

TPA-TCT measurements status

F9 Weekly, 06. 08. 2021

Bojan Hiti, F9, Jožef Stefan Institute (JSI)

Ljubljana TPA-TCT setup

- Based on FYLA LFC 1500X fs laser (λ=1550 nm)
- Readout electronics and DAQ based on standard Particulars TCT

Sample and measurement

- Sample:
 - 6 x 6 mm p-in-n pad diode, metalization opening 2 mm
 - Thickness 300 μ m, Vfd=20 V, 10 k Ω ·cm, unirradiated
- Charge = time integral (25 ns) of TCT-pulse
- Amplifier output calibrated with Am²⁴¹ alpha source (5.4 MeV)

Bojan Hiti (IJS)

F9 Weekly

10.09.2021

Fit Error function at different z
→ extract w(z)
→ extract w0

$$I(r, z, t) = \frac{E_p}{\tau} \frac{4\sqrt{\ln 2}}{\pi^{\frac{3}{2}} w^2(z)} \exp\left[-\frac{2r^2}{w^2(z)}\right] \exp\left[-4\ln 2\frac{t^2}{\tau^2}\right]$$

Beam radius w $w(z) = w_0 \sqrt{1 + \left(\frac{\lambda z}{\pi w_0^2 n}\right)^2}$

Rayleigh length z0 $z_0 = \pi w_0^2 n / \lambda$

w is the 2σ radius of the intensity profile and $w(z_0) = \sqrt{2}w_0$

 $\left(\frac{\lambda z}{\pi w_0^2 n}\right)^2$ Beam radius w $w(z) = w_0 \mathbf{1}$ $z_0 = \pi w_0^2 n / \lambda$ Rayleigh length z0 w is the 2σ radius of the intensity profile and $w(z_0) = \sqrt{2}w_0$ z0 = 18 um charge generated in approx. \pm 2 z0 \rightarrow 72 um signal size $w_0 = 1.59 \ \mu m$

120 140 160 180 z (µm)

Longitudinal spot size

Bojan Hiti (IJS)

F9 Weekly

10

SEU potential

- LGAD mortality studies require charge of the order of 30M e-h pairs
 - Can it be done with TPA?
- Maximized laser signal
- HPK LGAD 2.5e15 biased to 700 V \rightarrow failed in DESY test beam
- No defects observed with TPA
- There is still potential to increase pulse energy, but setup overhaul
 - Reduce losses on optical bench
 - Pin = 100 mW, Pout = 15 mW

Edge TPA-TCT

- Try Edge-TCT configuration using strip detector (CHESS 2)
- So far no signals yet observed

Beam locating with IR camera

- CERN uses an IR camera to see the location of the beam on the sample
- Huge simplification for structure searching
- Can see through silicon \rightarrow for example backside injection \rightarrow see structures on the front side + beam spot
- Beam intensity loss due to semi transparent mirrors

NIT WiDy SenS 640G-STE

CERN solution:

- VGA 640×512, Pitch : 15µm
- Dual-mode InGaAs sensor (Lin&Log)
- Near-Infrared Imaging up to 1700nm
- Dynamic Range 120dB typical in Log, 63dB typical in CTIA (Low Gain), 49dB typical in CTIA (High Gain)
- TEC on/off
- Up to 225fps full frame
- GigE output
- NUC, BPR & AGC On-board
- Power Over Ethernet (PoE) option

F9 Weekly

1500-1600nm NIR CCD USB 2.0 Camera

< 100 >	Stock #87-094 \$2,595.00		✓IN STOCK 1 C		
	Qty 1+ \$2,595.00	Qty 2+ \$2,465.25	Volume Pricing Request Quote	+ Add to Saved List	
1500 - 1600nm NIR CCD USB 2.0 Camera (Front)					

• •

Product Family Description

- Phosphor Coated CCD Array
- Spectral Peaks at 1512nm and 1540nm
- Includes Camera, Cable, and Easy-to-Use Software

The 1500 – 1600nm NIR CCD USB 2.0 Camera is ideal for laser alignment, telecommunications testing, and inspection applications. This 1.3MP camera features USB 2.0 output and CS-mount threading. A C-mount adapter is included for increased flexibility. The 1500 – 1600nm NIR CCD USB 2.0 Camera includes a two meter USB 2.0 cable, capture software, tripod adapter, and getting started guide.

IR illumination

IR Mounted LEDs (780 - 1650 nm)

				EAN					
Item #	Info ^a	Nominal Wavelength ^b	Housing Type ^c	LED Output Power (Min / Typ.) ^{b,d}	Bandwidth (FWHM)	Irradian (Typ.)€			iewing Angle \ngle at Half Max)
M780L3	0	780 nm		200 mW / 300 mW	28 nm	47.3 μW/n	THOREAD		20°
M780LP1	0	780 nm		800 mW / 950 mW	30 nm	13.3 µW/n	SM1RC		120°
M810L3	0	810 nm		325 mW / 375 mW	25 nm	61.8 µW/mm∠	500 mA	3.6 V	20°
M810L4	0	810 nm		363 mW / 542 mW	32 nm	23.7 µW/mm ²	1000 mA	3.55 V	80°
M850L3	0	850 nm		900 mW / 1100 mW	30 nm	22.9 µW/mm ²	1200 mA	2.95 V	90°
M850LP1	0	850 nm		1400 mW / 1600 mW	30 nm	19.4 µW/mm ²	1500 mA	3.85 V	150°
M880L3	0	880 nm		300 mW / 350 mW	50 nm	5.6 µW/mm ²	1000 mA	1.7 V	132°
M940L3	0	940 nm		800 mW / 1000 mW	37 nm	19.1 µW/mm ²	1000 mA	2.75 V	90°
M970L4	0	970 nm		600 mW / 720 mW	60 nm	7.4 µW/mm ²	1000 mA	1.9 V	130°
M1050L2	0	1050 nm		50 mW / 70 mW	60 nm	1.9 µW/mm ²	700 mA	1.5 V	120°
M1050L4	0	1050 nm		160 mW / 210 mW	37 nm	3.7 µW/mm ²	600 mA	1.4 V	128°
M1100L1	0	1100 nm		168 mW / 252 mW ^g	50 nm ^g	18.1 µWmm ^{2 d,g}	1000 mA ^g	1.4 V ^{d,g}	18° ^{g,h}
M1200L3	0	1200 nm		30 mW / 35 mW	80 nm	0.7 µW/mm ²	700 mA	1.4 V	134°
M1300L3	0	1300 nm		25 mW / 30 mW	80 nm	0.6 µW/mm ²	500 mA	1.4 V	134°
M1450L3	0	1450 nm		31 mW / 36 mW	80 nm	0.4 µW/mm ²	700 mA	1.15 V	136°
M1550L3	0	1550 nm		31 mW / 36 mW	102 nm	0.5 µW/mm ²	1000 mA	1.35 V	136° 600
M1650L4	0	1650 nm		13 mW / 16 mW	120 nm	1.2 µW/mm ²	600 mA	1.1 V	20°

942951

M1550L3 Spectrum 1.0 Normalized Intensity 0.8 0.6 0.4 0.2 0.0-1300 1400 1500 1600 1700 1200 1800 Wavelength (nm)

Typical Spatial Radiation Distribution

• Is 35 mW sufficient?