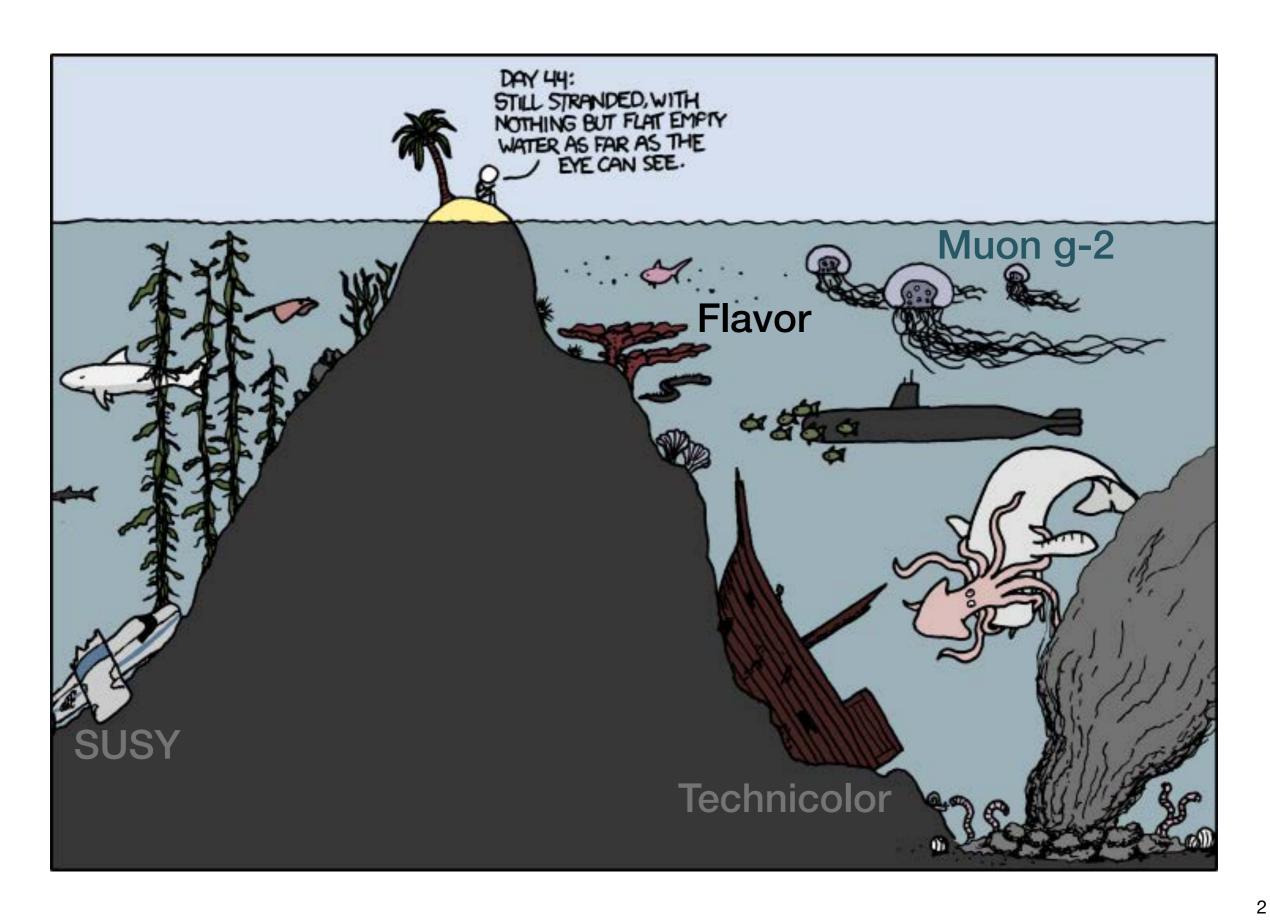


Two paths toward precision at a High Energy Lepton Collider

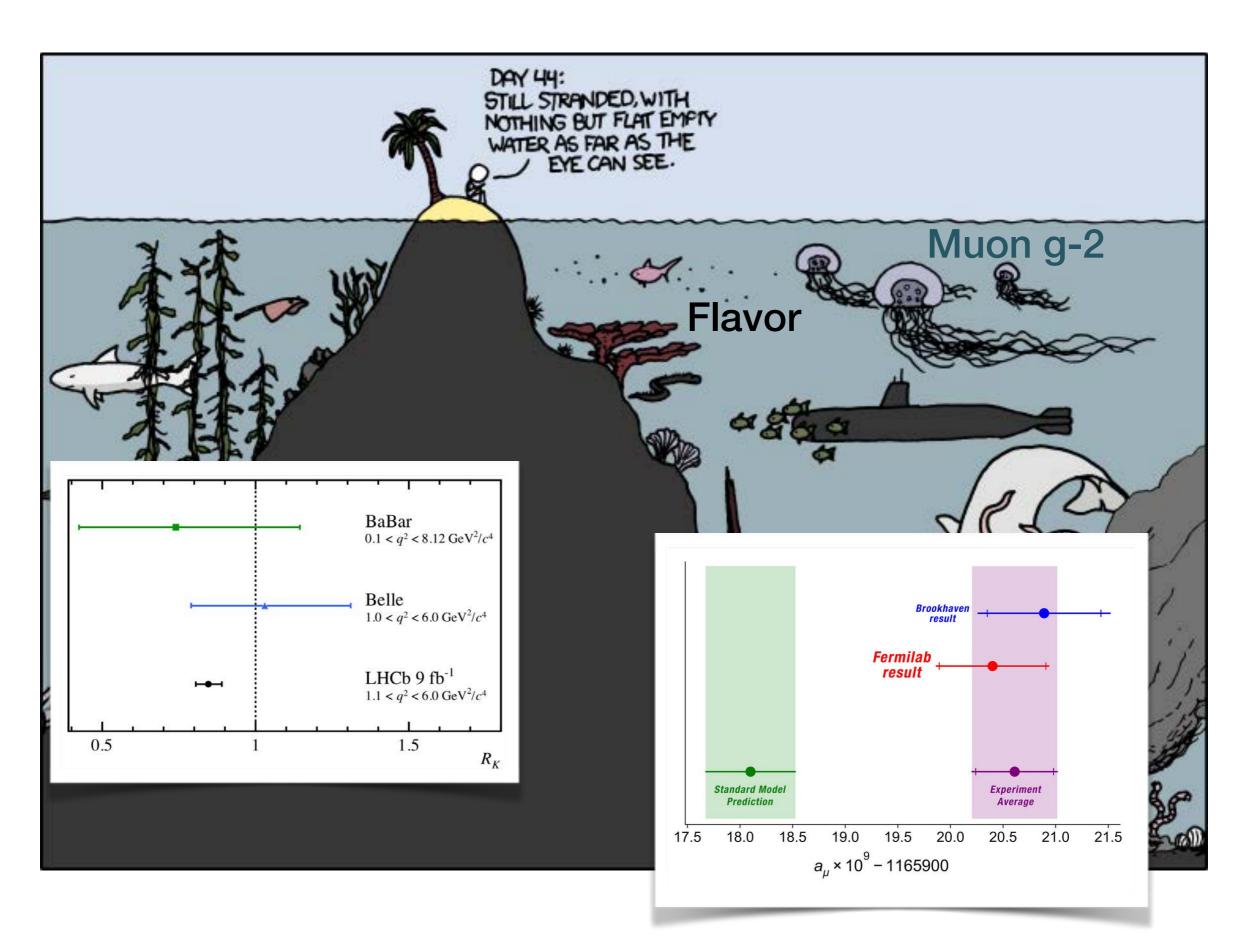
a.k.a. "Good reasons to build a Muon Collider"

Dario Buttazzo

Collider physics in 2021: a theorist's view



Collider physics in 2021: a theorist's view



Collider physics after 2021

Independently of LHC results, a future collider will be necessary to make advancements in fundamental high-energy physics.

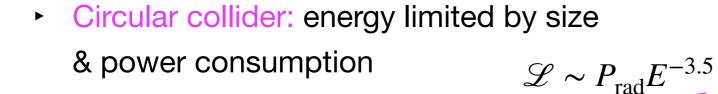
- No guaranteed discoveries: exploration of new domains
- No single experiment can explore all possible directions
- High-energy collider has guaranteed science output: possibility to perform physics measurements in unknown energy domain.
 Either validation of SM, or groundbreaking discovery.
- + Expensive ⇒ need a big improvement in as many as possible different directions (bonus: could be built with new technology)

Muon collider is an interesting possibility!

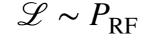
Why muons?

 Hadron colliders: only small fraction of total energy available for hard scattering (hadrons are composite)

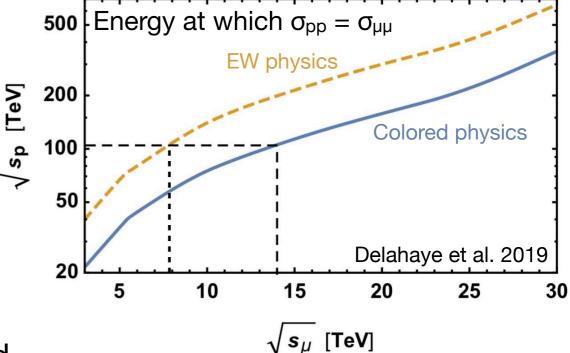
- Lepton colliders:
 - no energy lost in PDFs: ideal probes of short-distance physics
 - clean environment (no strong interactions)
- Electrons radiate too much when accelerated

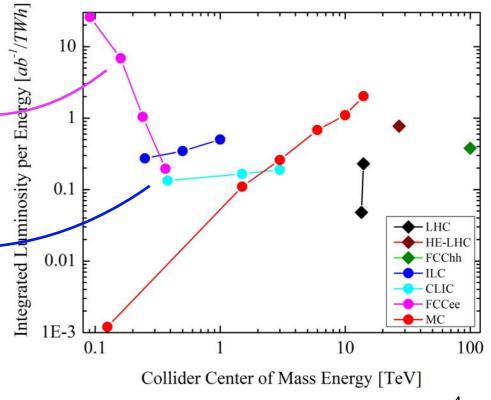


- Linear collider: beam not recycled
 - ⇒ low luminosity, high power consumption



* Muons: elementary and heavy, perfect candidate! But they decay... $\mathscr{Z}/P \sim \gamma \sim E$





Why now?

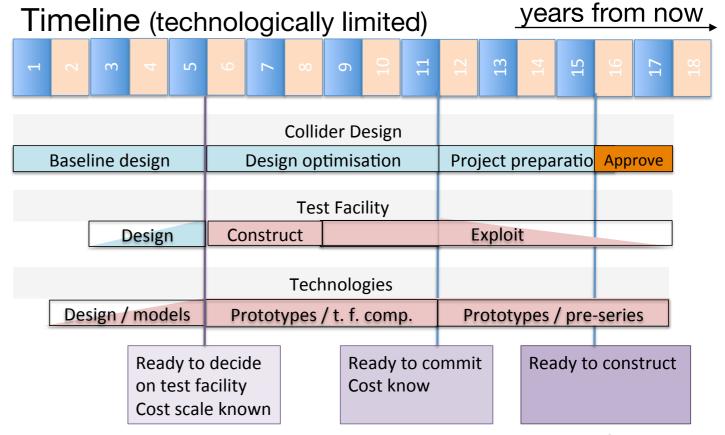
- Recent progress on muon acceleration & cooling:
 - MAP: muon collider feasibility design study

RAST 10, No.01 (2019) 189

MICE: first demonstration of ionization muon cooling

Nature **578** (2020) 53

- ► LEMMA: low-emittance beams from $e^+e^- \rightarrow \mu^+\mu^-$ (too low luminosity) 1905.05747
- Muon Collider Collaboration @ CERN: assess whether the investment into full CDR and demonstrator is scientifically justified, in time for next ES update.
 Focus on 3 & 10+ TeV energies (14? 30? 100??)



Why now?

- Recent progress on muon acceleration & cooling:
 - MAP: muon collider feasibility design study

RAST 10, No.01 (2019) 189

MICE: first demonstration of ionization muon cooling

Nature **578** (2020) 53

- ► LEMMA: low-emittance beams from $e^+e^- \rightarrow \mu^+\mu^-$ (too low luminosity) 1905.05747
- Muon Collider Collaboration @ CERN: assess whether the investment into full CDR and demonstrator is scientifically justified, in time for next ES update.
 Focus on 3 & 10+ TeV energies (14? 30? 100??)

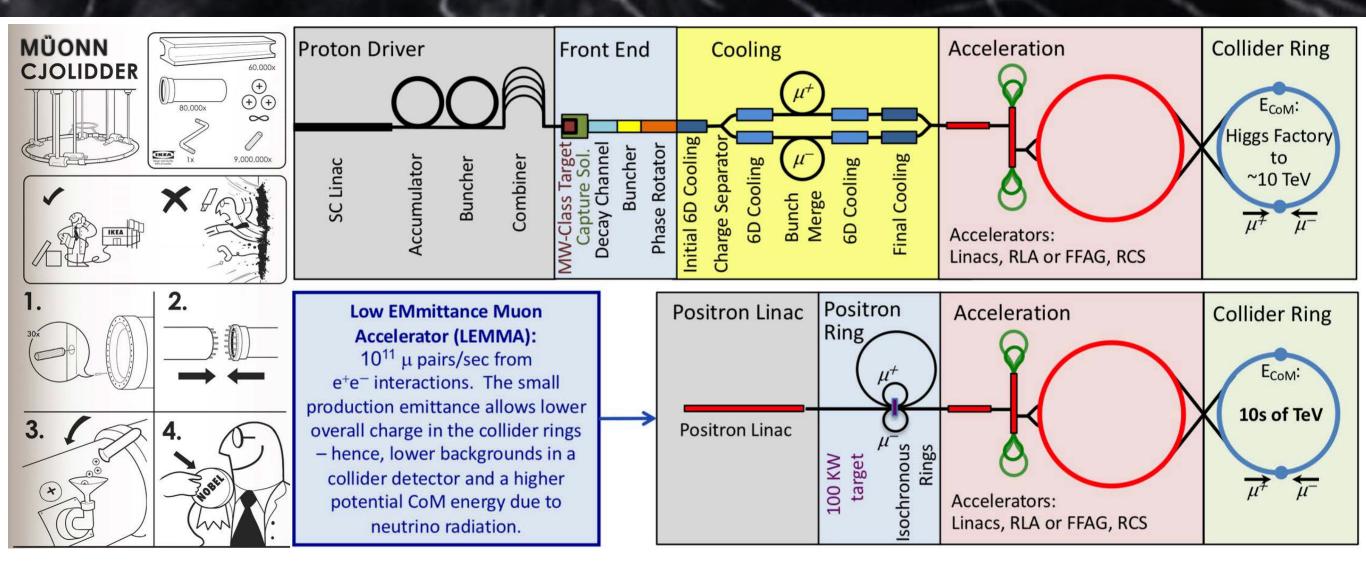
It's clearly the right time to start planning the next large collider!

- European Strategy for Particle Physics
- Snowmass in the USA
- On the theory side: need for physics potential evaluation (to define energy,
 luminosity and detector performance goals).

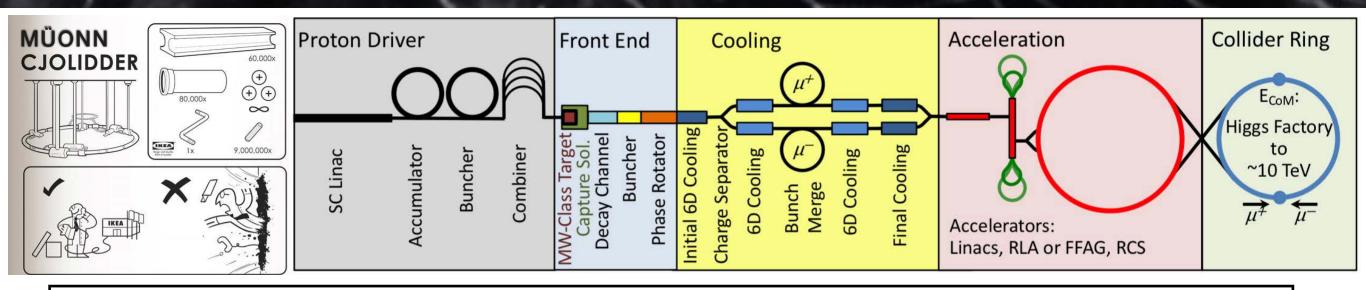
Strong interest in the theory community:

1807.04743 2005.10289 2009.11287 2101.10334 1901.06150 2006.16277 2012.02769 2102.08386 2003.13628 2007.14300 2012.11555 2103.14043

The muon collider in a nutshell



The muon collider in a nutshell

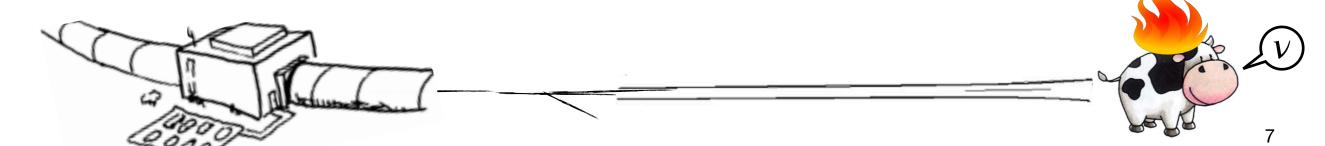


+ Luminosity goal: $L \gtrsim \frac{5 \text{ years}}{\text{time}} \left(\frac{\sqrt{s}}{10 \text{ TeV}}\right)^2 2 \cdot 10^{35} \text{ cm}^{-2} \text{ s}^{-1}$

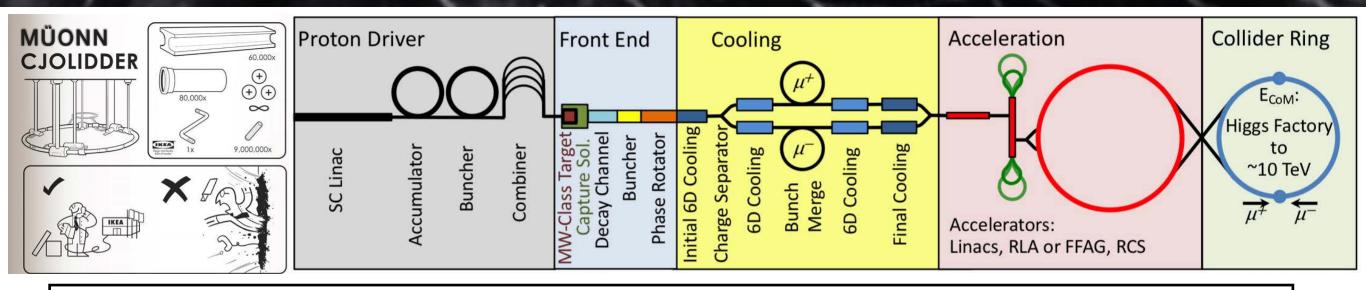
necessary to perform SM measurements with ~ % precision (10k events)

Delahaye et al. 2019

- Technological challenges: muon cooling, acceleration
- Detectors: large beam-induced bkg from decaying muons
- Neutrino radiation: v flux from decaying muons so intense that can pose radiation hazard at large distances! (v-matter xsec grows with energy)



The muon collider in a nutshell



+ Luminosity goal:
$$L \gtrsim \frac{5 \text{ years}}{\text{time}} \left(\frac{\sqrt{s}}{10 \text{ TeV}}\right)^2 2 \cdot 10^{35} \text{ cm}^{-2} \text{ s}^{-1}$$

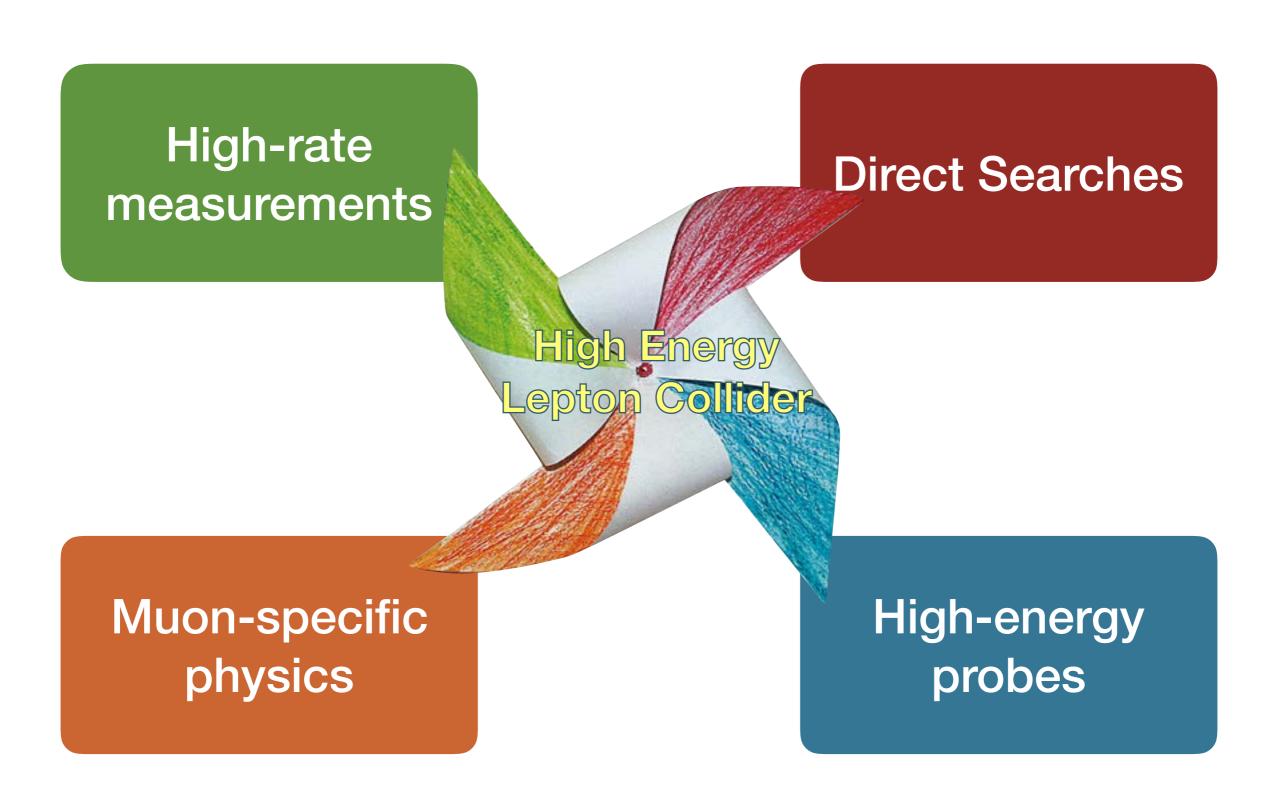
necessary to perform SM measurements with ~ % precision (10k events)

Delahaye et al. 2019

Energy [TeV]	Luminosity [ab-1]
3	1 (but 5 for CLIC)
10	10
14	20
30	90

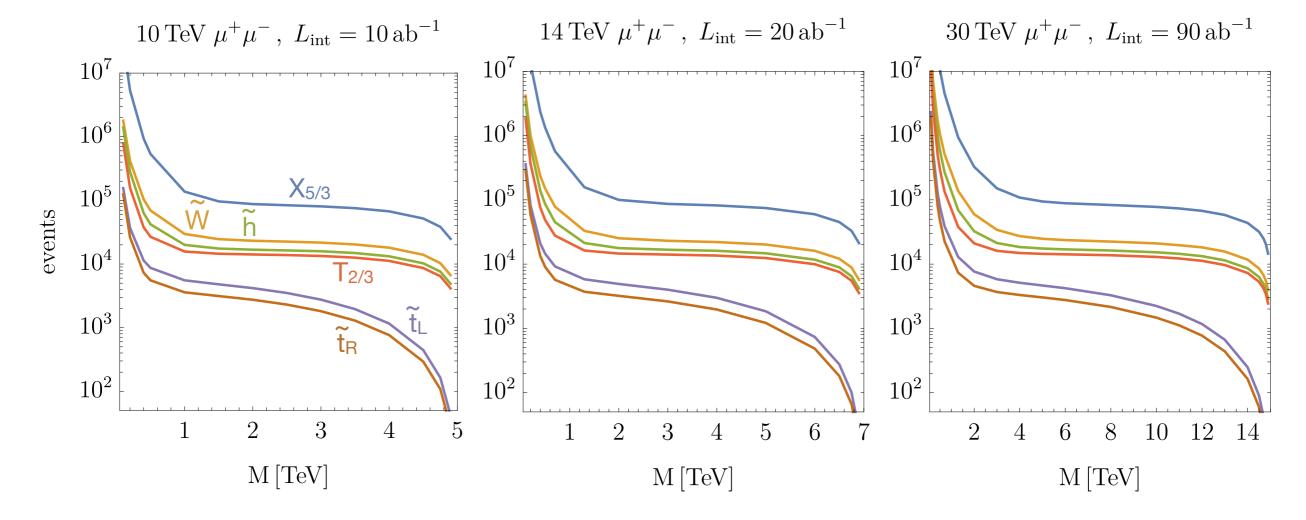
Physics cases for a High Energy Lepton Collider

From a theorist's point of view: Energy AND Precision!



The most obvious physics case: direct searches

- The most striking advantage of a muon collider is the ability to collide particles at very high center-of-mass energies
 ⇒ directly explore physics at the shortest distances
- EW pair-produced particles up to kinematical threshold:



Colored particles: 14 TeV µµ ~ 100 TeV pp EW particles: 14 TeV μμ >>> 100 TeV pp

WIMP Dark Matter

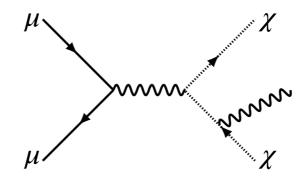
 Weakly Interacting Massive Particle in the purest sense: most general EW multiplet with DM candidate that is Minimal DM: Cirelli, Fornengo, Strumia hep-ph/0512090

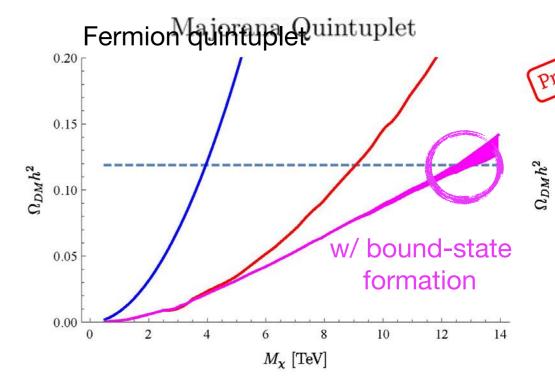
- (a) stable,
- (b) without coupling to Z & γ ,
- (c) calculable (perturbative).
- Mass can be large: Muon-collider-energies crucial to probe some candidates!
- * Collider searches: mono- γ /W/Z signals double emission ($\gamma\gamma$, WW) also important

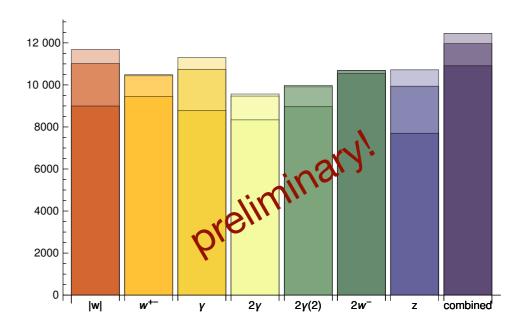
work in progress with S. Bottaro, M. Costa, L. Vittorio Franceschini, Panci, Redigolo

see also

Cirelli, Sala, Taoso 1407.7058 Han et al. 2009.11287

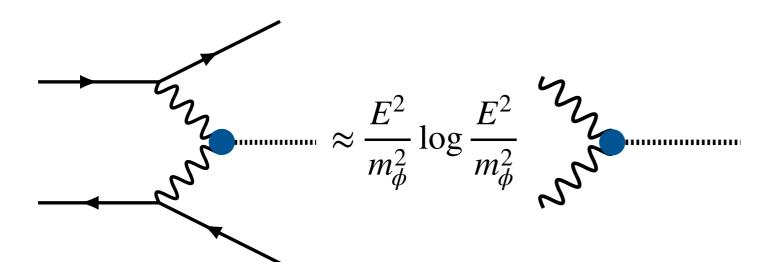






Resonances in VBF

The µ-collider is a "vector boson collider"



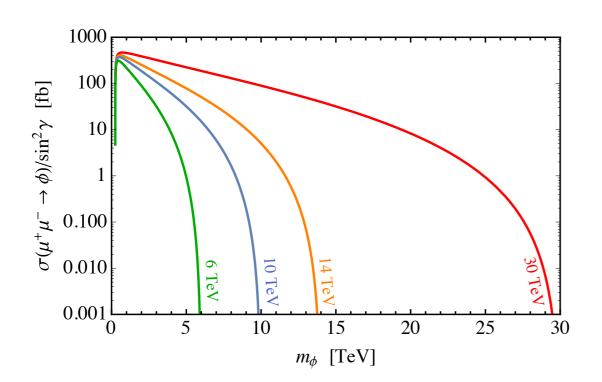
enhanced if the resonance is "light" $m_{\phi} \ll E$

Dawson 1985

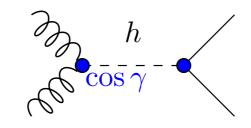
B, Redigolo, Sala, Tesi 1807.04743 Costantini et al. 2005.10289

see also the "Muon Smasher's guide" Arkani-Hamed, Craig et al. 2103.14043

• Example: singlet scalar production $\mu^+\mu^- \to \phi\nu\nu$, $\phi \to hh, W^+W^-, ZZ$ It's like a heavy Higgs with narrow width + hh decay



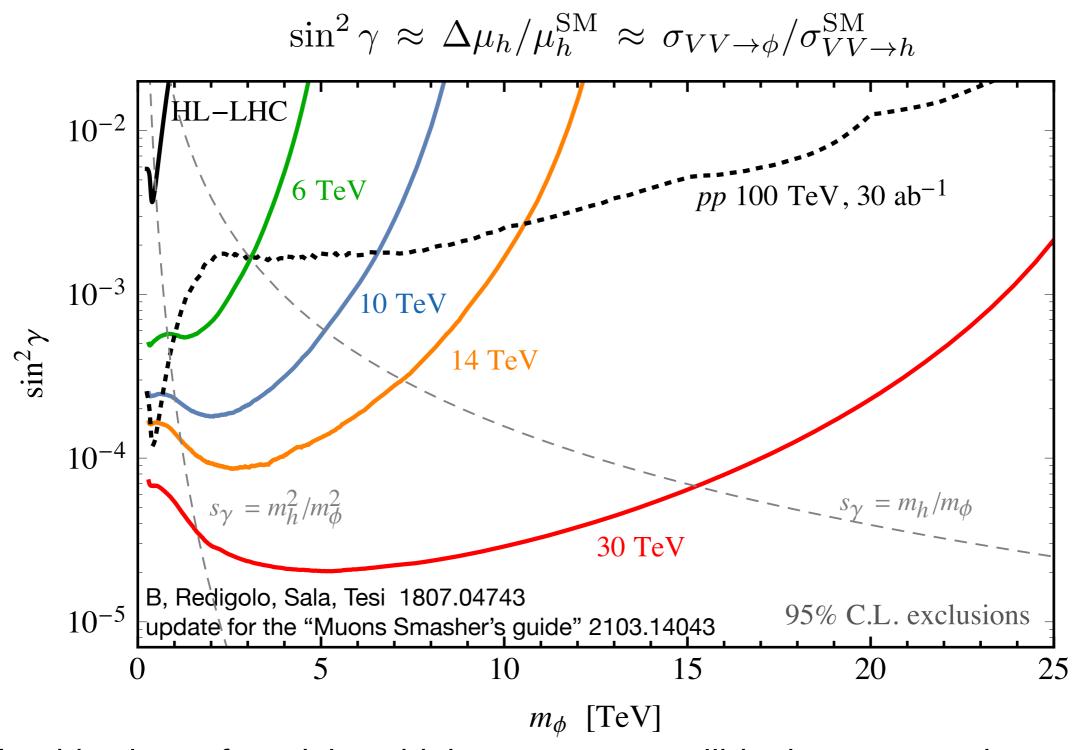
cross-section grows at high energy due to longitudinal W-fusion



one parameter controls resonance production & Higgs couplings

Example: scalar singlet

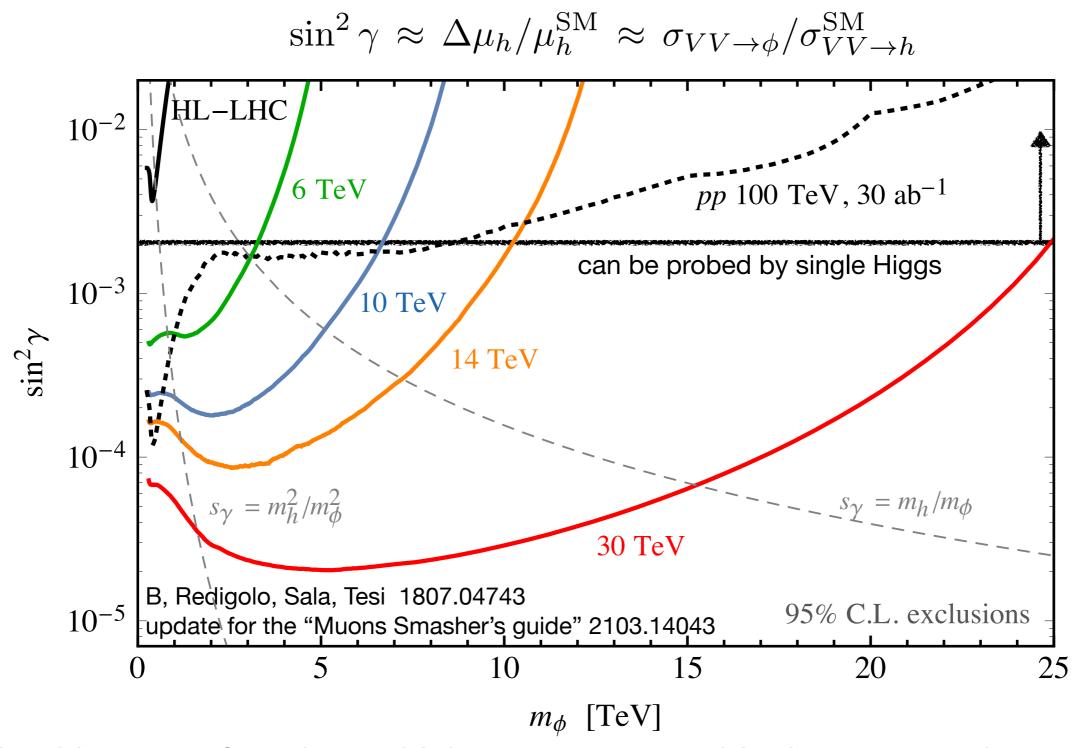
Compare direct and indirect reach of different colliders



For this class of models, a high-energy $\mu^+\mu^-$ collider has an amazing reach if compared to single Higgs meas. or direct searches at a 100 TeV pp collider

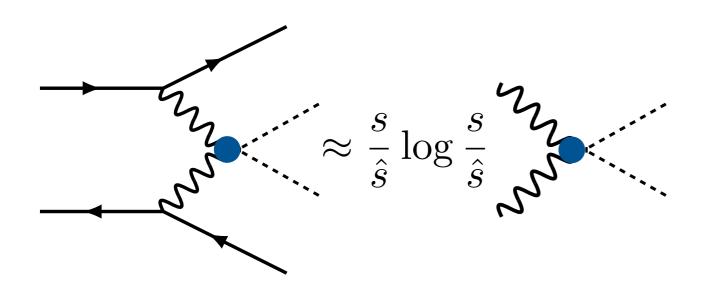
Example: scalar singlet

Compare direct and indirect reach of different colliders



For this class of models, a high-energy $\mu^+\mu^-$ collider has an amazing reach if compared to single Higgs meas. or direct searches at a 100 TeV pp collider

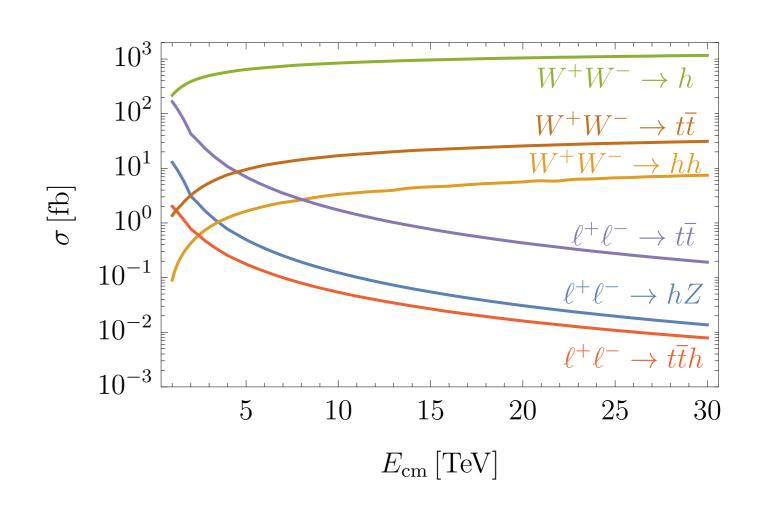
High rate probes: Higgs physics



- ◆ Very large single Higgs VBF rate (10⁷–10⁸ Higgs bosons)
 - Precision on Higgs couplings driven by systematics:
 - ~ Higgs factory, maybe 1‰
 - Rare/Exotic Higgs decays!
- Large double Higgs VBF rate
 - Higgs 3-linear coupling

A High Energy Lepton Collider is a "vector boson collider"

For "soft" final state $\hat{s} \sim m_{\rm EW}^2$ cross-section is enhanced



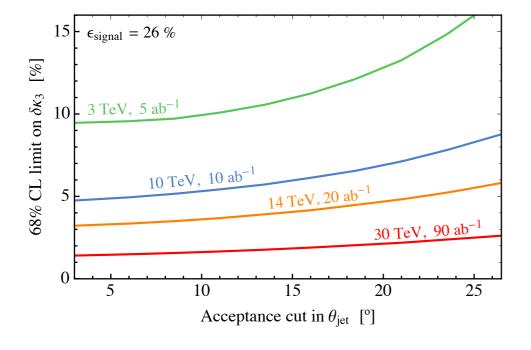
Double Higgs production

Reach on Higgs trilinear coupling:

B, Franceschini, V	Wulzer 2012.11	1555
--------------------	----------------	------

see also 2005.12204 2008.10289

E [TeV]	\mathscr{L} [ab-1]	N_{rec}	$\delta \sigma \sim N_{\rm rec}^{-1/2}$	$\delta \kappa_3$
3	5	170	~ 7.5%	~ 10%
10	10	620	~ 4%	~ 5%
14	20	1340	~ 2.7%	~ 3.5%
30	90	6'300	~ 1.2%	~ 1.5%



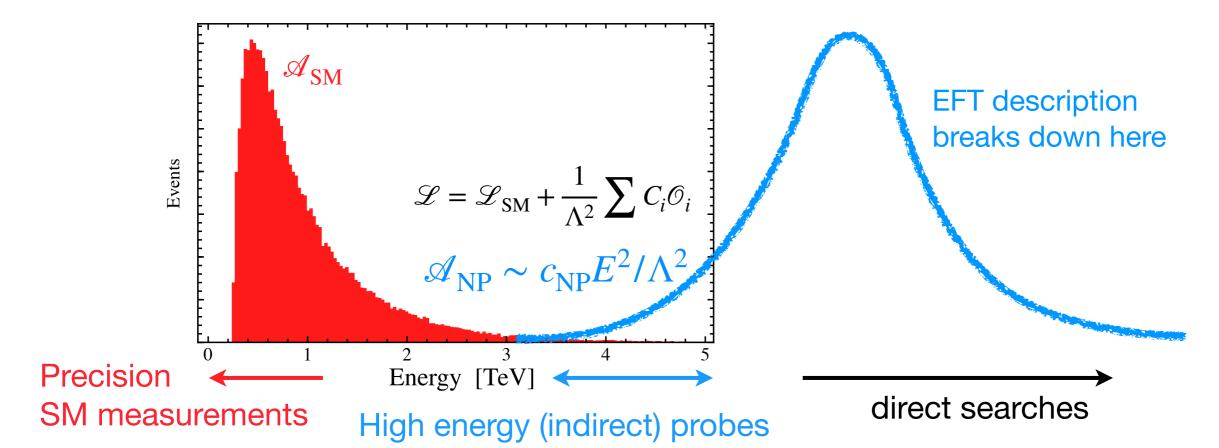
- Weak dependence on angular acceptance (signal is in the central region)
- Some dependence on detector resolution (to remove backgrounds)

see also CLIC study 1901.05897

* For comparison, reach of FCC-hh is $\delta \kappa_3 \sim 3.5\% - 8\%$ depending on systematics assumptions

High-energy probes

NP effects are more important at high energies



+ As simple as this:
$$\frac{\Delta \sigma(E)}{\sigma_{\rm SM}(E)} \propto \frac{E^2}{\Lambda_{\rm BSM}^2} \approx \begin{cases} 10^{-6}, & E \sim 100\,{\rm GeV} \\ 10^{-2}, & E \sim 10\,{\rm TeV} \end{cases}$$

Effective at LHC, FCC-hh, CLIC: "energy helps precision"

1609.08157 1712.01310

... taken to the extreme at a µ-collider with 10's of TeV!

Longitudinal 2 → 2 scattering amplitudes at high energy:

Process	BSM Amplitude
$ \begin{array}{c} (\ell_L^+\ell_L^- \to Z_0 h) \\ \bar{\nu}_L \nu_L \to W_0^+ W_0^- \end{array} $	$s\left(G_{3L}+G_{1L}\right)\sin\theta_{\star}$
$ \begin{array}{c} (\ell_L^+\ell_L^- \to W_0^+W_0^-) \\ \bar{\nu}_L\nu_L \to Z_0h \end{array} $	$s\left(G_{3L} - G_{1L}\right)\sin\theta_{\star}$
$(\ell_R^+\ell_R^- \to W_0^+W_0^-, Z_0h)$	$s G_{lR} \sin \theta_{\star}$
$\overline{(\bar{\nu}_L \ell_L^- \to W_0^- Z_0 / W_0^- h)} \ \nu_L \ell_L^+ \to W_0^+ Z_0 / W_0^+ h)$	$\sqrt{2} s G_{3L} \sin \theta_{\star}$

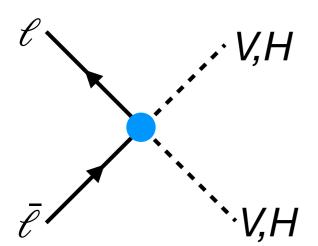
Determined by 3 fermion/scalar current-current interactions (Warsaw):

$$\mathcal{O}_{3L} = \left(\bar{\mathcal{L}}_{L}\gamma^{\mu}\sigma^{a}\mathcal{L}_{L}\right)\left(iH^{\dagger}\sigma^{a}\overset{\leftrightarrow}{D}_{\mu}H\right),$$

$$\mathcal{O}_{1L} = \left(\bar{\mathcal{L}}_{L}\gamma^{\mu}\mathcal{L}_{L}\right)\left(iH^{\dagger}\overset{\leftrightarrow}{D}_{\mu}H\right),$$

$$\mathcal{O}_{lR} = \left(\bar{l}_{R}\gamma^{\mu}l_{R}\right)\left(iH^{\dagger}\overset{\leftrightarrow}{D}_{\mu}H\right).$$

"high-energy primary effects"



Longitudinal 2 → 2 scattering amplitudes at high energy:

Process	BSM Amplitude
$ \begin{array}{c} (\ell_L^+\ell_L^- \to Z_0 h) \\ \bar{\nu}_L \nu_L \to W_0^+ W_0^- \end{array} $	$s\left(G_{3L}+G_{1L}\right)\sin\theta_{\star}$
$ \begin{array}{c} (\ell_L^+\ell_L^- \to W_0^+W_0^-) \\ \bar{\nu}_L\nu_L \to Z_0h \end{array} $	$s\left(G_{3L} - G_{1L}\right)\sin\theta_{\star}$
$(\ell_R^+\ell_R^- \to W_0^+W_0^-, Z_0h)$	$s G_{lR} \sin \theta_{\star}$
$ \overline{\nu_L \ell_L^-} \to W_0^- Z_0 / W_0^- h $ $ \nu_L \ell_L^+ \to W_0^+ Z_0 / W_0^+ h $	$\sqrt{2} s G_{3L} \sin \theta_{\star}$

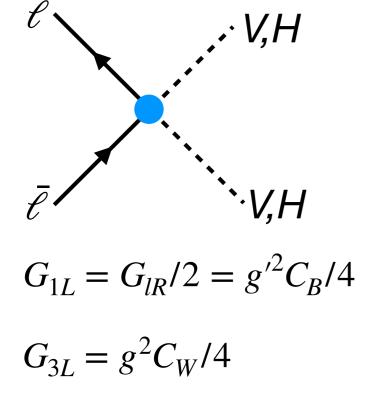
Determined by 3 fermion/scalar current-current interactions (Warsaw):

$$\mathcal{O}_{3L} = \left(\bar{L}_L \gamma^{\mu} \sigma^a L_L\right) \left(i H^{\dagger} \sigma^a \overset{\leftrightarrow}{D}_{\mu} H\right),$$

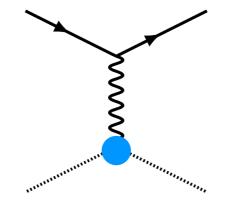
$$\mathcal{O}_{1L} = \left(\bar{L}_L \gamma^{\mu} L_L\right) \left(i H^{\dagger} \overset{\leftrightarrow}{D}_{\mu} H\right),$$

$$\mathcal{O}_{lR} = \left(\bar{l}_R \gamma^{\mu} l_R\right) \left(i H^{\dagger} \overset{\leftrightarrow}{D}_{\mu} H\right).$$

"high-energy primary effects"



 In flavor-universal theories, they are generated by SILH operators (via e.o.m.):



$$\mathcal{O}_{W} = \frac{ig}{2} \left(H^{\dagger} \sigma^{a} \overset{\leftrightarrow}{D}^{\mu} H \right) D^{\nu} W^{a}_{\mu\nu}$$

$$\mathcal{O}_{B} = \frac{ig'}{2} \left(H^{\dagger} \overset{\leftrightarrow}{D}^{\mu} H \right) \partial^{\nu} B_{\mu\nu}$$

→ C_W and C_B determined from high-energy $\mu^+\mu^- \rightarrow ZH$, W^+W^- total cross-sections

$$\sigma_{\mu\mu\to ZH} \approx 122 \text{ ab} \left(\frac{10 \text{ TeV}}{E_{\rm cm}}\right)^2 \left[1 + \# E_{\rm cm}^2 C_W + \# E_{\rm cm}^4 C_W^2\right]$$

Limits on C_{W,B} scale as E²

◆ In universal theories, C_{W,B} related with
 Z-pole and other EW observables

$$\hat{S} = m_W^2 (C_W + C_B)$$

Muon collider:

10 TeV: $C_W \lesssim (40 \text{ TeV})^{-2}$, $\hat{S} \lesssim 10^{-6}$

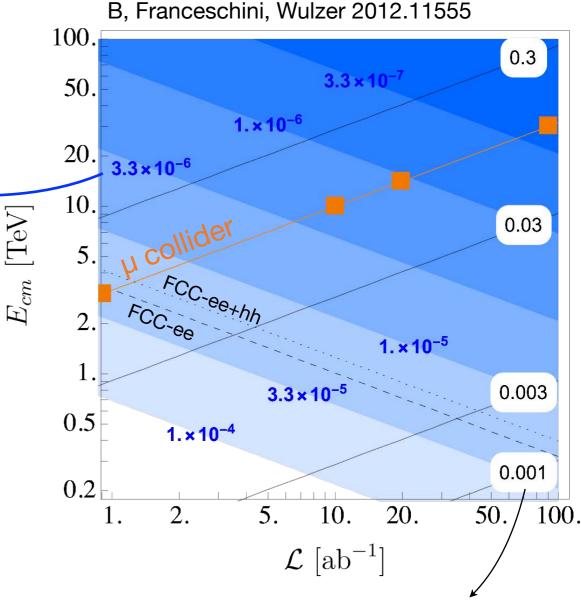
30 TeV: $C_W \lesssim (120 \text{ TeV})^{-2}, \quad \hat{S} \lesssim 10^{-7}$

LEP: $\hat{S} \lesssim 10^{-3}$

FCC: $\hat{S} \lesssim 10^{-5}$

ultimate precision

at Z pole



precision of measurement

♦ C_W and C_B determined from high-energy $\mu^+\mu^- \rightarrow ZH$, W+W- total cross-sections

$$\sigma_{\mu\mu\to ZH} = 122 \text{ ab} \left(\frac{10 \text{ TeV}}{E_{\text{cm}}}\right)^2 \left[1 + \left(\frac{E_{\text{cm}}}{0.78}\right)^2 C_W + \left(\frac{E_{\text{cm}}}{1.64}\right)^2 C_B + \left(\frac{E_{\text{cm}}}{0.96}\right)^4 C_W^2 + \left(\frac{E_{\text{cm}}}{1.17}\right)^4 C_B^2 - \left(\frac{E_{\text{cm}}}{1.09}\right)^4 C_W C_B\right]$$

0.0075 WW 10 TeV 0.0050 0.0025 $\begin{array}{c} & 0.0000 \\ -0.0025 \\ & -0.0050 \end{array}$ -0.0075ZH -0.0100-0.04 | -0.03 | -0.02 | -0.01 | 0.00 | C_B · TeV² -0.01250.005 -0.005-0.0100.000 $C_B \cdot \text{TeV}^2$ $\mathscr{A}_{00}^{(NP)} = -2\mathscr{A}_{00}^{(SM)}$

SM cross-section but large coupling

Limits on C_{W,B} scale as E²

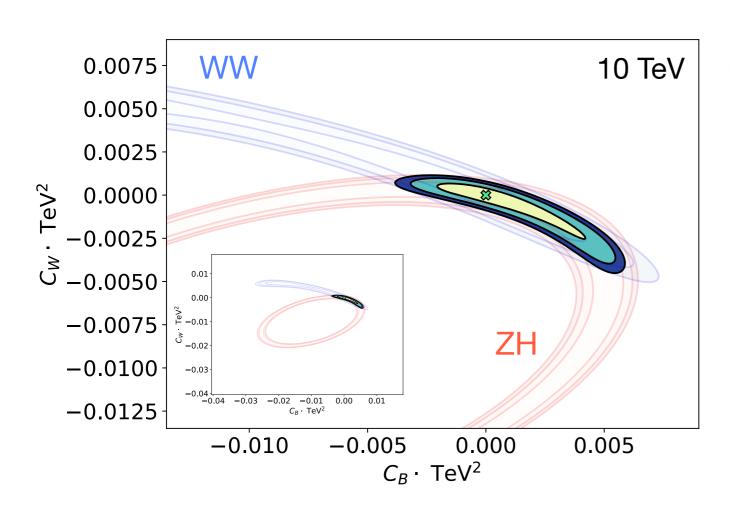
B, Franceschini, Wulzer 2012.11555

♦ C_W and C_B determined from high-energy $μ+μ^- → ZH$, $W+W^-$ total cross-sections

$$\sigma_{\mu\mu\to ZH} = 122 \text{ ab} \left(\frac{10 \text{ TeV}}{E_{\text{cm}}}\right)^2 \left[1 + \left(\frac{E_{\text{cm}}}{0.78}\right)^2 C_W + \left(\frac{E_{\text{cm}}}{1.64}\right)^2 C_B + \left(\frac{E_{\text{cm}}}{0.96}\right)^4 C_W^2 + \left(\frac{E_{\text{cm}}}{1.17}\right)^4 C_B^2 - \left(\frac{E_{\text{cm}}}{1.09}\right)^4 C_W C_B\right]$$

Limits on C_{W,B} scale as E²

B, Franceschini, Wulzer 2012.11555



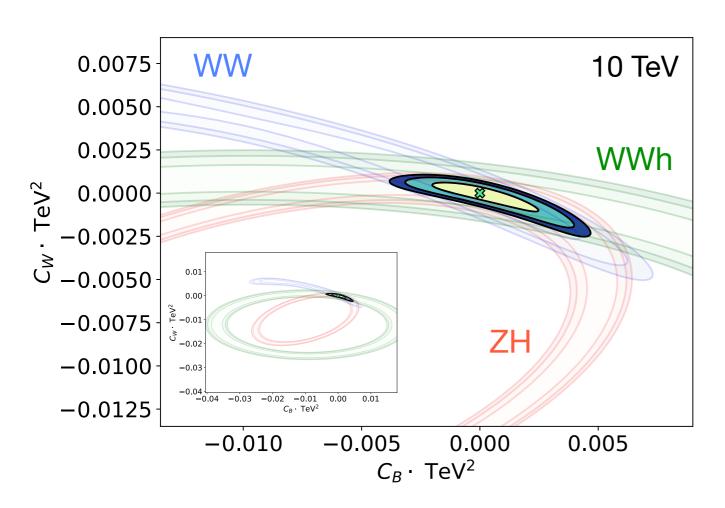
 Fully differential WW cross-section in scattering and decay angles: can exploit the interference with transverse polarization amplitude

→ C_W and C_B determined from high-energy $\mu^+\mu^- \rightarrow ZH$, W^+W^- total cross-sections

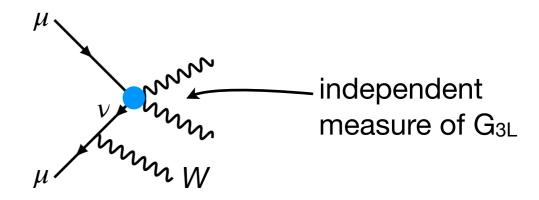
$$\sigma_{\mu\mu\to ZH} = 122 \text{ ab} \left(\frac{10 \text{ TeV}}{E_{\text{cm}}}\right)^2 \left[1 + \left(\frac{E_{\text{cm}}}{0.78}\right)^2 C_W + \left(\frac{E_{\text{cm}}}{1.64}\right)^2 C_B + \left(\frac{E_{\text{cm}}}{0.96}\right)^4 C_W^2 + \left(\frac{E_{\text{cm}}}{1.17}\right)^4 C_B^2 - \left(\frac{E_{\text{cm}}}{1.09}\right)^4 C_W C_B\right]$$

Limits on C_{W,B} scale as E²

B, Franceschini, Wulzer 2012.11555



 Fully differential WW cross-section in scattering and decay angles: can exploit the interference with transverse polarization amplitude



Gauge boson radiation important
 at high energies: allows to access
 the charged processes ℓ[±]ν → W[±]Z, W[±]H

"effective neutrino approximation"

Double Higgs at high mass

 \mathcal{L} [ab⁻¹]

Double Higgs production is affected by two operators in SM EFT:

$$\mathcal{O}_6 = -\lambda |H|^6$$
 $\mathcal{O}_H = \frac{1}{2} \left(\partial_\mu |H|^2 \right)^2$ $\kappa_3 = 1 + v^2 \left(C_6 - \frac{3}{2} C_H \right)$

CH can be constrained from Higgs couplings (but indirect measurement)

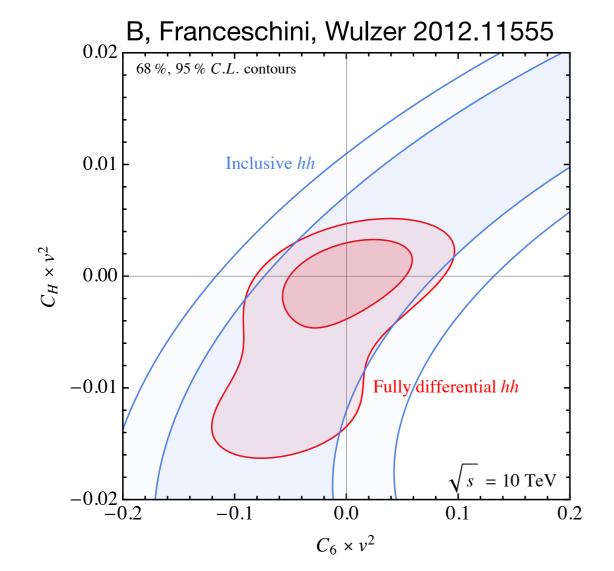
O_H contribution grows as E²: high mass tail gives a *direct* measurement of C_H (WWhh coupling) $\mu^+\mu^- \to hh\nu\bar{\nu}$ $100\,\mathrm{F}$ 3×10^{-4} 50 $\mathcal{A}_{\rm NP} \sim c_H M_{hh}^2$ $\xi \equiv C_H V^2$ 20 $E_{\rm cm}$ [TeV] M_{hh} [TeV] 3×10^{-3} (see also Contino et al. 1309.7038) CLIC 10^{-2} 0.03 low-precision measurement 2 3×10^{-2} 0.01 High-energy WW → *hh* more sensitive than pole physics at energies ≥ 10 TeV 20 10 100 50

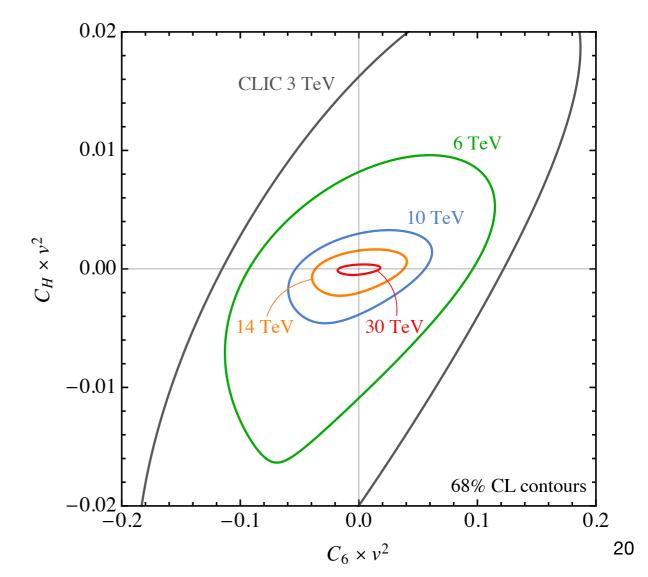
Double Higgs at high mass

Double Higgs production is affected by two operators in SM EFT:

$$\mathcal{O}_6 = -\lambda |H|^6$$
 $\mathcal{O}_H = \frac{1}{2} \left(\partial_\mu |H|^2 \right)^2$ $\kappa_3 = 1 + v^2 \left(C_6 - \frac{3}{2} C_H \right)$

→ Fully differential analysis in p_T and invariant mass to optimize combined sensitivity to C_H and C_6



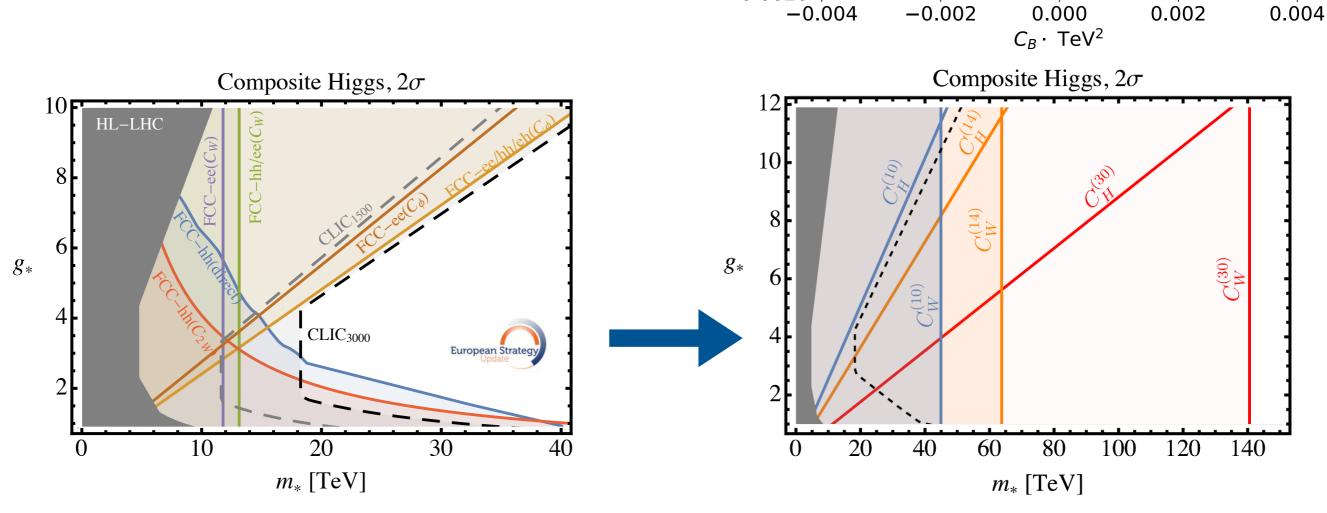


High-energy probes: EW & Higgs physics

 A muon collider is able to probe new physics scales > 100 TeV

$$\qquad \mathcal{\ell}^+ \mathcal{\ell}^- \to VV: \quad \hat{S} \sim m_W^2/m_\star^2 \lesssim 10^{-7}$$

$$VV \to HH: \quad \xi \sim v^2/f^2 \lesssim 10^{-3}$$



0.0010

0.0005

0.0000

-0.0010

-0.0015

-0.0020

²√_{0.0005}

10 TeV

30 TeV

14 Te\

21

Almost order of magnitude improvement w.r.t. FCC / CLIC!

The muon g-2

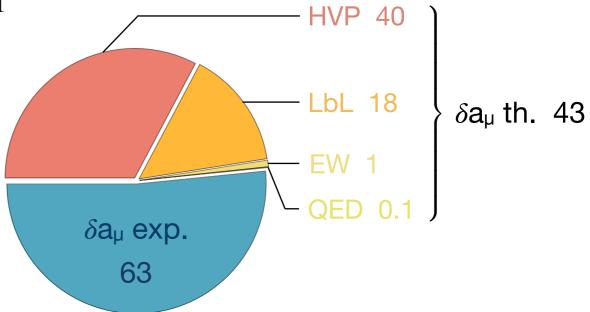
+ Status of the muon $a_{\mu} = (g-2)/2$ until yesterday:

$$a_{\mu}^{(\text{exp})} = 116592089(63) \times 10^{-11}$$
 $a_{\mu}^{(\text{th})} = 116591810(43) \times 10^{-11}$

$$a_{\mu}^{(\text{th})} = 116591810(43) \times 10^{-11}$$

$$\Delta a_{\mu} = a_{\mu}^{(\text{exp})} - a_{\mu}^{(\text{th})} = 279(76) \times 10^{-11}$$

3.7 σ discrepancy



The muon g-2

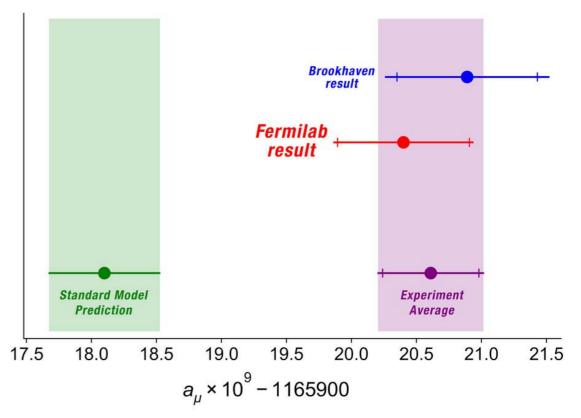
* Status of the muon $a_{\mu} = (g-2)/2$: exp. result confirmed by Fermilab!

$$a_{\mu}^{(\text{exp})} = 116592061(41) \times 10^{-11}$$

$$a_{\mu}^{(\text{th})} = 116591810(43) \times 10^{-11}$$

$$\Delta a_{\mu} = a_{\mu}^{(\text{exp})} - a_{\mu}^{(\text{th})} = 251(59) \times 10^{-11}$$

4.2 σ discrepancy



The muon g-2

Status of the muon $a_{\mu} = (g-2)/2$: exp. result confirmed by Fermilab!

$$a_{\mu}^{(\text{exp})} = 116592061(41) \times 10^{-11}$$
 $a_{\mu}^{(\text{th})} = 116591810(43) \times 10^{-11}$

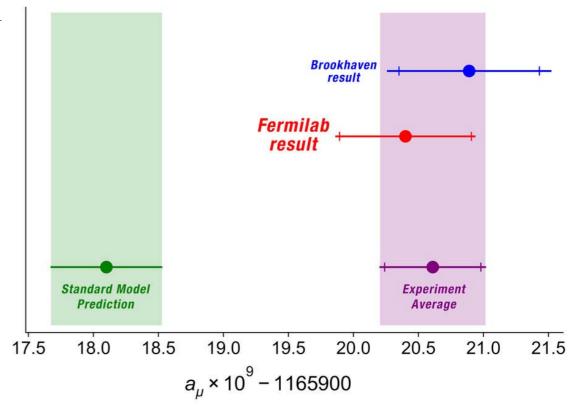
$$a_{\mu}^{(\text{th})} = 116591810(43) \times 10^{-11}$$

$$\Delta a_{\mu} = a_{\mu}^{(\text{exp})} - a_{\mu}^{(\text{th})} = 251(59) \times 10^{-11}$$

4.2 σ discrepancy

- Theoretical uncertainty can hardly be lattice results? reduced further...
- E989 Muon g-2 experiment:

$$\delta a_{\mu}^{(\mathrm{exp})} < 20 \times 10^{-11}$$
 in a few years



- Theoretical / systematic errors need to be controlled at the level of $\Delta a_{\mu} \sim 10^{-9}$
 - \rightarrow An independent test of Δa_{μ} is desirable (possibly with different systematic & theoretical errors)

Muon collider can give the first model-independent high-energy test of Δa_μ

New physics in the muon g-2

+ The g-2 is generated by the dipole operator

$$\frac{c_{\mu}}{\Lambda_{\mu}}e(\bar{\mu_{L}}\sigma_{\mu\nu}\mu_{R})F^{\mu\nu}$$

$$\Delta a_{\mu} \approx a_{\mu}^{(\text{EW})} \approx \frac{m_{\mu}^2}{16\pi^2 v^2} \approx 2 \times 10^{-9}$$

tiny effect: not directly testable at colliders until now

- Λ ~ TeV, weak coupling
 (favored by naturalness arguments, but challenged by LEP, LHC...)
- Λ ≤ TeV, NP is light and feebly coupled to the SM (e.g. axion-like particles, dark sectors, light scalars, ...)
- ► $\Lambda \gg$ TeV, heavy NP with O(1) couplings to the SM

7

In the SM EFT one dim. 6 operator contributes at tree-level:

$$\mathcal{L}_{g-2} = \frac{C_{e\gamma}}{\Lambda^2} H(\bar{\ell}_L \sigma_{\mu\nu} e_R) eF^{\mu\nu} + \text{h.c.}$$

$$\Delta a_{\mu} = \frac{4m_{\mu}v}{\Lambda^2} C_{e\gamma} \approx 3 \times 10^{-9} \times \left(\frac{140 \,\text{TeV}}{\Lambda}\right)^2 C_{e\gamma}$$

Muon g-2 @ muon collider

- If new physics is light enough (i.e. weakly coupled, m_{*} ~ Λ·g_{*}/4π),
 a Muon Collider can directly produce the new particles
 - direct searches: model-dependent

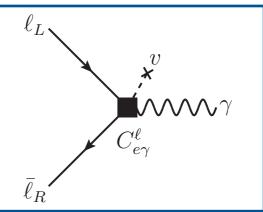
Curtin et al. 2006.16277

* If new physics is heavy: EFT Dipole operator generates both Δa_{μ} and $\mu\mu \to h\gamma$

B, Paradisi 2012.02769

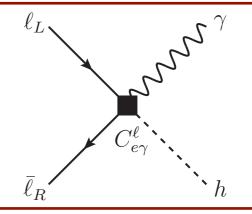
At low energy

$$\Delta a_{\mu} = \frac{4m_{\mu}v}{\Lambda^2} C_{e\gamma} \approx 3 \times 10^{-9} \times \left(\frac{140 \,\text{TeV}}{\Lambda}\right)^2 C_{e\gamma}$$



At high energy -

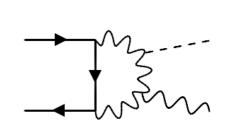
$$\sigma_{\mu^+\mu^- \to h\gamma} = \frac{s}{48\pi} \frac{|C_{e\gamma}|^2}{\Lambda^4} \approx 0.7 \text{ ab} \left(\frac{\sqrt{s}}{30 \text{ TeV}}\right)^2 \left(\frac{\Delta a_{\mu}}{3 \times 10^{-9}}\right)^2$$



$$N_{h\gamma} = \sigma \cdot \mathcal{L} \approx \left(\frac{\sqrt{s}}{10 \, \text{TeV}}\right)^4 \left(\frac{\Delta a_{\mu}}{3 \times 10^{-9}}\right)^2$$
 need E > 10 TeV

Muon g-2 @ muon collider

* SM irreducible background is small: $\sigma_{\mu^+\mu^-\to h\gamma}^{(SM)} \approx 10^{-2} \, \text{ab} \left(\frac{30 \, \text{TeV}}{\sqrt{s}}\right)^2$ tree-level is suppressed by muon mass; loop contribution dominant



+ Main background from $\mu\mu \to Z\gamma$ (where Z is mistaken for H)

(large due to transverse Z polarizations)

$$\frac{d\sigma_{\mu\mu\to h\gamma}}{d\cos\theta} = \frac{|C_{e\gamma}^{\mu}(\Lambda)|^2}{\Lambda^4} \frac{s}{64\pi} (1 - \cos^2\theta)$$

$$\frac{d\sigma_{\mu\mu\to Z\gamma}}{d\cos\theta} = \frac{\pi\alpha^2}{4s} \frac{1 + \cos^2\theta}{\sin^2\theta} \frac{1 - 4s_W^2 + 8s_W^4}{s_W^2 c_W^2}$$

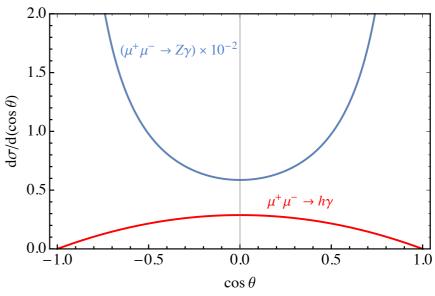
Search in $h \rightarrow bb$ channel:

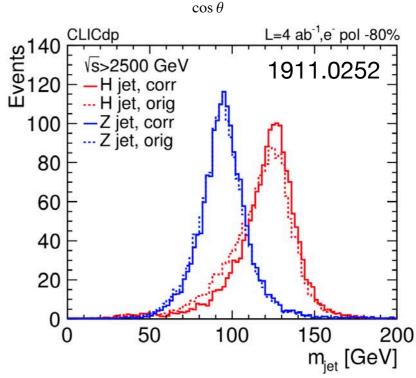
$$\epsilon_b \approx 80\%$$
 $|\cos \theta_{\text{cut}}| < 0.6$ $BR_{h \to b\bar{b}} = 58\%$

At 30 TeV, 90 ab⁻¹, for $\Delta a_{\mu} = 3 \times 10^{-9}$:

$$N_S = 22$$
, $N_B = 886 \times p_{Z \to h}$

Δa_μ can be tested at 95% CL at a 30 TeV collider if Z→h mistag probability < 10-15%



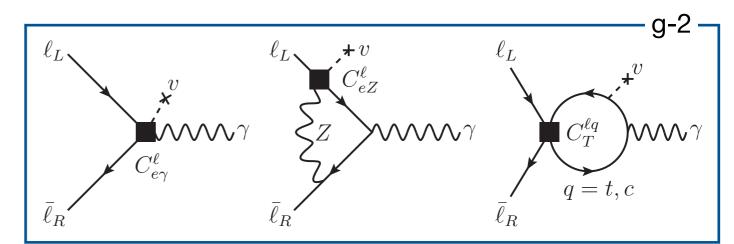


Beyond tree-level

Other operators contribute to g-2 at one loop:

$$\mathcal{L} = \frac{C_{eB}}{\Lambda^2} (\bar{\ell}_L \sigma^{\mu\nu} e_R) H B_{\mu\nu} + \frac{C_{eW}}{\Lambda^2} (\bar{\ell}_L \sigma^{\mu\nu} e_R) \tau^I H W^I_{\mu\nu} + \frac{C_{qT}}{\Lambda^2} (\bar{\ell}_L \sigma^{\mu\nu} e_R) \epsilon (\bar{q}_L \sigma_{\mu\nu} u_R)$$

(+ other effects suppressed by y_{μ})



Including 1-loop running:

$$\begin{split} \Delta a_{\mu} &\simeq \frac{4m_{\mu}v}{e\Lambda^2} \Big(C_{e\gamma}(m_{\mu}) - \frac{3\alpha}{2\pi} \frac{c_W^2 - s_W^2}{s_W c_W} C_{eZ} \log \frac{\Lambda}{m_Z} \Big) - \sum_{q=c,t} \frac{4m_{\mu}m_q}{\pi^2} \frac{C_{Tq}}{\Lambda^2} \log \frac{\Lambda}{m_q} \\ &\approx \Big(\frac{250\,\mathrm{TeV}}{\Lambda^2} \Big)^2 (C_{e\gamma} - 0.2C_{Tt} - 0.001C_{Tc} - 0.05C_{eZ}) \end{split} \qquad \qquad \mathsf{B, Paradisi 2012.02769} \end{split}$$

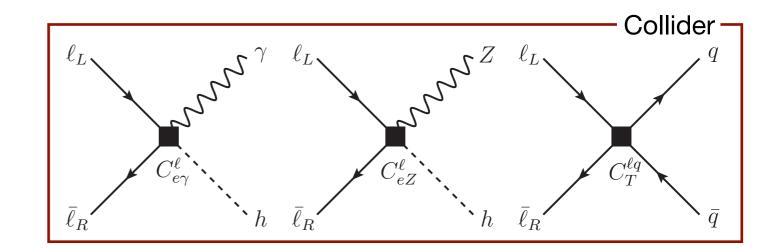
Full set of operators can be probed ,

at high energy

$$\mu^{+}\mu^{-} \to h\gamma$$

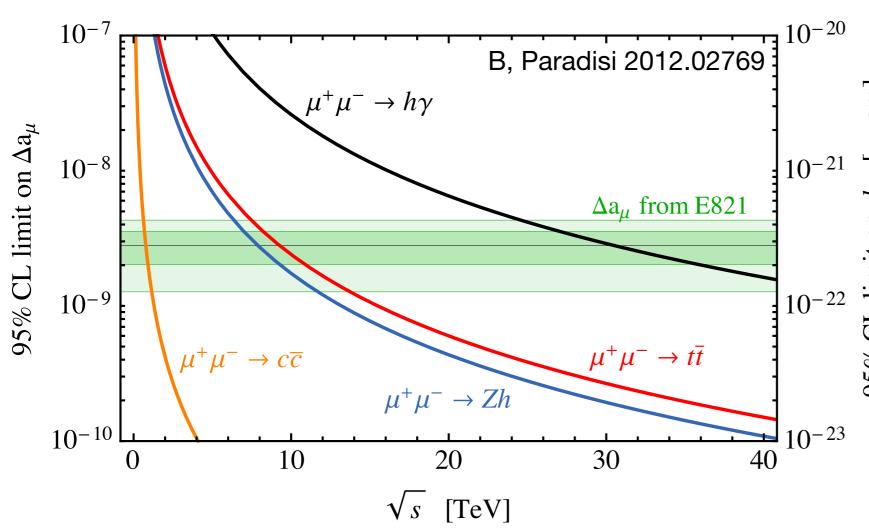
$$\mu^{+}\mu^{-} \to hZ$$

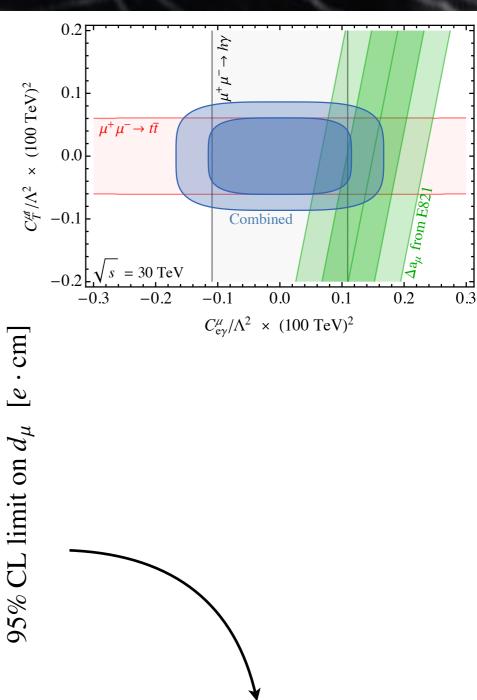
$$\mu^{+}\mu^{-} \to q\bar{q}$$



Muon g-2 @ muon collider

 Full set of operators with Λ ≥ 100 TeV can be probed at a high energy muon collider





Muon EDM for free!

$$d_{\mu} = \frac{\Delta a_{\mu} \tan \phi_{\mu}}{2m_{\mu}} e = \frac{2v \operatorname{Im}(C_{e\gamma})}{\Lambda^{2}}$$

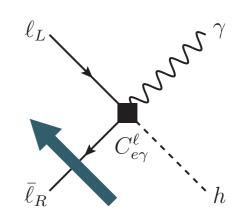
Collider constrains $|C_{e\gamma}|^2 \Rightarrow d_{\mu} \lesssim 10^{-22} \, e \cdot \text{cm}$ 3 o.o.m. stronger than present bound!

Lepton g-2 from rare Higgs decays

Dipole operator contributes also to $h \to \ell\ell\gamma$ decays!

$$\Gamma_{h\to\ell^+\ell^-\gamma}^{(\text{int})} = \frac{\alpha m_{\ell} \text{Re}(C_{e\gamma}) m_h^3}{16\pi^2 v} \qquad \Gamma_{h\to\ell^+\ell^-\gamma}^{(\text{NP})} = \frac{\alpha |C_{e\gamma}|^2 m_h^5}{192\pi^2}$$

$$\Gamma_{h \to \ell^+ \ell^- \gamma}^{(\text{NP})} = \frac{\alpha |C_{e\gamma}|^2 m_h^5}{192\pi^2}$$



$$\Gamma_{h \to \ell^+ \ell^- \gamma}^{(SM)} = \Gamma_{\text{tree}}^{(SM)} + \Gamma_{\text{loop}}^{(SM)}$$

(tree-level is suppressed by lepton mass)

- ◆ Very large single Higgs VBF rate @ µ-collider (10⁷–10⁸ Higgs bosons)
 - Muon:

$$BR_{h\to\mu^+\mu^-\gamma}^{(SM)} \approx 10^{-4}$$
 1704.00790

$$BR_{h \to \mu^+ \mu^- \gamma}^{(NP)} \approx 5 \times 10^{-10} \left(\frac{\Delta a_{\mu}}{3 \times 10^{-9}} \right)$$

too small :(

Tau:

$$BR_{h \to \tau^+ \tau^- \gamma}^{(SM)} \approx 10^{-3}$$

$$\mathrm{BR}_{h \to \tau^+ \tau^- \gamma}^{\mathrm{(NP)}} \approx 0.2 \times \Delta a_{\tau}$$

$$\Rightarrow \Delta a_{\tau} \lesssim \text{few} \times 10^{-5}$$

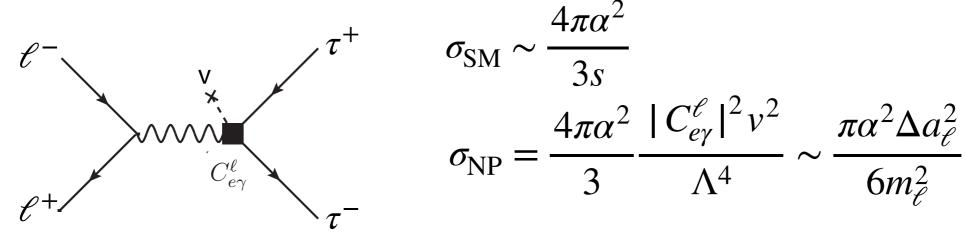
3 o.o.m. improvement!

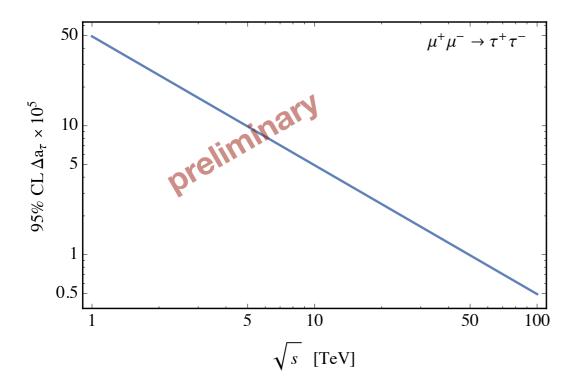
Lepton g-2 from rare Higgs decays

Further possibilities to measure Δa_{τ} precisely from high-energy probes

Pair production

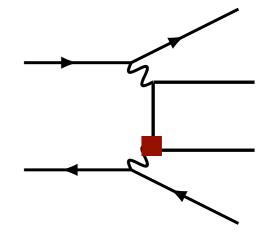
work in progress with P. Paradisi



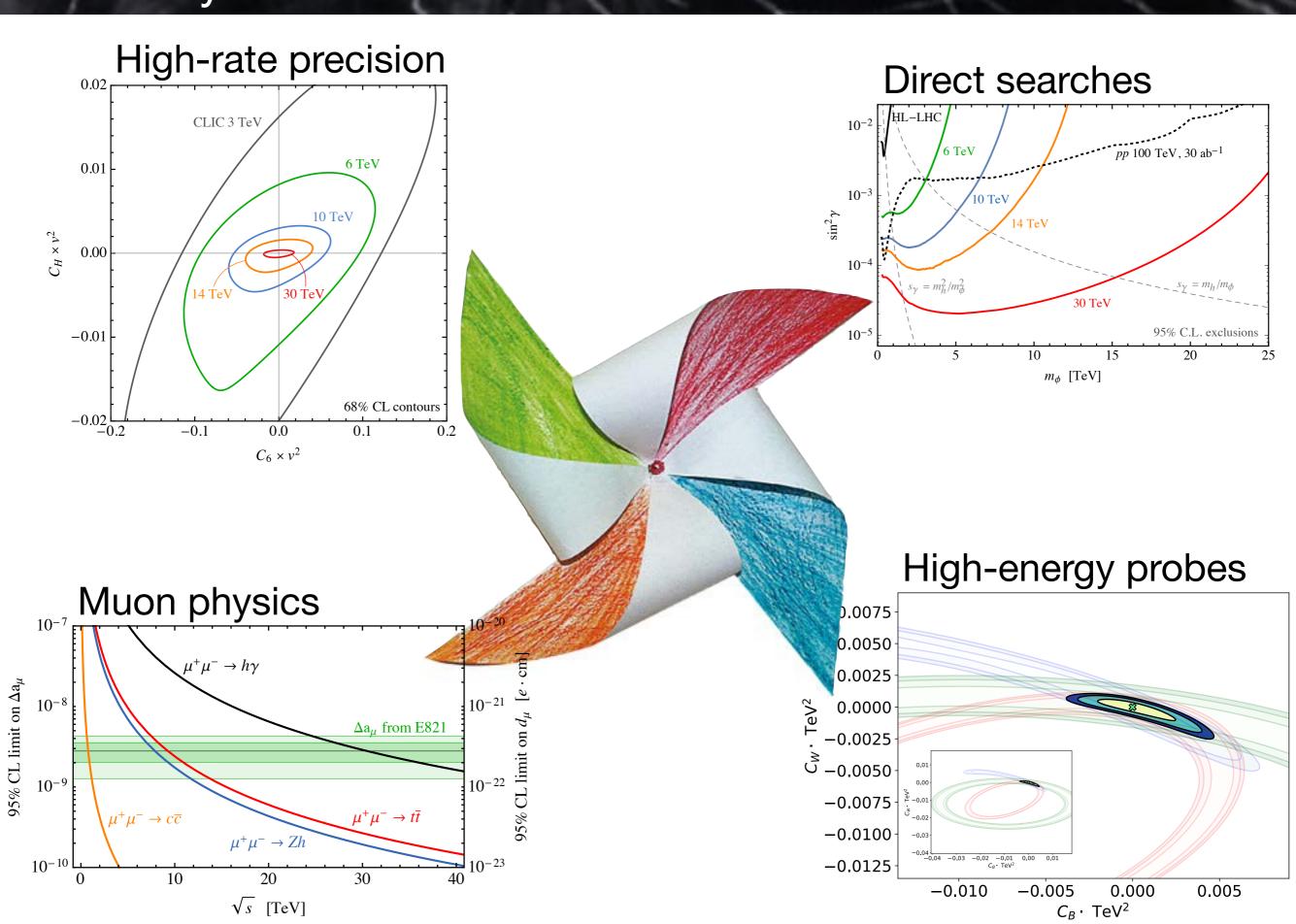


Could probe $\Delta a_{\tau} \sim \text{few } 10^{-5}$

♦ Vector boson fusion: $\ell^+\ell^- \to \ell^+\ell^-\tau^+\tau^-$, $\nu\bar{\nu}\tau^+\tau^-$ charged and neutral channel can constrain C_{eB} and C_{eW}

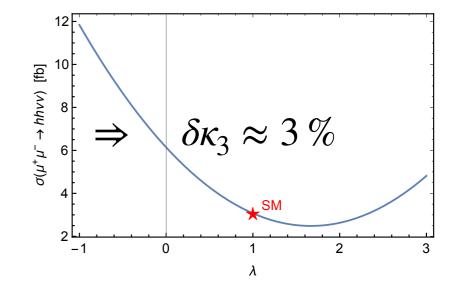


Summary

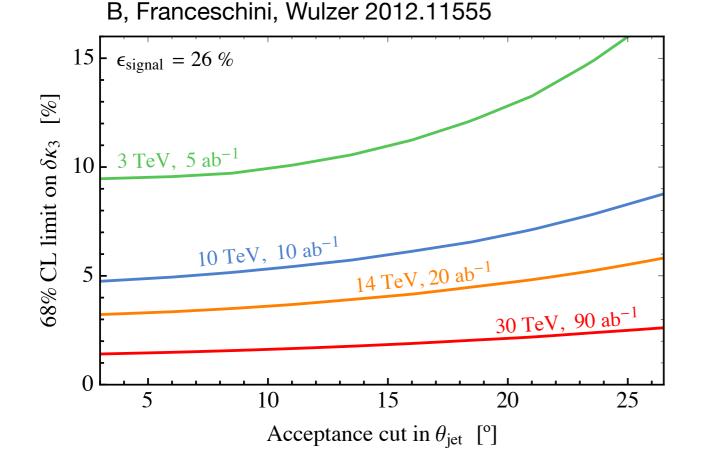


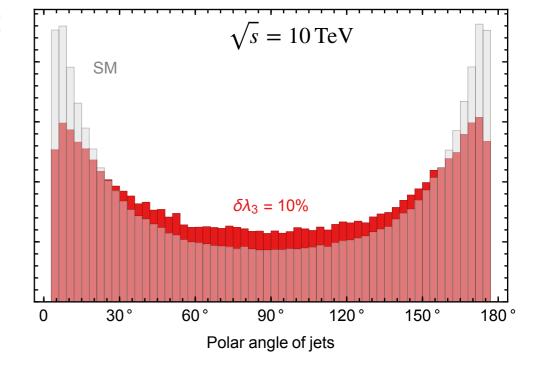
Double Higgs production

Number of events $\sim s \log(s/m_h^2) \approx 10^5$ at 14 TeV



- **Acceptance cuts** in polar angle θ and p_T of jets:
 - hh signal is strongly peaked in forward region

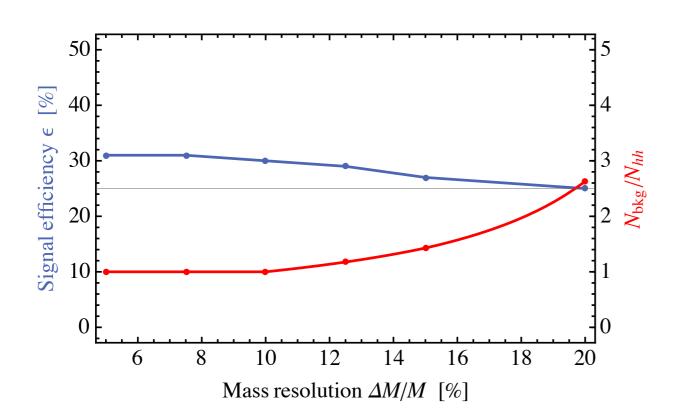


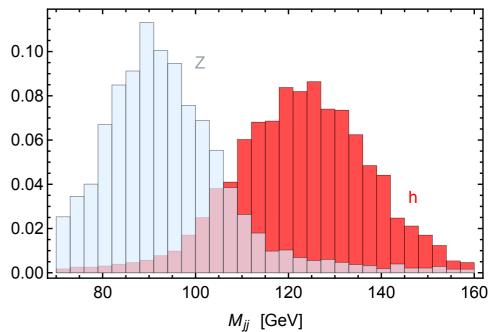


Contribution from trilinear coupling is more central: loss due to angular cut is less important

Double Higgs production

- Backgrounds are important and cannot be neglected (see also CLIC study 1901.05897)
 - Mainly VBF di-boson production:
 Zh & ZZ, but also WW, Wh, WZ...
 - Precise invariant mass reconstruction is crucial to isolate signal





NB: (Very!) simplified background analysis (at parton level!)

All this should be done properly with a detector simulation (as has been done for CLIC).

However, perfect agreement with 1901.05897!

Double Higgs production

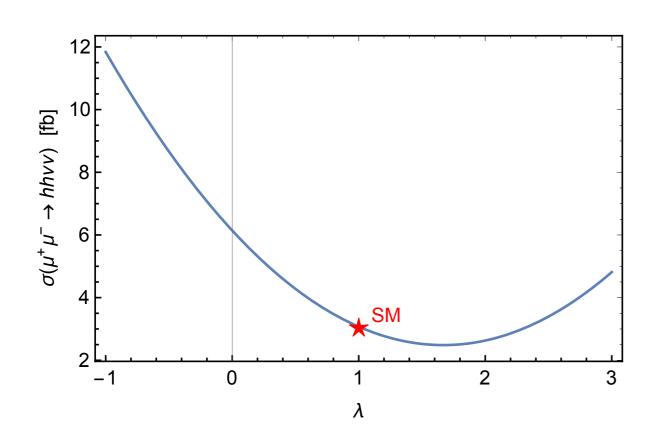
Number of events: $N \sim s \log(s/m_h^2)$

$$N \sim s \log(s/m_h^2) \approx 10^{5 \div 6}$$

assume overall efficiency ~ 10%

Naïve estimate of the reach:

\sqrt{s} [TeV]	L [ab-1]	σ [fb]	N _{SM}	$\delta\sigma \sim (N_{SM} * \text{eff})^{-1/2}$	δλ
3	1	0.82	800	~ 10%	~ 15%
10	10	3.1	31'000	~ 1.8%	~ 4%
14	20	4.4	88'000	~ 1%	~ 3%
30	90	7.4	660'000	~ 0.4%	~ 1.5%



Cross-section dependence on $\delta\lambda$

$$\sigma = \sigma_{\rm SM} + a_1(\delta\lambda) + a_2(\delta\lambda)^2$$

hh → 4b signal

+ Acceptance cuts in polar angle θ and p_T of b-jets.

E.g. for pT > 10 GeV, θ > 10°:

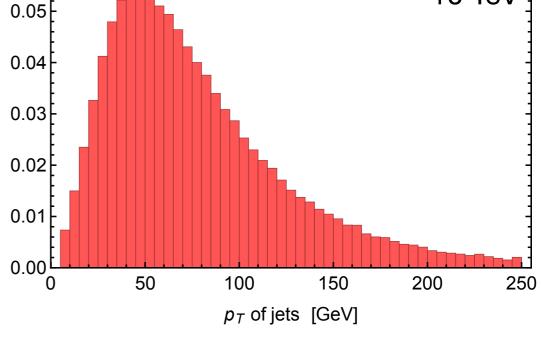
$$\begin{split} \sigma_{\rm cut}(3\,{\rm TeV}) &= 0.13\, \big[1 - 0.87 (\delta\lambda) + 0.74 (\delta\lambda)^2 \big] \; {\rm fb}, \\ \sigma_{\rm cut}(10\,{\rm TeV}) &= 0.24\, \big[1 - 0.81 (\delta\lambda) + 0.71 (\delta\lambda)^2 \big] \; {\rm fb}, \\ \sigma_{\rm cut}(30\,{\rm TeV}) &= 0.27\, \big[1 - 0.79 (\delta\lambda) + 0.78 (\delta\lambda)^2 \big] \; {\rm fb}. \end{split} \qquad \text{factor 10 loss in xsec at 30 TeV}$$

- Neglect backgrounds (for the moment)
- Assume signal reconstruction efficiency ε ~ 25% as CLIC [1901.05897]:
 mainly from invariant-mass cuts and b-tag

\sqrt{s} [TeV]	L [ab-1]	σ [fb]	N _{rec}	$\delta \sigma \sim N_{\rm rec}^{-1/2}$	δλ
3	5	0.13	170	~ 7.5%	~ 10%
10	10	0.24	630	~ 4%	~ 5%
30	90	0.74	6'300	~ 1.2%	~ 1.5%

Sensitivity to jet pt threshold

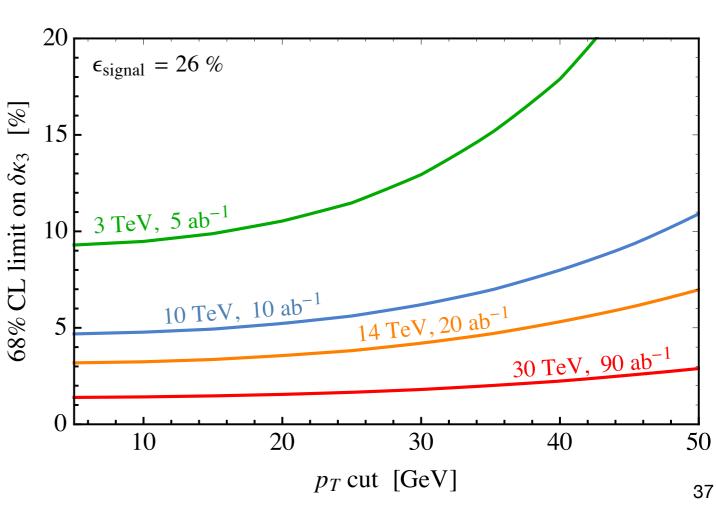
Jets come from Higgs decays:
 typical momentum ~ m_h/2



10 TeV

No significant impact if
 pT_{min} ≤ 40–50 GeV

higher thresholds start to reduce the sensitivity

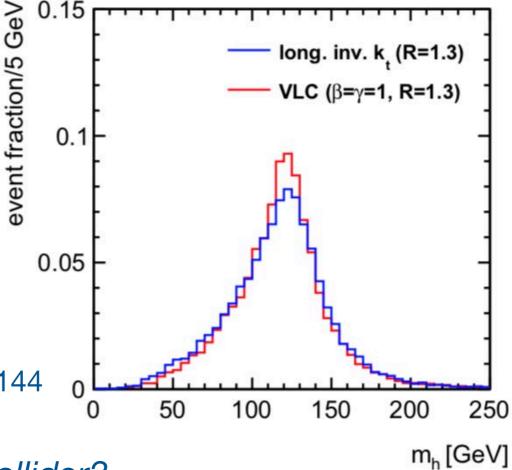


Backgrounds

- Backgrounds are important and cannot be neglected (see also CLIC study [1901.05897])
- Mainly VBF di-boson production: Zh & ZZ, but also WW, Wh, WZ...
 other backgrounds are easily rejected with cut on tot. inv. mass
- Precise invariant mass reconstruction is crucial to isolate signal
 - resolution on Z inv. mass ~ 6–7% at 3 TeV [CLICdp-Note-2018-004]
 - for Higgs energy resolution is worse: 10% on jet energy, ~ 15% on inv. mass (neutrinos in semi-leptonic b decay, too forward tracks missed)

thanks to Philipp for discussion

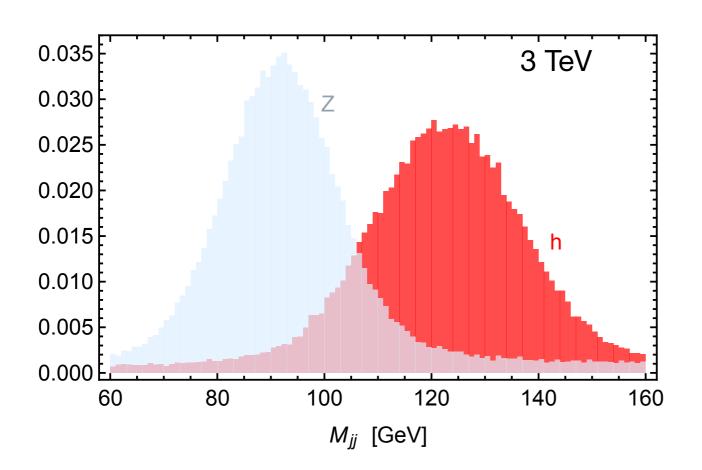
Eur. Phys. J. C (2018) 78:144



Backgrounds

(Very!) simplified background analysis (at parton level!)

- Include all VV → VV processes (Zhvv, ZZvv, WWvv, Whv, WZv)
- Apply gaussian smearing to jets, assuming 15% energy resolution
- Reconstruct bosons by pairing jets with minimal |m(j₁j₂) m(j₃j₄)|



 Optimize cuts to reject bkg: dijet inv. mass, n. of b-tags

$$M_{hh} > 105 \text{ GeV},$$

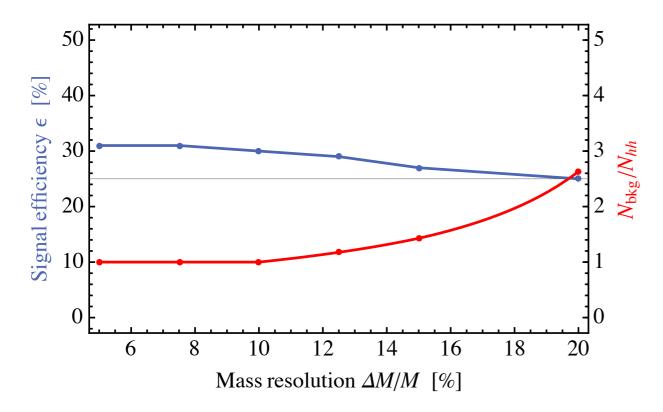
$$n_b = 3.2$$

$$\varepsilon_{\text{sig}} = 27\%$$

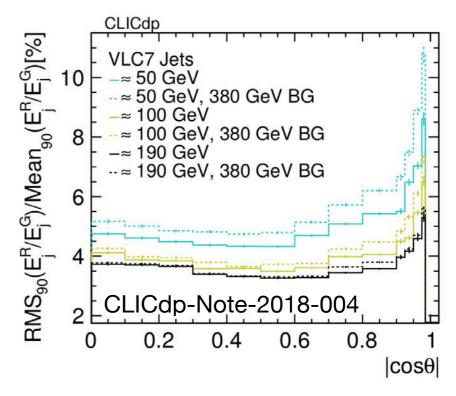
NB: all this should be done properly (and has been done, for CLIC), with a detector simulation

Backgrounds

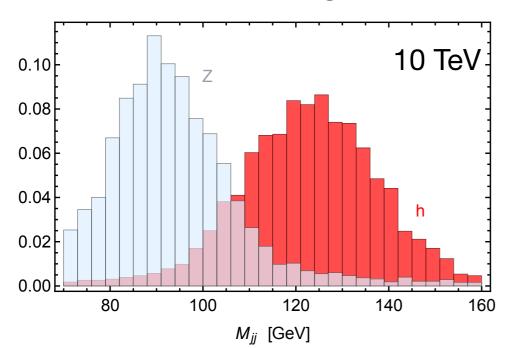
One can now repeat the analysis for different jet energy resolutions:



no real gain using only central events...



... and different energies:



Optimize cuts to reject bkg:

$$M_{hh} > 105 \text{ GeV},$$

$$n_b = 2.8$$

$$\varepsilon_{sig} = 32\%$$

result very similar to 3 TeV

Double Higgs production: EFT fit

SM Effective Theory:
$$\mathscr{L}_{\text{EFT}} = \mathscr{L}_{\text{SM}} + \sum_{i} C_{i} \mathcal{O}_{i}^{(6)} + \cdots$$

Trilinear coupling is affected by two operators: $\kappa_3 = 1 + v^2 \left(C_6 - \frac{3}{2} C_H \right)$

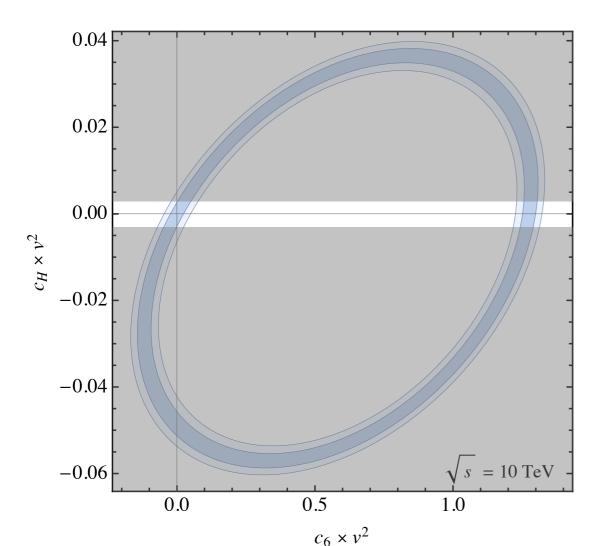
$$\kappa_3 = 1 + v^2 \left(C_6 - \frac{3}{2} C_H \right)$$

$$\mathcal{O}_6 = -\lambda |H|^6$$

$$\mathcal{O}_6 = -\lambda |H|^6$$
 $\mathcal{O}_H = \frac{1}{2} \left(\partial_\mu |H|^2 \right)^2$

O_H also affects single Higgs couplings universally:

$$\kappa_{V,f} = 1 - v^2 C_H / 2$$



large degeneracy in total cross-section: coefficients not determined in general

CH can be constrained from Higgs couplings (but indirect measurement)

$$\Delta \kappa_V \sim C_H v^2 \lesssim \text{few} \times 10^{-3}$$

High-energy di-bosons

Longitudinal 2 → 2 scattering amplitudes at high energy:

Process	BSM Amplitude
$ \begin{array}{c} (\ell_L^+\ell_L^- \to Z_0 h) \\ \bar{\nu}_L \nu_L \to W_0^+ W_0^- \end{array} $	$s\left(G_{3L}+G_{1L}\right)\sin\theta_{\star}$
$ \begin{array}{c} (\ell_L^+\ell_L^- \to W_0^+W_0^-) \\ \bar{\nu}_L\nu_L \to Z_0h \end{array} $	$s\left(G_{3L} - G_{1L}\right)\sin\theta_{\star}$
$(\ell_R^+\ell_R^- \to W_0^+W_0^-, Z_0h)$	$s G_{lR} \sin \theta_{\star}$
$ \overline{\left[\bar{\nu}_{L}\ell_{L}^{-} \to W_{0}^{-}Z_{0} / W_{0}^{-}h\right]} $ $ \overline{\left[\nu_{L}\ell_{L}^{+} \to W_{0}^{+}Z_{0} / W_{0}^{+}h\right]} $	$\sqrt{2} s G_{3L} \sin \theta_{\star}$

Determined by 3 fermion/scalar current-current interactions:

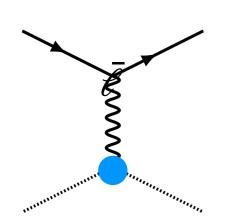
$$\mathcal{O}_{3L} = \left(\bar{\mathbf{L}}_{L}\gamma^{\mu}\sigma^{a}\mathbf{L}_{L}\right)\left(iH^{\dagger}\sigma^{a}\overset{\leftrightarrow}{D}_{\mu}H\right),$$

$$\mathcal{O}_{1L} = \left(\bar{\mathbf{L}}_{L}\gamma^{\mu}\mathbf{L}_{L}\right)\left(iH^{\dagger}\overset{\leftrightarrow}{D}_{\mu}H\right),$$

$$\mathcal{O}_{lR} = \left(\bar{l}_{R}\gamma^{\mu}l_{R}\right)\left(iH^{\dagger}\overset{\leftrightarrow}{D}_{\mu}H\right).$$

"high-energy primary effects"

 In flavor-universal theories, they are generated by SILH operators (via e.o.m.):



$$G_{1L} = \frac{1}{2}G_{lR} = \frac{g^{\prime 2}}{4}(C_B + C_{HB})$$

$$G_{3L} = \frac{g^2}{4} (C_W + C_{HW})$$

$$\mathcal{O}_{W} = \frac{ig}{2} \left(H^{\dagger} \sigma^{a} \stackrel{\leftrightarrow}{D^{\mu}} H \right) D^{\nu} W_{\mu\nu}^{a}$$

$$\mathcal{O}_{B} = \frac{ig'}{2} \left(H^{\dagger} \stackrel{\leftrightarrow}{D^{\mu}} H \right) \partial^{\nu} B_{\mu\nu}$$

$$\mathcal{O}_{HW} = ig(D^{\mu} H)^{\dagger} \sigma^{a} (D^{\nu} H) W_{\mu\nu}^{a}$$

$$\mathcal{O}_{HB} = ig'(D^{\mu} H)^{\dagger} (D^{\nu} H) B_{\mu\nu}$$

High-energy WW: angular analysis

- ◆ O_{W,B} contribute to longitudinal scattering amplitudes:
- In the SM, large contribution to $\mu^+\mu^- \to W^+W^-$ from transverse polarizations.

$$\mathcal{A}_{00}^{(\text{NP})} = s (G_{1L} - G_{3L}) \sin \theta_{\star}$$

$$\mathcal{A}_{-+} = -\frac{g^2}{2} \sin \theta_{\star}$$

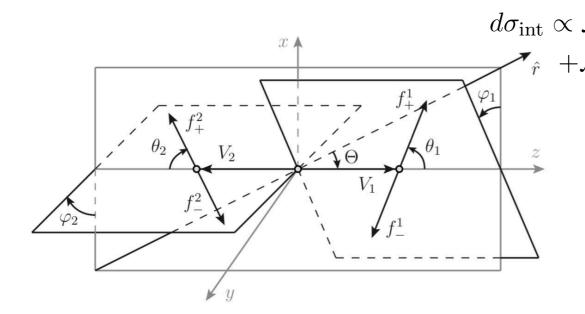
$$\mathcal{A}_{+-} = g^2 \cos^2 \frac{\theta_{\star}}{2} \cot^2 \frac{\theta_{\star}}{2}$$

0.005

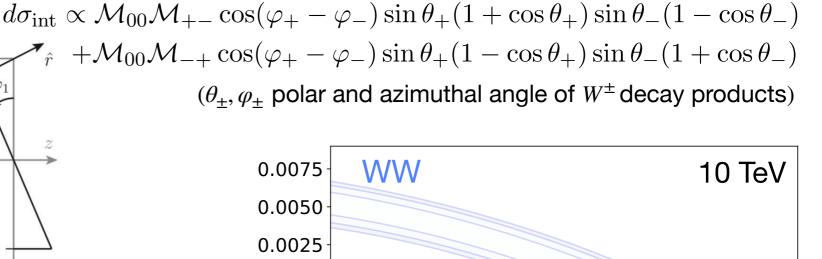
Interference between ±∓ and 00 helicity amplitudes cancels in the total

cross-section ⇒ signal suppressed!

see also Panico et al. 1708.07823, 2007.10356



 Can exploit the SM/BSM interference by looking at fully differential WW crosssection in scattering and decay angles!



0.0000

-0.0025

-0.0075

-0.0100

-0.0125

-0.010

-0.005

0.000

 $C_B \cdot \text{TeV}^2$

^S −0.0050 ^J

B, Franceschini, Wulzer 2012.11555

High-energy WW: angular analysis

- ◆ O_{W,B} contribute to longitudinal scattering amplitudes:
- In the SM, large contribution to $\mu^+\mu^- \to W^+W^-$ from transverse polarizations.

$$\mathcal{A}_{00}^{(\text{NP})} = s (G_{1L} - G_{3L}) \sin \theta_{\star}$$

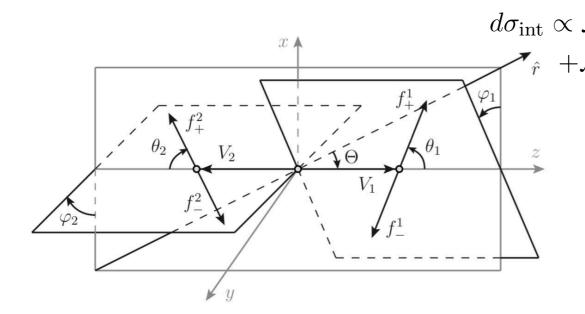
$$\mathcal{A}_{-+} = -\frac{g^2}{2} \sin \theta_{\star}$$

$$\mathcal{A}_{+-} = g^2 \cos^2 \frac{\theta_{\star}}{2} \cot^2 \frac{\theta_{\star}}{2}$$

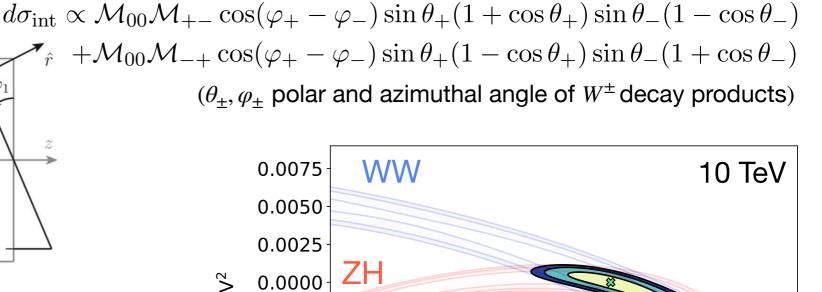
Interference between ±∓ and 00 helicity amplitudes cancels in the total

cross-section ⇒ signal suppressed!

see also Panico et al. 1708.07823, 2007.10356



 Can exploit the SM/BSM interference by looking at fully differential WW crosssection in scattering and decay angles!



-0.005

0.000

 $C_B \cdot \text{TeV}^2$

0.005

-0.0025

-0.0075

-0.0100

-0.0125

-0.010

[≥] -0.0050

B, Franceschini, Wulzer 2012.11555

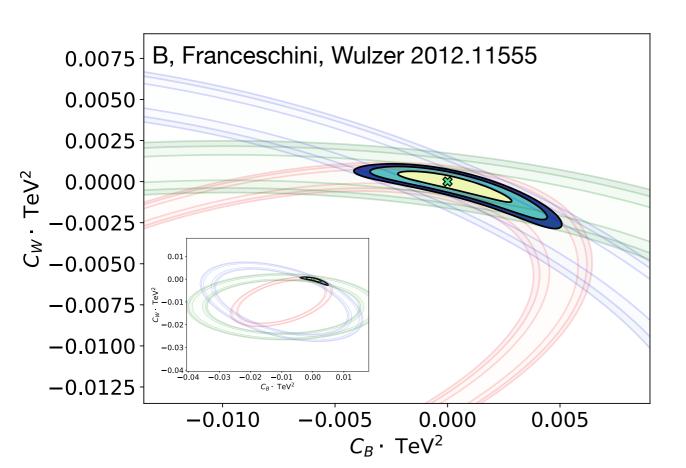
High-energy tri-bosons

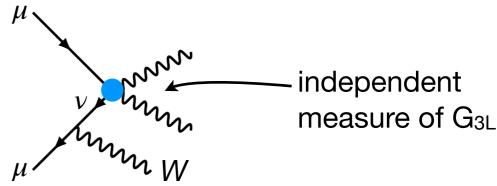
 Gauge boson radiation becomes important at high energies (Sudakov double-log enhancement of soft-collinear emissions)

 $\mu^+\mu^- \rightarrow VV$ not much suppressed w.r.t. $\mu^+\mu^- \rightarrow VVV$ (V = W±, Z, H)

This allows to access the charged processes $\ell^{\pm}\nu \to W^{\pm}Z, W^{\pm}H$

"effective neutrino approximation"





- NB: also 2 → 2 scatterings receive large radiative corrections:
 "soft" EW radiation must be taken into account properly...
- → Inclusive NLO study of VV and VVV

Scalar singlets at a HELC

φ is like a heavy SM Higgs with narrow width: Dominant decay modes are

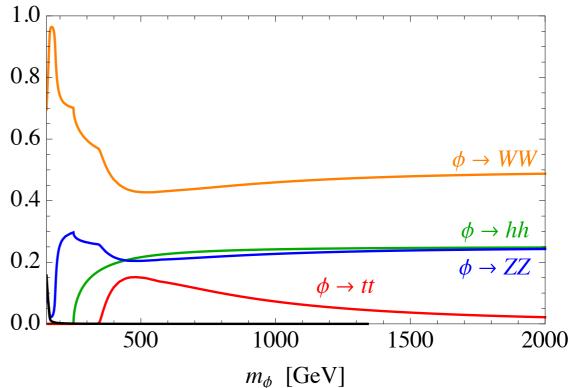
into (longitudinal) bosons.

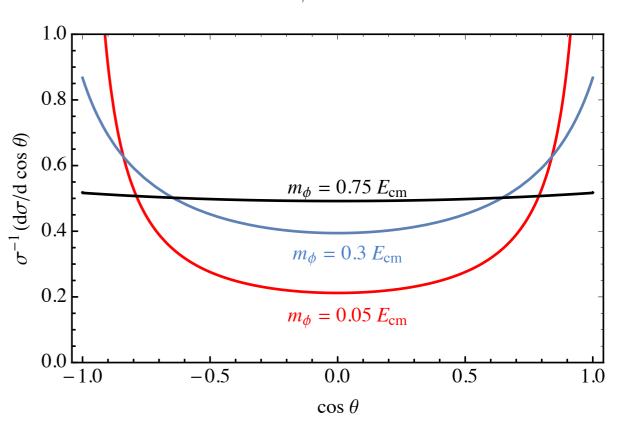
Goldstone boson equivalence theorem:

$$BR_{\phi \to hh} = BR_{\phi \to ZZ} = \frac{1}{2}BR_{\phi \to WW} \simeq \frac{1}{4}$$

$$m_{\phi} \gg m_{h}$$

- Golden channels:
 - φ → ZZ(4I,2I2j): very clean, some EW background; most sensitive channel at LHC.
 - φ → hh(4b): also clean and very sensitive at I+I- collider; more challenging at LHC due to QCD background





A simple example: scalar singlet

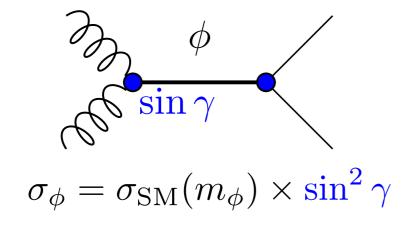
$$\mathcal{L} = \mathcal{L}_{\mathrm{SM}} + \frac{1}{2}(\partial_{\mu}S)^{2} - \frac{1}{2}m_{S}^{2}S^{2} - (a_{HS}|H|^{2}S) - \frac{\lambda_{HS}}{2}|H|^{2}S^{2} - V(S)$$
 controls Higgs-singlet mixing ~ sin γ portal coupling triple couplings: $\mathrm{BR}(\phi \to hh)$, g_{hhh}

$$\sin \gamma \sim \frac{a_{HS}v}{m_S^2}$$

mass eigenstates:
$$h = \cos \gamma H^0 + \sin \gamma S$$

$$\phi = -\sin \gamma H^0 + \cos \gamma S$$

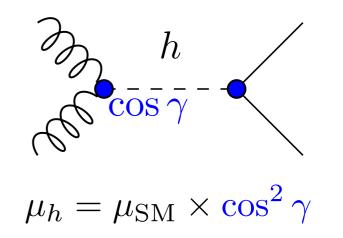
φ can be singly produced:



φ decays to SM:

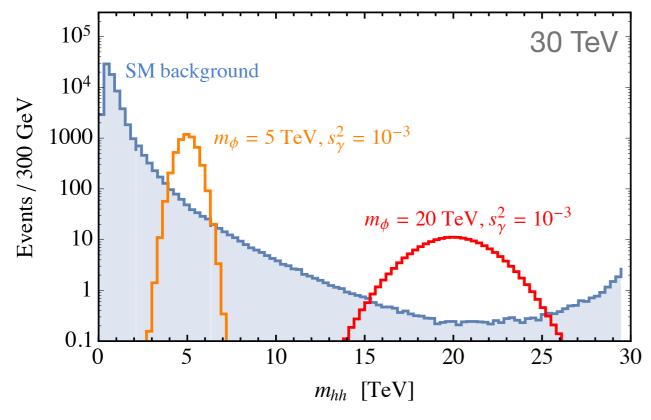
$$BR_{\phi \to VV,ff} = BR_{SM}(m_{\phi}) [1 - BR_{\phi \to hh}]$$

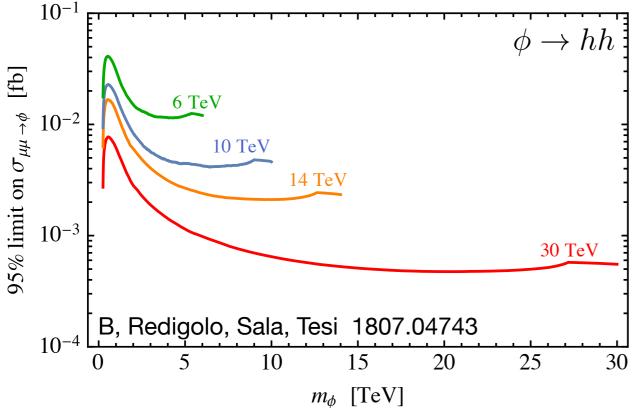
Higgs signal strengths:



hh(4b) decay channel

Cut & count experiment around the resonance peak:





$$\begin{array}{l} {\rm significance} = \frac{N_{\rm sig}}{\sqrt{(N_{\rm sig}+N_{\rm bkg})+\alpha_{\rm sys}^2N_{\rm bkg}^2}}\\ \\ \alpha_{\rm sys} = 2\% \quad \text{(but it has no impact)} \end{array}$$

- Small background at high invariant-mass:
 - error is dominated by statistics
 - limits depend weakly on φ mass and collider energy

$$\sigma(e^+e^- \to \phi\nu\bar{\nu}) \times \text{BR}(\phi \to f) \simeq 3/L,$$

- * For BR($\phi \rightarrow hh$) ~ 0.25, most sensitive channel is $\phi \rightarrow hh(4b)$
 - ▶ $\phi \rightarrow VV$ less sensitive, but complementary if BR($\phi \rightarrow hh$) small

Goldstone bosons (Twin Higgs)

- Higgs mass is protected from radiative corrections without new light colored states
- Two copies of the SM, with approximate Z₂ symmetry, coupled through Higgs portal
- Higgs is a pseudo-Goldstone

$$\sin^2 \gamma \sim v^2/f^2$$

0.01

0.00

-0.01

Inclusive hh

-0.1

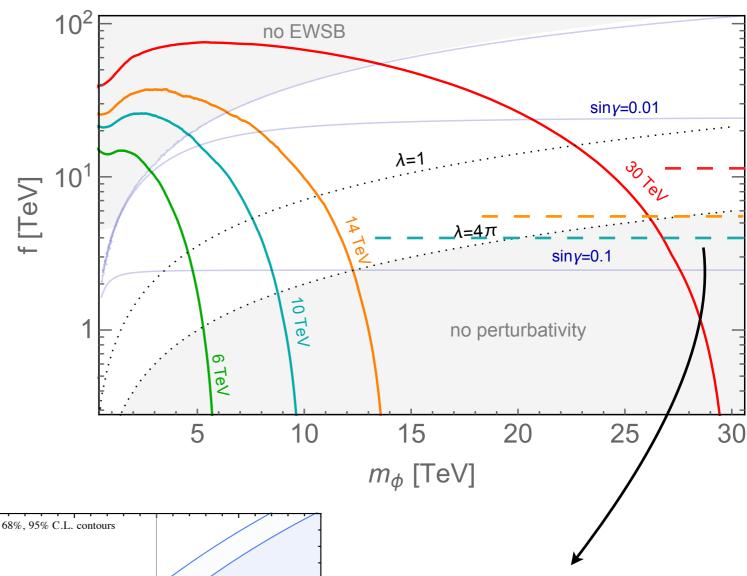
Fully differential hh

0.0

 $c_6 \times v^2$

 $\sqrt{s} = 10 \text{ TeV}$

- Model-independent tests:
 - ✓ Higgs couplings
 - √ Search for the singlet



If ϕ heavy, no resonance search but EFT applies

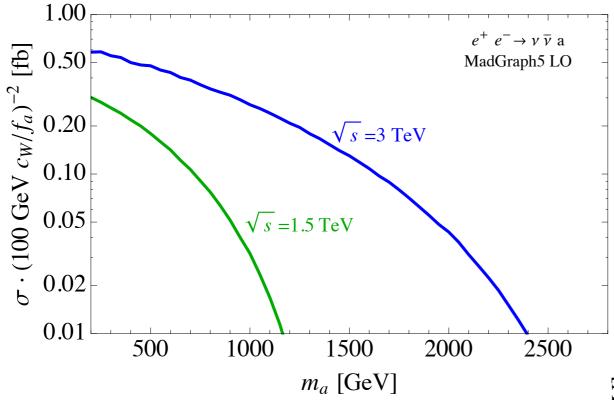
μμ → hh still useful

B, Franceschini, Wulzer, 2012.xxxxx

Axion-like particles (ALPs)

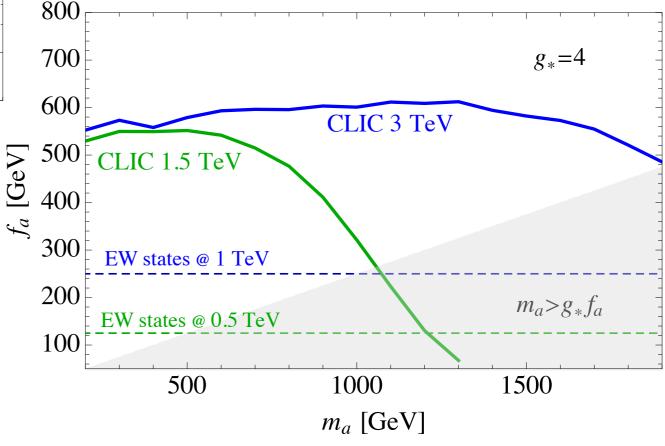
• EW ALP:
$$\mathscr{L}_{ALP} = \frac{1}{2} (\partial_{\mu} a)^2 - \frac{1}{2} m_a^2 a^2 + \frac{c_1 \alpha_1}{4\pi} \frac{a}{f_a} B \tilde{B} + \frac{c_2 \alpha_2}{4\pi} \frac{a}{f_a} W \tilde{W}$$

SSB of a U(1) at scale f_a (**not** the QCD axion), physical cut-off at g_*f_a



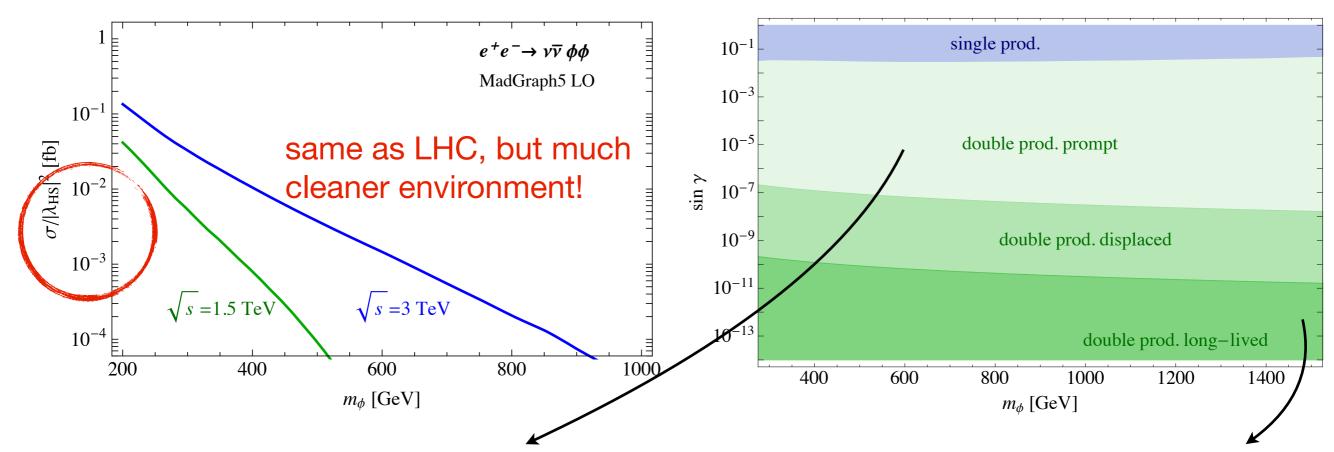
In general, a → γγ is a golden channel, but could be suppressed for particular values of c₁, c₂ (photophobic ALP)

 Produced in W-fusion (but couple to transverse W's), and decay to vectors



Pair production

- In the limit of small mixing angle, the single production rate of ϕ vanishes
 - ► the Lagrangian has an approximate Z_2 symmetry $\phi \rightarrow -\phi$ ans $H^{1/2}S$
- Double production rate does not depend on the mixing: controlled by the portal coupling λ_{HS} S²|H|²



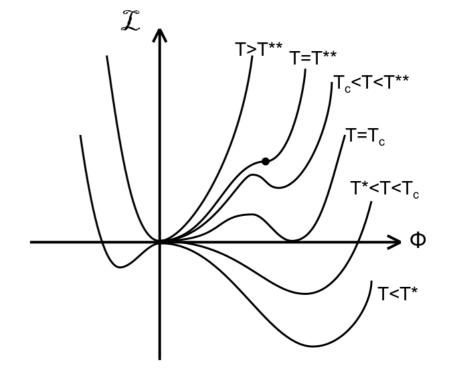
we focus on a region of small non-zero mixing: the singlet decays to SM bosons in the detector φ is invisible: requires a different treatment

Electroweak phase transition

- In the SM, the EW phase transition is 2nd order (smooth v(T) dependence)
 - → 1ST order PT crucial for (EW) baryogenesis: need to be strongly out-of-equilibrium!
- Additional scalar singlets can give a 1st order PT:
 - Phase transition in the singlet potential: "light state with large coupling to Higgs"

$$m_S^2 = m_\phi^2 - \lambda_{HS}^2 v^2 / 2 < 0$$

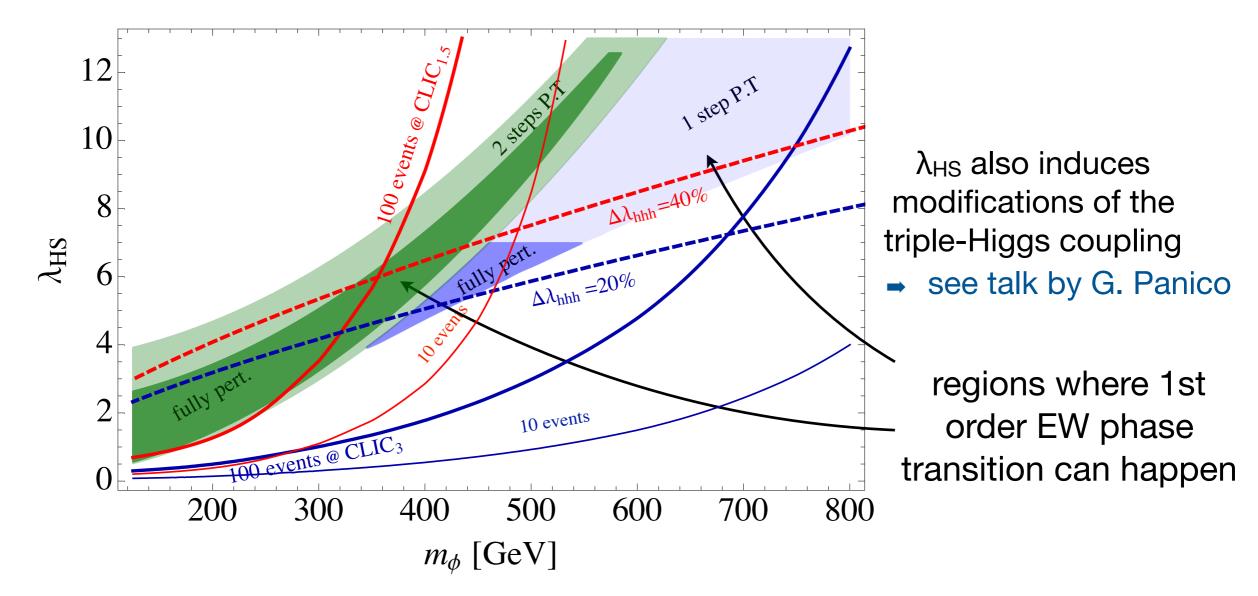
see talk by G. Panico



2. Singlet induces a negative effective quartic coupling for the Higgs $\lambda_h^{\rm eff}(m_\phi,\lambda_{HS})<0$

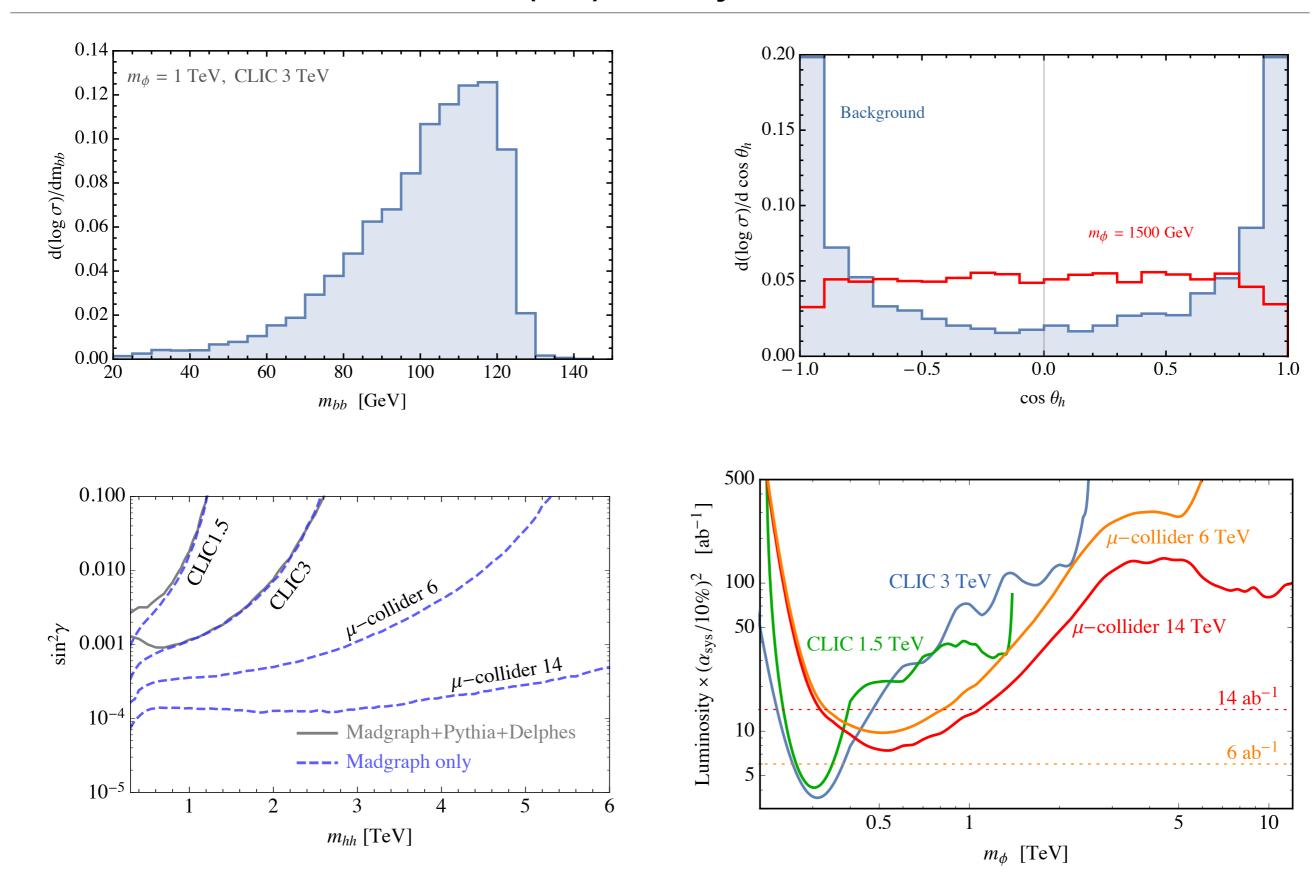
Pair production: results

- Final states with 4 Higgs or vector bosons (e.g. e+e- → 8b + E_{miss}):
 very small backgrounds, few events are needed to test the model at CLIC
- Even more stringent bounds in the case of displaced decays (smaller mixing):
 virtually all the φ can be identified, no background



CLIC can fully test the region where singlet gives 1st order phase transition!

More details on the hh(4b) analysis



Applications: SUSY (the NMSSM)

Three Higgs fields: H_u , H_d doublets + S singlet

$$\mathcal{W} = \mathcal{W}_{\text{MSSM}} + \lambda S H_u H_d + f(S)$$

- Extra tree-level contribution to the Higgs mass
- \diamond Alleviates fine-tuning in v for $\lambda \gtrsim 1$ and moderate $\tan \beta$

The singlet can be the lightest new state of the Higgs sector

Recast the previous bounds:

$$\sin^2\gamma = \frac{M_{hh}^2 - m_h^2}{m_\phi^2 - m_h^2}$$

$$M_{hh}^2 = m_Z^2 c_{2\beta}^2 + \lambda^2 v^2 s_{2\beta}^2 + \Delta^2$$
 loop correction

loop correction to Higgs mass from top-stop

NMSSM $\lambda = 1$, $\Delta_{hh} = 80 \text{ GeV}$ $\phi \rightarrow ZZ \text{ LHC}13$ $s_{\gamma}^2 = \Delta \mu_h / \mu_{SM}$ β tan β 10^{-3} m_{ϕ} [TeV]

Weakly coupled & low mass: direct searches very powerful!

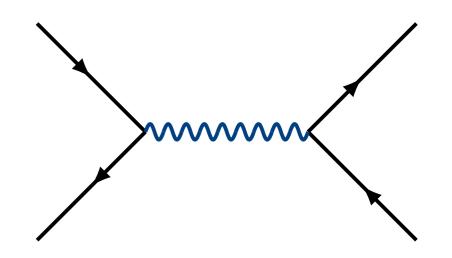
see Andrea's talk for sparticle production!

More resonances: Z'

Most typical example of direct search:

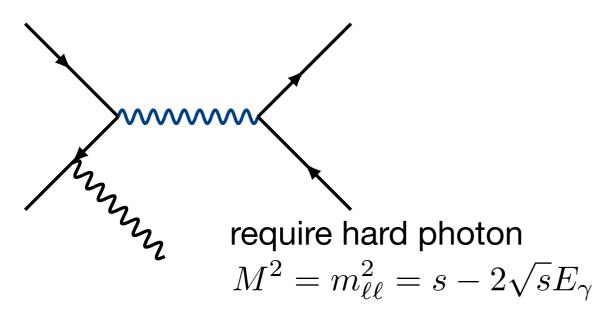
heavy s-channel resonance produced in Drell-Yan

If Z' produced on-shell, very large cross-section

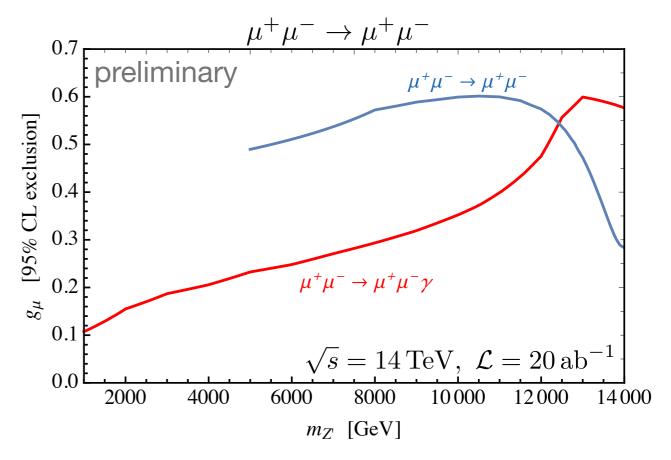


Problem: how do we look for resonances of unknown mass at fixed √s?

I. "Radiative return": produce resonance on-shell with ISR



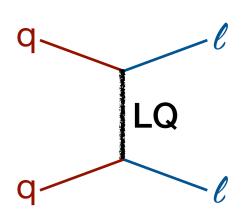
II. Off-shell Z' exchange $(\mu\mu \rightarrow ff \text{ cross-section})$



kinematical cuts: $p_T > 20\,{
m GeV}, \quad |\theta| > 5^\circ$ QED corrections $pprox \frac{2\alpha}{\pi}\log\frac{s}{m_u^2} \lesssim 10\%$ 56

Coloured resonances: 3rd generation leptoquarks

- Different signature compared to more "standard" BSM
- Interesting: NP coupled to 3rd generation fermions (B physics anomalies!)



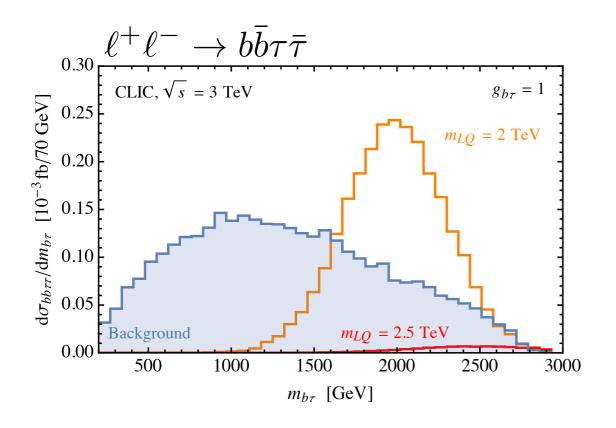
- Can be either scalar or vector
- Difficult searches at LHC: High Lumi reach ~ 1.5 TeV
 - → $\sqrt{s} > 3$ TeV interesting range for lepton colliders

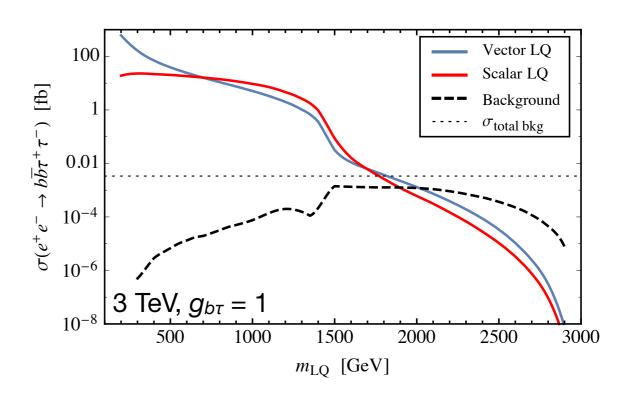
3rd generation LQ production at a lepton collider:

- Pair production: large cross-section when allowed, does not depend on coupling to fermions
- Single production: radiation from bb or ττ pair
 - ⇒ bbtt final state, with $m_{b\tau} \sim M_{LQ}$

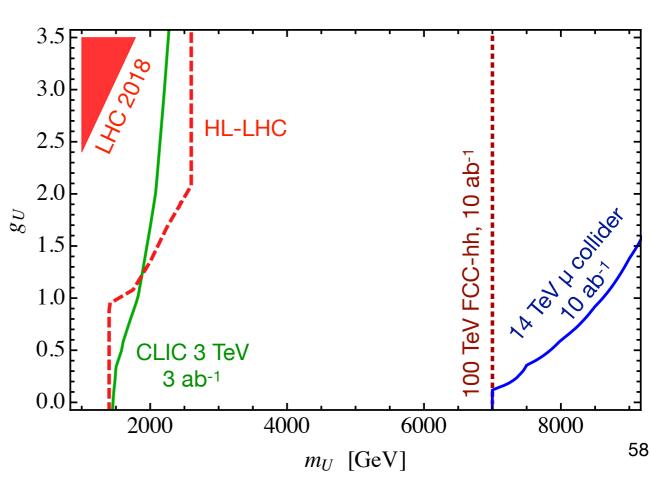
B, Greljo, Marzocca, Nardecchia 2018

Coloured resonances: Leptoquarks





- Search is almost background-free:
 We set a bound simply by
 requiring 10 signal events
- The main limitation for CLIC
 is the c.o.m. energy: room for
 huge improvement at a μ-collider



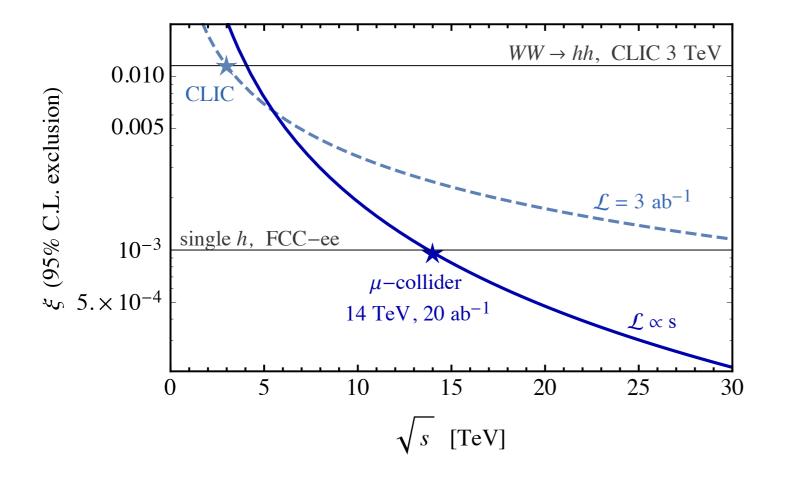
hh at high mass

♦ E = 3 TeV, \mathcal{L} = 3 ab⁻¹: $\xi = c_H v^2 \lesssim 0.01$

Contino et al. 1309.7038

* Rescale to higher energies: $\xi \propto \frac{1}{E^2} \frac{1}{\sqrt{N_{\rm bkg}}} \propto \frac{1}{E^2} \frac{1}{\sqrt{\mathcal{L}/E^2}} = \frac{1}{E\sqrt{\mathcal{L}}}$

(assumption: cuts rescaled with E, and bkg composition unchanged)



High-energy WW → hh becomes more sensitive than Higgs pole physics at energies > 14 TeV

$$\sqrt{s} = 14 \,\text{TeV}, \ \mathcal{L} = 20 \,\text{fb}^{-1}$$
 $\xi < 10^{-3}$
 $c_H^{-1/2} > 8 \,\text{TeV}$

$$\sqrt{s} = 30 \,\text{TeV}, \ \mathcal{L} = 90 \,\text{fb}^{-1}$$
 $\xi < 2 \times 10^{-4} \ c_H^{-1/2} > 17 \,\text{TeV}$

More details on the hh(4b) analysis

Efficiencies for signal and background:

Cut	$\epsilon_{ m sig}$	$\epsilon_{ m bkg}^{4b2 u}$
$E_{\rm miss} > 30 {\rm ~GeV}$	90%	95%
4 b-tags	50%	35%
$m_{bb} \in [88, 129] \text{ GeV}$	64%	23%
$ \cos\theta < 0.94$	96%	63%
$m_{4b} \in [770, 1070] \text{ GeV}$	98%	2.8%
Total efficiency	27%	1.3×10^{-3}

(a) CLIC 1.5 TeV,
$$m_{\phi} = 1$$
 TeV

Cut	$\epsilon_{ m sig}$	$\epsilon_{ m bkg}^{4b2 u}$
$E_{\rm miss} > 30 {\rm ~GeV}$	94%	96%
4 b-tags	51%	33%
$m_{bb} \in [88, 137] \text{ GeV}$	60%	15%
$ \cos\theta < 0.95$	97%	58%
$m_{4b} \in [1.5, 2.04] \text{ TeV}$	91%	0.7%
Total efficiency	26%	2×10^{-4}

(b) CLIC 3 TeV,
$$m_{\phi} = 2$$
 TeV

WW fusion

Single and double production cross-sections:

$$\sigma_{e\bar{e}\to\nu\bar{\nu}S} = \sin^2\gamma \frac{g^4}{256\pi^3} \frac{1}{v^2} \left[2\left(\frac{m_{\phi}^2}{s} - 1\right) + \left(\frac{m_{\phi}^2}{s} + 1\right) \log\frac{s}{m_{\phi}^2} \right] \simeq \sin^2\gamma \frac{g^4}{256\pi^3} \frac{\log\frac{s}{m_{\phi}^2} - 2}{v^2},$$

$$\sigma_{e\bar{e}\to\nu\bar{\nu}SS} = \frac{g^4 |\lambda_{HS}|^2}{49152\pi^5} \frac{1}{m_{\phi}^2} \left[\log\frac{s}{m_{\phi}^2} - \frac{14}{3} + \frac{m_{\phi}^2}{s} (3\log^2\frac{s}{m_{\phi}^2} + 18 - \pi^2) + \mathcal{O}\left(\frac{m_{\phi}^4}{s^2}\right) \right],$$

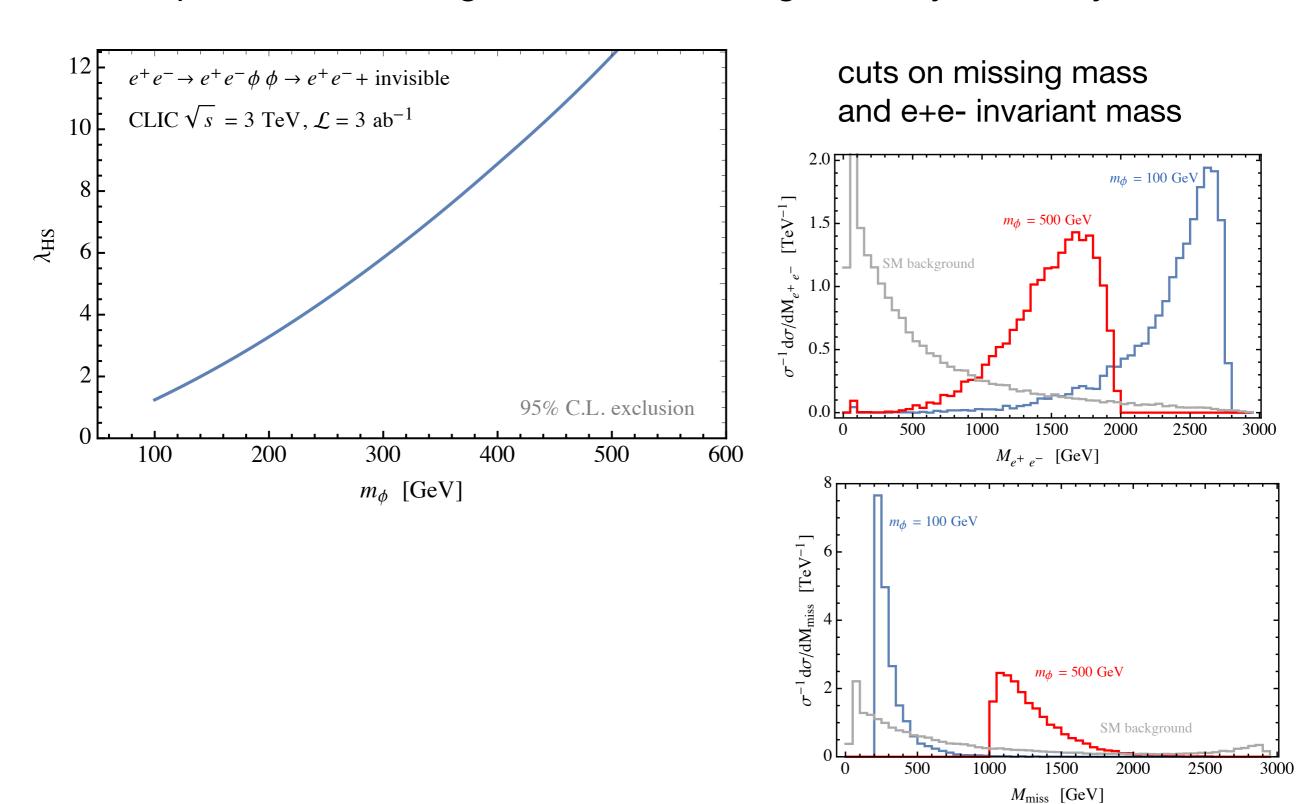
from W-pdf's
$$\frac{d\sigma}{d\hat{s}} = \frac{\hat{\sigma}_{V_i V_j \to X}(\hat{s})}{s} \mathscr{C}_{V_i V_j}(\hat{s}), \quad \text{with} \quad \mathscr{C}_{V_i V_j}(\hat{s}) = \int_{\hat{s}/s}^1 \frac{dx}{x} f_{V_i}(x) f_{V_j}(\frac{\hat{s}x}{s})$$

Approximate limit on mixing angle:

$$\sin^2 \gamma \times \text{BR}(\phi \to f) \approx 0.02 \left(\frac{1/\text{fb}}{L}\right) \times \left[\log \frac{s}{m_{\phi}^2} - 2 + \frac{m_{\phi}^2}{s} \left(\log \frac{s}{m_{\phi}^2} + 2\right)\right]^{-1}$$

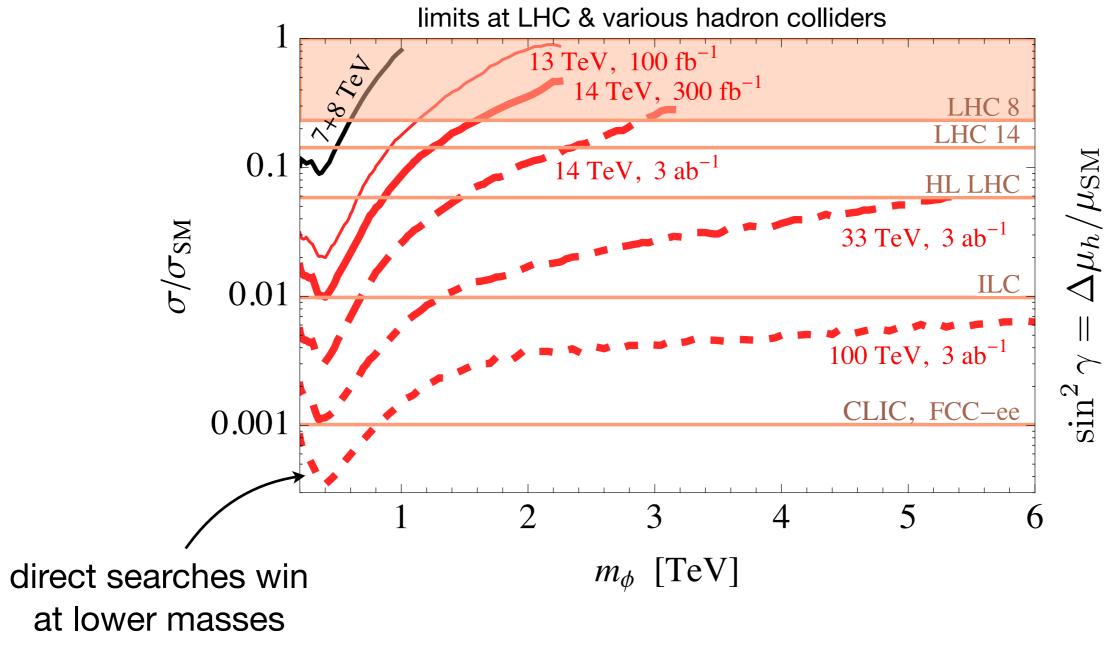
Invisible singlet

Double production of singlet in Z-fusion, singlet decays invisibly



Direct vs indirect searches

Very easy to relate direct searches and Higgs couplings: [see also 1505.05488]



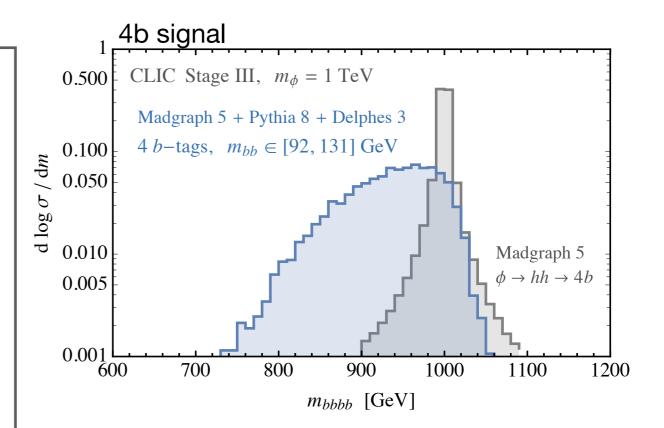
What about a Muon Collider?

hh(4b) decay channel

Main backgrounds: hh, Zh, ZZ. We simulate the full process $e^+e^- \rightarrow 4b + 2v$

1807.04743 — 3 TeV CLIC –

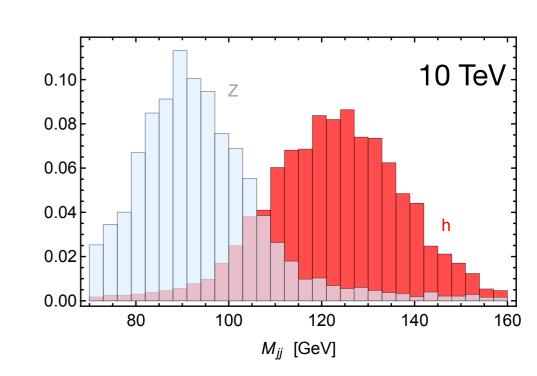
- Detector simulation with CLICdp Delphes card
- VLC exclusive jet reconstruction, N = 4, R = 0.7
 + 4 b-tags (loose tagging algorithm)
- h reconstruction: select the b pairs that give the best fit to two 125 GeV Higgs bosons, $90 \text{ GeV} < m_{bb} < 130 \text{ GeV}$
- ϕ reconstruction: 0.75 $m_{\phi} < m_{4b} < 1.05 m_{\phi}$
- Other cuts: $p_T > 20$ GeV, $|\cos \theta_h| < 0.9$



Signal efficiency $\varepsilon_{\text{sig}} \sim 25 - 30\%$

Background reduced by $\varepsilon_{bkg} \sim 10^{-3} - 10^{-4}$

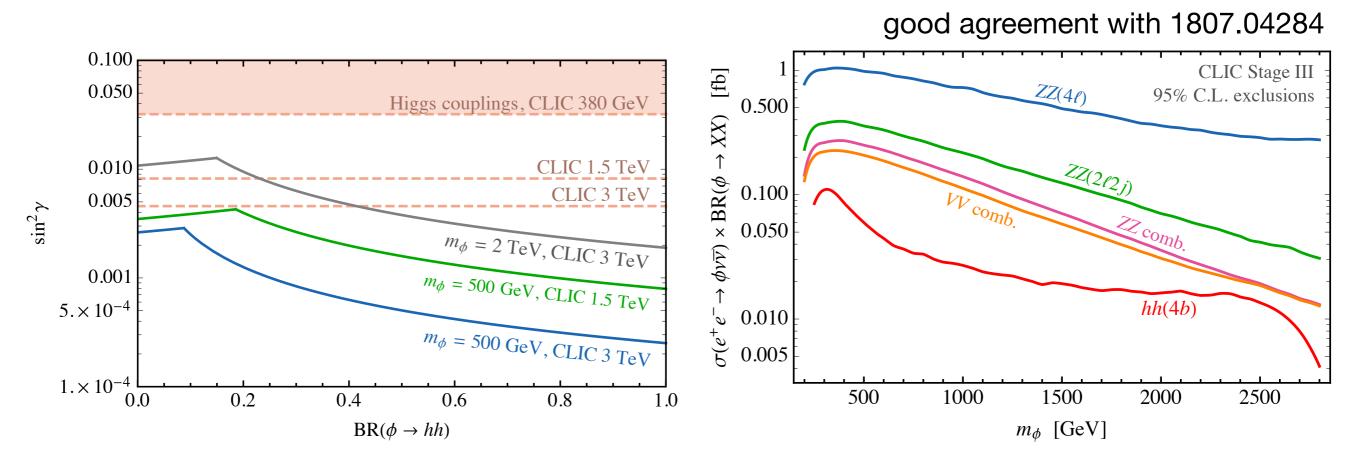
Checked (at parton level) that results still hold at 10 TeV: $\epsilon_{sig} \sim 30\%$ assuming similar detector performance



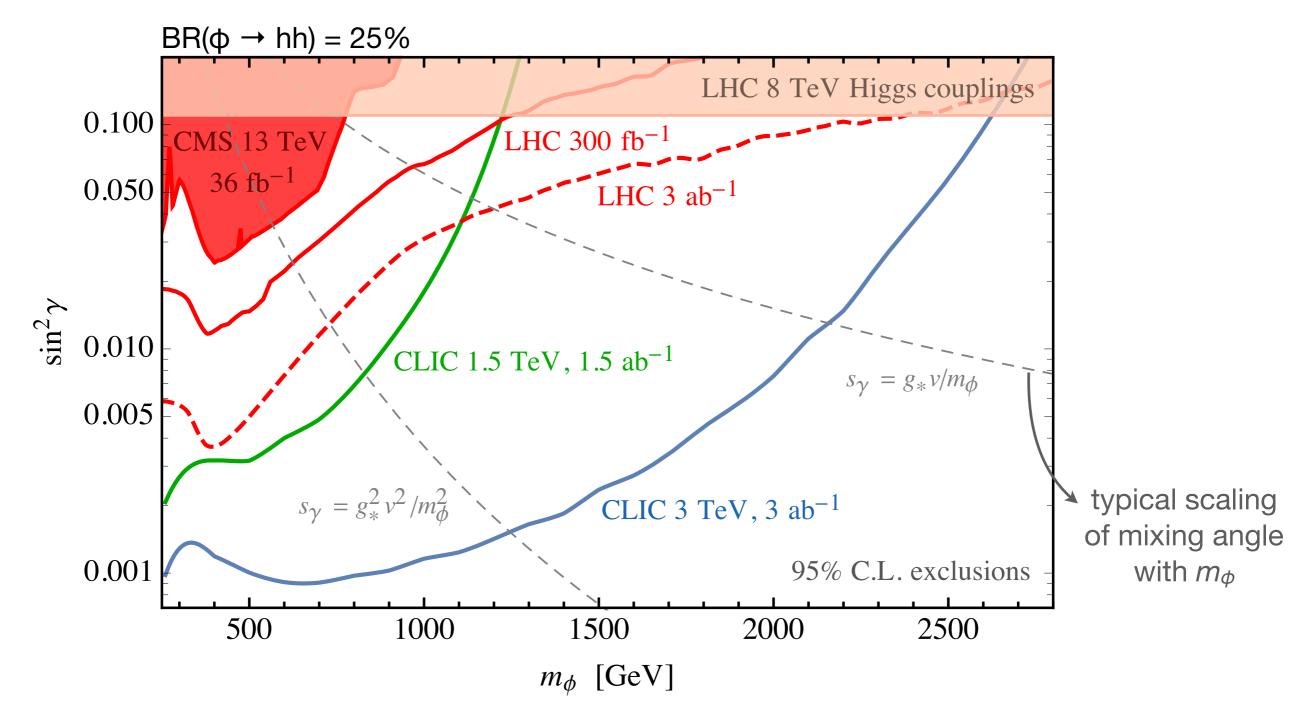
(see also my talk of last month)

The reach in di-bosons at CLIC

- For BR($\phi \rightarrow hh$) ~ 0.25, the most sensitive channel is $\phi \rightarrow hh \rightarrow 4b$
- Low backgrounds: limits depend weakly on ϕ mass and collider energy
- $\phi \rightarrow VV$ less sensitive, but complementary (BR($\phi \rightarrow hh$) can be small)
- $\phi \rightarrow VV$ analysis done at parton-level: ZZ inv. mass in a window around the resonance peak... we checked that it reproduces the full result very well



Direct vs indirect reach



CLIC @ 3 TeV is capable to significantly improve over the reach of HL-LHC