(MPI_MODE , MPI_MODE),
 & MPI_INFO_NULL, fh, ierror)

 DO I=1,10
 buf = CHAR(ICHAR('0') + my_rank)
 offset =
 CALL MPI_FILE_WRITE_AT(fh, offset, buf, , ,
 & status, ierror)
 END DO

62

Chapter 13-(2):Parallel file I/O exercise 2 – with fileview

Fortran

C disp;…
 ndims = ;
 array_of_sizes[0] = ;
 array_of_subsizes[0] = ;
 array_of_starts[0] = ; …
 MPI_Type_create_subarray(…);
 MPI_Type ;
 MPI_File_open(…, MPI_MODE | MPI_MODE , …);
 disp = ;
 MPI_File_set_view(…);
 for (i=0; i<3; i++) {
 buf = 'a' + (char)my_rank;
 MPI_File_write(fh, &buf, , , &status);
 }

 INTEGER () disp …
 ndims =
 array_of_sizes(1) =
 array_of_subsizes(1) =
 array_of_starts(1) =
 …
 CALL MPI_TYPE_CREATE_SUBARRAY(…)
 CALL MPI_TYPE
 CALL MPI_FILE_OPEN(…, IOR(MPI_MODE , MPI_MODE), …)
 disp =
 CALL MPI_FILE_SET_VIEW(…)
 DO I=1,3
 buf = CHAR(ICHAR('a') + my_rank)
 CALL MPI_FILE_WRITE(fh, buf, , , status, ierror)
 END DO

MPI_Offset

KIND=MPI_OFFSET_KIND

1
 size
 1
 my_rank

1
 size
 1
 my_rank

_COMMIT(filetype, ierror)

_commit(&filetype)

or MPI_MODE_WRONLY

or MPI_MODE_WRONLY

_RDWR _CREATE

_RDWR _CREATE

0

0

1, etype

1, etype

or MPI_CHAR

or MPI_CHARACTER

MPI/tasks/C/Ch13/solutions/mpi_io_exa2.c

MPI/tasks/F_30/Ch13/solutions/mpi_io_exa2.f

63

Chapter 13-(3): Parallel file I/O exercise 3 – shared filepointer

MPI_Datatype etype;
MPI_Datatype filetype;
MPI_Offset disp;
 etype = MPI_CHAR;
 ndims = 1;
 array_of_sizes[0] = size;
 array_of_subsizes[0] = 1;
 array_of_starts[0] = my_rank;
 order = MPI_ORDER_C;
 MPI_Type_create_subarray(ndims, array_of_sizes,
 array_of_subsizes, array_of_starts, order, etype, &filetype);
 MPI_Type_commit(&filetype);
 disp = 0;
 MPI_File_set_view(fh, disp, etype, filetype, "native", MPI_INFO_NULL);

 MPI_File_open(MPI_COMM_WORLD, "my_test_file",
 MPI_MODE_RDWR | MPI_MODE_CREATE, MPI_INFO_NULL, &fh);
 for (i=0; i<3; i++) {
 buf = 'a' + (char)my_rank;
 MPI_File_write_ordered(fh, &buf, 1, MPI_CHAR, &status);
 }
 MPI_File_close(&fh);

TYPE(MPI_Datatype) :: etype
 …

 CALL MPI_FILE_OPEN(MPI_COMM_WORLD, 'my_test_file', &
 & IOR(MPI_MODE_RDWR, MPI_MODE_CREATE), &
 & MPI_INFO_NULL, fh, ierror)
 DO I=1,3
 buf = CHAR(ICHAR('a') + my_rank)
 CALL MPI_FILE_WRITE_ORDERED(fh, buf, 1, MPI_CHARACTER, status, ierror)
 END DO
 CALL MPI_FILE_CLOSE(fh, ierror)

Fortran

C
MPI/tasks/C/Ch13/solutions/mpi_io_exa3.c

MPI/tasks/F_30/Ch13/solutions/mpi_io_exa3.f

Co-funded by the Horizon 2020 programme
of the European Union

This project has received funding from the European High-Performance Computing Joint Undertaking (JU)
under grant agreement No 951732. The JU receives support from the European Union’s Horizon 2020
research and innovation programme and Germany, Bulgaria, Austria, Croatia, Cyprus, Czech Republic,
Denmark, Estonia, Finland, Greece, Hungary, Ireland, Italy, Lithuania, Latvia, Poland, Portugal, Romania,
Slovenia, Spain, Sweden, United Kingdom, France, Netherlands, Belgium, Luxembourg, Slovakia, Norway,
Switzerland, Turkey, Republic of North Macedonia, Iceland, Montenegro

Thanks!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64

