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1 Introduction

Magnetic moment

• relation of spin and magnetic moment of a lepton:

~µ` = g`
e

2m`

~s

g`: Landé factor, gyromagnetic ratio

• Dirac’s prediction: ge = 2

• anomalous magnetic moment: a` = (g` − 2)/2

• helped to establish QED and QFT as the framework
for elementary particle physics

• today: probing not only QED but entire SM
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1 Introduction

Electron vs. muon magnetic moments

• influence of heavier virtual particles of mass M
scales as

∆a`
a`
∝ m2

`

M2

• (mµ/me)
2 ≈ 4× 104 ⇒ muon is much more sensitive

to new physics, but also to EW and hadronic
contributions

• aτ experimentally not yet known precisely enough
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1 Introduction

Muon anomalous magnetic moment (g − 2)µ

recent and future experimental progress:

• FNAL will improve precision
further: factor of 4 wrt E821
• theory needs to reduce

SM uncertainty!
Photo: Glukicov (License: CC-BY-SA-4.0)
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3.7σ

1011 × (aµ − aSMµ )

Brookhaven E821

SM: White Paper

muon g − 2 discrepancy
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1 Introduction

(g − 2)µ: theory vs. experiment

• discrepancy between SM and experiment 4.2σ

• hint to new physics?

• size of discrepancy points at electroweak scale
⇒ heavy new physics needs some enhancement
mechanism

• theory error completely dominated by hadronic
effects
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2 SM prediction for the muon g − 2

SM theory white paper

→ T. Aoyama et al. (Muon g − 2 Theory Initiative), Phys. Rept. 887 (2020) 1-166

• community white paper on current status of SM
calculation

• new consensus on SM prediction, used for
comparison with FNAL result

• many improvements on hadronic contributions
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2 SM prediction for the muon g − 2 QED and Electroweak Contribution

QED and electroweak contributions

• full O(α5) calculation by Kinoshita et al. 2012
(involves 12672 diagrams!)

• EW contributions (EW gauge bosons, Higgs)
calculated to two loops (three-loop terms negligible)

1011 · aµ 1011 ·∆aµ
QED total 116 584 718.931 0.104

EW 153.6 1.0

Theory total 116 591 810 43
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2 SM prediction for the muon g − 2 Hadronic contributions

Hadronic contributions

• quantum corrections due to the strong nuclear force

• much smaller than QED, but dominate uncertainty

• hadronic vacuum polarization (HVP)

aHVP
µ = 6845(40)× 10−11

• hadronic light-by-light scattering (HLbL)

aHLbL
µ = 92(18)× 10−11
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2 SM prediction for the muon g − 2 Hadronic contributions

Hadronic vacuum polarization (HVP)

• at present evaluated via dispersion relations and
cross-section input from e+e− → hadrons

• intriguing discrepancies between e+e− experiments

• lattice QCD making fast progress

• 2.2σ tension between dispersion relations and latest
lattice results → S. Borsanyi et al., Nature (2021)
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2 SM prediction for the muon g − 2 Hadronic contributions

Hadronic vacuum polarization (HVP)

photon HVP function:

= i(q2gµν − qµqν)Π(q2)

unitarity of the S-matrix implies the optical theorem:

ImΠ(s) =
s

e(s)2
σ(e+e− → hadrons)
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2 SM prediction for the muon g − 2 Hadronic contributions

Dispersion relation

causality implies analyticity:

s0
Γ

γR

γc

R

Re(s)

Im(s)

Cauchy integral formula:

Π(s) =
1

2πi

∮

γ

Π(s′)

s′ − sds
′

deform integration path:

Π(s)− Π(0) =
s

π

∫ ∞

4M2
π

ImΠ(s′)

(s′ − s− iε)s′ds
′
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2 SM prediction for the muon g − 2 Hadronic contributions

HVP contribution to (g − 2)µ

aHVP
µ =

m2
µ

12π3

∫ ∞

sthr

ds
K̂(s)

s
σ(e+e− → hadrons)

• basic principles: unitarity and analyticity

• direct relation to data: total hadronic cross section
σ(e+e− → hadrons)

• dedicated e+e− program (BaBar, Belle, BESIII,
CMD3, KLOE, SND)
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2 SM prediction for the muon g − 2 Hadronic contributions

Hadronic light-by-light (HLbL)

• dominating contributions evaluated with dispersion
relations

• hadronic models for subdominant contributions

• matching to asymptotic constraints

• lattice-QCD results compatible, very recent progress
→ T. Blum et al., PRL 124 (2020) 132002, E.-H. Chao et al., 2104.02632 [hep-lat]
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2 SM prediction for the muon g − 2 Hadronic contributions

Theory vs. experiment

1011 · aµ 1011 ·∆aµ
QED total 116 584 718.931 0.104

EW 153.6 1.0

HVP 6 845 40

HLbL 92 18

SM total 116 591 810 43

experiment (E821+E989) 116 592 061 41

difference theory−exp 251 59
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3 Hadronic light-by-light scattering

Hadronic light-by-light scattering

• previously based only on hadronic models

• first lattice-QCD results

aHLbL, lattice
µ = 79(35)× 10−11 → T. Blum et al., PRL 124 (2020) 132002

aHLbL, lattice
µ = 106.8(14.7)× 10−11 → E.-H. Chao et al., 2104.02632 [hep-lat]

• our work: dispersive framework, replacing hadronic
models step by step

• dispersion relations + hadronic models (LO, without
charm)

aHLbL, pheno
µ = 89(19)× 10−11
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3 Hadronic light-by-light scattering

BTT Lorentz decomposition
→ Colangelo, Hoferichter, Procura, Stoffer, JHEP 09 (2015) 074

Lorentz decomposition of the HLbL tensor:
→ Bardeen, Tung (1968) and Tarrach (1975)

Πµνλσ(q1, q2, q3) =
∑

i

T µνλσi Πi(s, t, u; q2
j )

• Lorentz structures manifestly gauge invariant

• scalar functions Πi free of kinematic singularities
⇒ dispersion relation in the Mandelstam variables
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3 Hadronic light-by-light scattering

Dispersive representation

• write down a double-spectral (Mandelstam)
representation for the HLbL tensor

• split the HLbL tensor according to the sum over
intermediate (on-shell) states in unitarity relations

Πµνλσ = Ππ0-pole
µνλσ + Πbox

µνλσ + Πππ
µνλσ + . . .

21



3 Hadronic light-by-light scattering

Dispersive representation

• write down a double-spectral (Mandelstam)
representation for the HLbL tensor

• split the HLbL tensor according to the sum over
intermediate (on-shell) states in unitarity relations

Πµνλσ = Ππ0-pole
µνλσ

one-pion intermediate state

+ Πbox
µνλσ + Πππ

µνλσ + . . .

21



3 Hadronic light-by-light scattering

Dispersive representation

• write down a double-spectral (Mandelstam)
representation for the HLbL tensor

• split the HLbL tensor according to the sum over
intermediate (on-shell) states in unitarity relations

Πµνλσ = Ππ0-pole
µνλσ + Πbox

µνλσ

two-pion intermediate state in both channels

+ Πππ
µνλσ + . . .

21



3 Hadronic light-by-light scattering

Dispersive representation

• write down a double-spectral (Mandelstam)
representation for the HLbL tensor

• split the HLbL tensor according to the sum over
intermediate (on-shell) states in unitarity relations

Πµνλσ = Ππ0-pole
µνλσ + Πbox

µνλσ + Πππ
µνλσ

two-pion intermediate state in first channel

+ . . .

21



3 Hadronic light-by-light scattering

Dispersive representation

• write down a double-spectral (Mandelstam)
representation for the HLbL tensor

• split the HLbL tensor according to the sum over
intermediate (on-shell) states in unitarity relations

Πµνλσ = Ππ0-pole
µνλσ + Πbox

µνλσ + Πππ
µνλσ + . . .

higher intermediate states
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3 Hadronic light-by-light scattering

Pion pole

Π̄π0-pole
1 =

Fπ0γ∗γ∗(q
2
1, q

2
2)Fπ0γ∗γ(q

2
3, 0)

q2
3 −M2

π

Π̄π0-pole
2 via crossing symmetry

• input: doubly-virtual and singly-virtual pion transition
form factors Fγ∗γ∗π0 and Fγ∗γπ0

• dispersive analysis of transition form factor:
aπ

0-pole
µ = 62.6+3.0

−2.5 × 10−11

→ Hoferichter et al., PRL 121 (2018) 112002, JHEP 10 (2018) 141
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3 Hadronic light-by-light scattering

Pion-box contribution
→ Colangelo, Hoferichter, Procura, Stoffer, JHEP 04 (2017) 161

• simultaneous two-pion cuts in
two channels

• Mandelstam representation
explicitly constructed

• q2-dependence: pion VFF
F V
π (q2

i ) for each off-shell
photon factor out

• Wick rotation: integrate over space-like momenta

• dominated by low energies ≤ 1 GeV

• result: aπ-box
µ = −15.9(2)× 10−11
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3 Hadronic light-by-light scattering

Rescattering contribution

• expansion into partial waves

• unitarity gives imaginary parts in terms of helicity
amplitudes for γ∗γ(∗) → ππ:

Imππh
J
λ1λ2,λ3λ4

(s) ∝ σπ(s)hJ,λ1λ2(s)h∗J,λ3λ4
(s)

• resummation of PW expansion reproduces full result:
checked for pion box

24



3 Hadronic light-by-light scattering

Topologies in the rescattering contribution

our S-wave solution for γ∗γ∗ → ππ:

= + =: +

︸︷︷︸ ︸︷︷︸
recursive PWE, no LHC

two-pion contributions to HLbL:

= + + +

︸ ︷︷ ︸ ︸ ︷︷ ︸
pion box rescattering contribution
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3 Hadronic light-by-light scattering

S-wave rescattering contribution
→ Colangelo, Hoferichter, Procura, Stoffer, JHEP 04 (2017) 161

• pion-pole approximation to left-hand cut
⇒ q2-dependence given by F V

π

• phase shifts based on modified inverse-amplitude
method (f0(500) parameters accurately reproduced)

• result for S-waves:

aππ,π-pole LHC
µ,J=0 = −8(1)× 10−11

• extension to f0(980) in progress → Danilkin, Hoferichter, Stoffer
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3 Hadronic light-by-light scattering

Extension to D-waves
→ Hoferichter, Stoffer, JHEP 07 (2019) 073

• inclusion of resonance LHC

• unitarization with Omnès methods
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Figure 3: Cross section for �� ! ⇡+⇡� (left) and �� ! ⇡0⇡0 (right), in comparison to the data from
Belle [5, 7], Mark II [3], CELLO [4], and Crystal Ball [2]. The lines indicate the pion Born terms (blue dashed,
all partial waves), including the I = 0 unitarization of S- and D-waves (red dot-dashed), and the full solution
(black solid).

4.1 On-shell case

In the on-shell case only the helicity amplitudes H++ and H+� contribute. Adjusting the flux factor
to an actual �� initial state, one has

d�

d⌦

�
�� ! ⇡+⇡�� =

�⇡(s)↵2

8s

⇣��H̄c
++

��2 +
��H̄c

+�
��2
⌘
,

d�

d⌦

�
�� ! ⇡0⇡0

�
=

�⇡(s)↵2

16s

⇣��H̄n
++

��2 +
��H̄n

+�
��2
⌘
, (4.1)

where the particle-basis amplitudes are related to the isospin ones by the rotation given in (A.2).
To illustrate the behavior of the f2(1270), an isospin-0 D-wave resonance, we neglect unitarity

corrections in the isospin-2 partial waves and combine our results for the D-waves with the S-waves
from [42, 43] (as well as the higher partial waves for the pion pole without rescattering). The only free
parameters are then the photon couplings of the vector resonances CV , which in a narrow-width picture
are related to the partial widths by means of (A.7). We find that the physical couplings do not exactly
reproduce the cross section. This observation corresponds to the fact that the sum rules for the sub-
traction constants introduced in [35] are not fulfilled exactly, pointing to a small correction from higher
intermediate states not explicitly included in the calculation.4 To ensure agreement with the measured
cross section, we therefore allow the couplings to vary, as a means to include phenomenologically the
effect of higher intermediate states.

Note that the experimental cross sections are not integrated over the full angular range, with
| cos ✓|  0.6 and | cos ✓|  0.8 for the charged and neutral channels, respectively. The results in Fig. 3
follow this convention. The relevant helicity amplitudes in the on-shell case are

h0,++(s) =
1

2
ȟ+

15(s), h2,++(s) =
s(s � 4M2

⇡)

2
ȟ+

23(s), h2,+�(s) =
s � 4M2

⇡

2
ȟ+

45(s). (4.2)

In the figure, the blue dashed lines indicate the pion Born terms and the red dot-dashed ones their
unitarization. The S-waves are treated as in [42, 43], with a phase shift from the inverse-amplitude

4A similar observation was made in [40], where the authors argued that the difference between the fit values for the
photon couplings and the ones extracted from the radiative widths reflected SU(3) uncertainties. We disagree with that
statement: if the deficit were due to SU(3) uncertainties, it should disappear once the known couplings for the individual
states, !, ⇢±, ⇢0, are used instead of a common SU(3) coupling, but this is not the case.

22

27



3 Hadronic light-by-light scattering

HLbL overview → T. Aoyama et al., arXiv:2006.04822 [hep-ph]

1011 · aµ 1011 ·∆aµ
π0, η, η′-poles 93.8 4.0

pion/kaon box −16.4 0.2

S-wave ππ rescattering −8 1

scalars, tensors −1 3

axials 6 6

light quarks, short distance 15 10

c-loop 3 1

HLbL total (LO) 92 19

28
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4 Hadronic vacuum polarization

Hadronic vacuum polarization

• final white paper number: data-driven evaluation

aLO HVP, pheno
µ = 6 931(40)× 10−11

• previous average of published lattice-QCD results

aLO HVP, lattice average
µ = 7 116(184)× 10−11

• newest lattice-QCD result
→ S. Borsanyi et al., Nature (2021)

aLO HVP, lattice
µ = 7 075(55)× 10−11
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4 Hadronic vacuum polarization

Two-pion contribution to HVP

• ππ contribution amounts to more than 70% of HVP
contribution

• responsible for a similar fraction of HVP uncertainty
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4 Hadronic vacuum polarization

Unitarity and analyticity

implications of unitarity (two-pion intermediate states):

1 ππ contribution to HVP—pion vector form factor (VFF)

2 pion VFF—ππ scattering

3 ππ scattering—ππ scattering

: σ(e+e− → π+π−) ∝ |F V
π (s)|2

analyticity⇒ dispersion relation for HVP contribution
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implications of unitarity (two-pion intermediate states):

1 ππ contribution to HVP—pion vector form factor (VFF)

2 pion VFF—ππ scattering

3 ππ scattering—ππ scattering
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4 Hadronic vacuum polarization

Unitarity and analyticity

implications of unitarity (two-pion intermediate states):

1 ππ contribution to HVP—pion vector form factor (VFF)

2 pion VFF—ππ scattering

3 ππ scattering—ππ scattering

= + . . .

analyticity, crossing, PW expansion⇒ Roy equations
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4 Hadronic vacuum polarization

Dispersive representation of pion VFF
→ Colangelo, Hoferichter, Stoffer, JHEP 02 (2019) 006

= + + . . .

F V
π (s) = Ω1

1(s)×Gω(s)×GN
in(s)

• Omnès function with elastic ππ-scattering P -wave
phase shift δ1

1(s) as input:

Ω1
1(s) = exp

{
s

π

∫ ∞

4M2
π

ds′
δ1

1(s′)

s′(s′ − s)

}
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4 Hadronic vacuum polarization

Dispersive representation of pion VFF
→ Colangelo, Hoferichter, Stoffer, JHEP 02 (2019) 006

= + + . . .

F V
π (s) = Ω1

1(s)×Gω(s)×GN
in(s)

• isospin-breaking 3π intermediate state: negligible
apart from ω resonance (ρ–ω interference effect)

Gω(s) = 1 +
s

π

∫ ∞

9M2
π

ds′
Imgω(s′)

s′(s′ − s)

(
1− 9M2

π

s′

1− 9M2
π

M2
ω

)4

,

gω(s) = 1 + εω
s

(Mω − i
2
Γω)2 − s
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4 Hadronic vacuum polarization

Dispersive representation of pion VFF
→ Colangelo, Hoferichter, Stoffer, JHEP 02 (2019) 006

= + + . . .

F V
π (s) = Ω1

1(s)×Gω(s)×GN
in(s)

• heavier intermediate states: 4π (mainly π0ω), K̄K, . . .

• described in terms of a conformal polynomial with cut
starting at π0ω threshold

GN
in(s) = 1 +

N∑

k=1

ck(z
k(s)− zk(0))

• correct P -wave threshold behavior imposed
33



4 Hadronic vacuum polarization
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4 Hadronic vacuum polarization
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4 Hadronic vacuum polarization
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4 Hadronic vacuum polarization

Result for aHVP,ππ
µ below 1 GeV
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1010 × aππµ |≤1 GeV
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4 Hadronic vacuum polarization

Contribution to (g − 2)µ
→ Colangelo, Hoferichter, Stoffer, JHEP 02 (2019) 006

• low-energy ππ contribution:

aHVP,ππ
µ |≤0.63 GeV = 132.8(0.4)(1.0)× 10−10

• ππ contribution up to 1 GeV:

aHVP,ππ
µ |≤1 GeV = 495.0(1.5)(2.1)× 10−10

• enters the white-paper value in a conservative
merging with direct cross-section integration
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4 Hadronic vacuum polarization

Tension with lattice QCD
→ Colangelo, Hoferichter, Stoffer, PLB 814 (2021) 136073

• implications of changing HVP?

• modifications at high energies affect hadronic
running of αeff

QED ⇒ clash with global EW fits
→ Passera, Marciano, Sirlin (2008), Crivellin, Hoferichter, Manzari, Montull (2020),

Keshavarzi, Marciano, Passera, Sirlin (2020), Malaescu, Schott (2020)

• lattice studies point at region < 2 GeV

• ππ channel dominates

• relative changes in other channels would be
prohibitively large
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4 Hadronic vacuum polarization

Tension with lattice QCD
→ Colangelo, Hoferichter, Stoffer, PLB 814 (2021) 136073

• force a different HVP contribution in VFF fits by
including “lattice” datum with tiny uncertainty

• three different scenarios:
• “low-energy” physics: ππ phase shifts
• “high-energy” physics: inelastic effects, ck
• all parameters free

• study effects on pion charge radius, hadronic running
of αeff

QED, phase shifts, cross sections
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4 Hadronic vacuum polarization

Modifying aππµ |≤1 GeV

→ Colangelo, Hoferichter, Stoffer, PLB 814 (2021) 136073

• “low-energy” scenario requires large local changes in
the cross section in the ρ region

• “high-energy” scenario has an impact on pion
charge radius and the space-like VFF⇒ chance for
independent lattice-QCD checks

41



4 Hadronic vacuum polarization

Modifying aππµ |≤1 GeV
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4 Hadronic vacuum polarization

Modifying aππµ |≤1 GeV
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4 Hadronic vacuum polarization

Modifying aππµ |≤1 GeV
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4 Hadronic vacuum polarization

Modifying aππµ |≤1 GeV
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5 Summary and outlook

Summary

• both lattice-QCD and dispersive methods making
progress on hadronic contributions to (g − 2)µ

⇒ white paper

• achieved precision matches the experimental one

• new FNAL result increases tension with SM to 4.2σ

• final FNAL precision goal calls for further
improvement in HLbL and HVP
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5 Summary and outlook

Summary: HLbL

• precise dispersive evaluations of dominant
contributions

• models reduced to sub-dominant contributions, but
dominate uncertainty
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5 Summary and outlook

Summary: HVP

• long-standing discrepancy between BaBar/KLOE⇒
wait for new e+e− data

• intriguing tension with lattice-QCD
⇒ unitarity/analyticity enable independent checks
via pion VFF and 〈r2

π〉, in addition to further direct
lattice results on HVP
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