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ABSTRACT

Although almost fully automated, the discovery of novel, effective, and safe drugs is still a long-term 
and highly expensive process. Consequently, the need for fleet, rational, and cost-efficient development 
of novel drugs is crucial, and nowadays the advanced in silico drug design methodologies seem to ef-
fectively meet these issues. The aim of this chapter is to provide a comprehensive overview of some of 
the current trends and advances in the in silico design of novel drug candidates with a special emphasis 
on 6-fluoroquinolone (6-FQ) antibacterials as potential novel Mycobacterium tuberculosis DNA gyrase 
inhibitors. In particular, the chapter covers some of the recent aspects of a wide range of in silico drug 
discovery approaches including multidimensional machine-learning methods, ligand-based and structure-
based methodologies, as well as their proficient combination and integration into an intelligent virtual 
screening protocol for design and optimization of novel 6-FQ analogs.
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INTRODUCTION

The discovery process of novel, effective and safe drugs, from day to day is becoming more advanced 
and sophisticated. Today, the profit- and innovation-based competition between the pharmaceutical 
companies is increasingly growing (Cavazzani, 2010). In addition to the profit, the process of discovery 
a new drug is not only long-term, but also highly expensive. It was estimated that a new drug discovery 
program is approximately 12-15 years long and takes around 200-300 millions to one billion dollars 
(Rawlins, 2004; Bartfai & Lees, 2006; Hughes et al., 2011). To alleviate this growing problem, nowa-
days the drug research efforts are mainly directed toward reducing the discovery costs as well as the 
time required. In that regard, the in silico drug discovery methods were found as particularly important 
to effectively meet these issues.

As depicted in Figure 1, the lead discovery part (which is constructed of several interconnected 
sub-phases) of the drug discovery pipeline can be considered as the essential one (Kenny et al., 1998; 
Langer & Hoffmann, 2001). Owing to the rapid development of various computational methods that 
today could readily and efficiently be applied in different lead discovery segments, one can observe 
a significant progress in reducing its durability to amazing 2-3 years (Figure 1). However, within the 
framework of the entire drug discovery process it is still a long period of time and therefore a further 
time reduction is certainly welcomed.

In the seventies of the previous century, the discovery of novel lead compounds was substantially 
based on a random screening of large chemical libraries comprised of chemicals of different origin. This 
approach has been initially used for discovery of new antibiotics. The drug discovery practice demon-
strated that on average only one potential lead from a library containing around 20.000 molecules could 
be identified using the random screening approach (Young et al., 1996). Since the 1980s, with the growth 
and development of robotics and miniaturization of the in vitro testing methods, it became possible to 
screen hundreds of thousands of compounds on a large number of biological targets (Gribbon & Sew-
ing, 2005), i.e., a methodology widely known as high-throughput screening (HTS). Nevertheless, such 
a philosophy postulated under the idea, the greater is the starting chemical library, the higher are the 
chances to identify a biologically-active molecule, was disappointing for many pharmaceutical companies 
(O’Driscoll, 2004). These failures as well as the daily progresses in molecular and structural biology 
were the major driving force to elevate the discovery of novel drugs to a significantly higher, knowledge-
based level commonly known as the rational drug design (Mavromoustakos et al., 2011). Moreover, the 
advances in the computation and strategies such as 2D/3D computer-aided molecular design (CAMD) 
opened a new perspective into the drug discovery world. Nowadays, the in silico screening methods 
are indeed an efficient supplement to the experimentally grounded HTS methods, becoming an integral 
segment of the hit identification and lead generation processes (Klebe, 2006; Stahura & Bajorath, 2004; 
Bajorath, 2002; Shoichet, 2004; Bleicher et al., 2003).

The present text aim to report some of the recent trends and advances in the in silico design of novel 
drug candidates – from chemical sketches to predicted active conformations. Specifically organized 
in two, tutorial-like parts (theoretical and practical), this chapter is not strictly intended to expose the 
thorough theoretical and mathematical background behind the in silico methodologies employed, but 
rather to guide the reader through the different steps of the in silico design and prediction of novel 
biologically-active hits. Put differently, the theoretical part gives an overview of various attentively se-
lected computational methodologies proficiently integrated into an efficient in silico screening framework 
including quantitative structure-activity relationship (QSAR) methods, virtual combinatorial library 
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design, property-based screening and construction of focused “drug-like” libraries as well as ligand- 
and structure-based methodologies coupled with virtual screening (VS) for identification and selection 
of novel hit compounds. On the other hand, the second part of this chapter is primarily focused on the 
practical implementation of these methods for design of 6-fluoroquinolone (6-FQ) antibacterials as po-
tential novel Mycobacterium tuberculosis DNA gyrase inhibitors. It covers all the aspects described in 
the theoretical part, but proficiently assembled and integrated into an intelligent VS protocol that could 
aid not only the development of new drugs in general, but also to shorten the time required.

Background

During the last five decades, a wide variety of in silico drug design approaches have been invented that 
undoubtedly altered the drug discovery paradigm – a rapid and cost-efficient development of potent 
and safe drugs. Nowadays, we have witnessed the effectiveness and benefits of these methods as some 
of them have not only facilitated the drug discovery in its entirety, but also became a golden standard to 
success (Ekins et al., 2007; Bharath et al., 2011; Cumming et al., 2013).

From the plethora of computational methods available today, just a few can be regarded as of excep-
tional importance for the purposes of modern drug discovery. From simple numerical predictions of 
biological activity values for compounds, which have not yet been synthesized, to possible intuitively 
based revelation of compound-protein interactions, these methods could be recognized as pivotal indi-
visible approaches within the framework of the entire drug discovery process. This list of in silico drug 
design approaches includes machine-learning (statistical) methods such as the QSAR, the methodology 
for virtual combinatorial library design, the property-based filtering approaches as well as the ligand- 
and structure-based methodologies (Ekins et al., 2007). Notwithstanding their confirmed high potential 
in various lead discovery segments, one cannot expect a successful identification of novel drug candi-
dates when these methods are used separately. Consequently, their proficient assemblage into powerful 
in silico screening protocols for fast and accurate predictions of novel compounds can be regarded as 
a major challenge of many computational chemists (Salemme et al., 1997; Lewis, 2005; Nevin et al., 
2012; Tian et al., 2013; Chen, 2013).

Figure 1. Schematic representation of a classical industrial drug discovery pipeline
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In the quest for more sophisticated and efficient ways toward the computational design of novel 
drug candidates, various integrated in silico drug design methodologies are developed and a bundle 
of useful examples can be found in the literature. A straightforward and frequently utilized in silico 
integrations is the methodology of extrapolation of a pre-devised QSAR model for selection and/or 
prediction of the biological activity values for compounds comprising a virtual combinatorial library 
(Liu et al., 1998; Burden & Winkler, 1999; Agrafiotis, 2000; Andersson et al., 2001; Grzybowski 
et al., 2002; Cruz-Monteagudo et al., 2008). As demonstrated, principal component analysis (PCA), 
artificial neural networks (ANNs) or 3D-QSAR models such as the Comparative Molecular Field 
Analysis (CoMFA) are the most widely exploited as robust in silico screening devices for selection 
of hit candidates, while genetic algorithm (GA) or desirability-based methods (e.g., implementation 
of multi-objective optimization for simultaneous mapping of desired drug properties within QSAR 
models) are commonly applied for ranking purposes (Cruz-Monteagudo et al., 2008; Nicolaou & 
Brown, 2013). Notwithstanding their favorable outcome in many cases (Grzybowski et al., 2002), 
it must be taken into account that not every QSAR model is suitable. The lack of validation of the 
established QSAR model, the wrongly assessed or not assessed model’s applicability domain, or 
even the use of mis- and/or non-interpretable molecular descriptors are just a few instances which 
could lead the drug discovery process into a wrong direction (Scior et al., 2009; Bajot, 2010; Sacan 
et al., 2012). Even in cases where the QSAR model is properly established, its implementation just 
as a rough in silico filtering tool for selection of drug candidates from a massive pool of possibilities 
without taking into consideration their druggability properties (Oprea, 2000) could also outcome in 
disappointingly low hit rates. Moreover, the absence of any structural data for the biological target 
or even an a priori knowledge for the structure-activity relationship (SAR) between the investigated 
entities, could additionally contribute to a poor epilogue of the screening strategy.

Conceptually similar, but improved strategies that cover all of these missing aspects or just partially, 
are the methods of employing three-dimensional (3D) structural concepts such as the ligand-based, 
structure-based, or their combination as in silico filters for virtual combinatorial libraries (Hecker et 
al., 2002; Salemme et al., 1997; Shaikh et al., 2007; Krovat et al., 2005; Schlegel et al., 2007; Vilar et 
al., 2009; Zhang et al., 2013; Drwal & Griffith, 2013). As implied by their name, the availability of 3D 
structural information for the ligand(s) and/or biological target(s) usually obtained by X-ray crystal-
lography or NMR is of critical significance for their practical utilization as in silico ligand filters. More 
importantly, these methods could also give a structural insight into the possible ligand-protein interac-
tions – an invaluable information that indicate to, what might be expected or what will be the next step 
toward the design of better hits. Over the years, various straightforward, but also advanced approaches 
have been invented and some of them became a cornerstone of the modern drug discovery. Among 
them, the ligand-based and its more advanced counterpart the structure-based pharmacophore modeling 
concept as well as the methodology of molecular docking of ligands into a defined protein binding site 
are the most commonly utilized for virtual ligand screening (Wolber & Langer, 2005; Wolber & Kosara, 
2006; Schlegel et al., 2007).

However, the majority of these methods are principally not designed for in silico screening of ex-
tremely massive compound libraries (small-scale screening methods), but rather reduced target-focused 
libraries (Harris et al., 2011), which can be obtained by integration of various rational knowledge-based 
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pre-processing strategies (e.g., QSAR-based activity predictions and screening, “drug-likeness” filtering, 
etc.). Numerous examples demonstrating a high successful rate when using such combined approaches 
are available elsewhere in the literature and some of the recent are summarized in Table 1.

The current state-of-the-art in the in silico design of novel drug candidates includes more powerful, 
large-scale, integrative methods, which take into consideration various drug design aspects specifically 
constructed to operate in a simultaneous fashion. The workflow and automation technologies available 
today are capable for concurrent, complex processing of billions of compounds in an astonishingly 
fast manner (KNIME1, Accelrys Pipeline Pilot2; Warr, 2012). Based on an elegant and simple idea 
to visually connect a plenitude of available pre-constructed open-source and commercial component 
collections (e.g., CDK3, RDKit4, Indigo5, Enalos6, HCS-Tools7, SeqAn8, Molecular Networks9, Bio-
SolveIT10, Cresset11) into powerful, effective, and fully customizable data pipelines, these scientific data 
workflow systems were initially developed for solving various chem- and/or bioinformatic problems 
(e.g., Taverna12; Kuhn et al., 2010; Truszkowski et al., 2011). However, over the years much broader 
scientific fields are covered and this trend is growing constantly. Nowadays, the breakthroughs in 
the high-performance computing also enable virtualization of the traditional HTS methods through 
implementation of high-throughput virtual docking (HTD) experiments on multiple various biologi-
cal targets (Ellingson et al., 2013; Ellingson, Dakshanamurthy et al., 2013). Moreover, the recent 
explosion in the internet-based cloud technologies allow not only cloud-deposition, integration, and 
global accessibility of these cutting-edge in silico drug design solutions (Ellingson & Baudry, 2012; 
Hsu et al., 2013), but also facilitate the complete drug discovery process via simplified, shareable, 
collaborative research (InhibOx13, ScienceCloud14).

This chapter illustrates a useful, small-scale integrated in silico screening approach for fast and 
efficient design of novel drug candidates. For this purpose, various mindfully selected 2D/3D in 
silico methodologies are covered and their proficient integration into a powerful knowledge-based 
virtual screening protocol is discussed. Special emphasis is given to the data flow and their gradual 
knowledge-based evolvement from a simple 2D to 3D environment followed by a rational concomitant 
data reduction for final selection of hit candidates.

Table 1. A summary of various successful in silico drug design integrations (LBD, ligand-based design; 
SBD, structure-based design) 

In Silico Drug Design Methodologies
References

QSAR Drug-Likeness 
Assessment LBD SBD

+ + + - Khalaf et al., 2010; & Abuhamdah et al., 2013

+ - + - Yang et al., 2013; & Kamaria et al., 2014

+ +/- - + Hu et al., 2013; Tan et al., 2013; 
Ul-Haq et al., 2013; & Zheng et al., 2014

+ +/- + + Musmuca et al., 2010; Coi et al., 2013; 
Gozalbes et al., 2013

+ + + + Shaikh et al., 2007; Tian et al., 2013



274

Integrated in Silico Methods for the Design and Optimization of Novel Drug Candidates
 

QSAR-AIDED IN SILICO INTEGRATIONS FOR 
SMALL-SCALE LIGAND SCREENING

As reviewed so far, the integrated in silico approaches for small-scale ligand screening are probably 
the most frequently exploited. To demonstrate their practical utilization for selection of promising hit 
candidates from a large number of possibilities (e.g., a combinatorially-generated compound library), 
we propose here an effective virtual screening platform (Minovski et al., 2012; Minovski et al., 2013) 
by integrating various in silico drug design methodologies (Figure 2).

As represented in Figure 2, one can perceive that the overall in silico screening strategy is fundamen-
tally constructed of five crucial interconnected levels:

Figure 2. Graphical overview of our proposed integrated in silico screening platform for design and 
identification of novel hit candidates
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1.  Predictive QSAR modeling.
2.  Virtual combinatorial library design by SAR-based fragments examination.
3.  Property-based druggability assessment and QSAR-driven construction of a focused “drug-like” 

combinatorial library.
4.  Structure-based virtual screening and post-processing of QSAR prioritized “drug-like” combinato-

rial compounds.
5.  Hits identification, selection, and novel SAR recommendations.

The main idea behind such an integrated screening concept lies in the generation of a small 
molecular subspace, which can be regarded as a part of the available chemical space as well as its 
subsequent knowledge-based gradual reduction for identification of novel hit molecules. Neverthe-
less, it was estimated that the entire chemical space, which can be regarded as an ensemble of all 
possible molecular entities contain around 1060 biologically-relevant molecules that form the so-called 
“drug-like” chemical space (Raymond et al., 2010; Deng et al., 2013). Consequently, the objective is 
not to explore such a large molecular pool, but rather to generate, identify, isolate, and select a small, 
discrete molecular subspace that fulfill our needs – interaction with the biological system under study 
(Hopkins, 2008). Therefore, a crucial question arises: Are we capable to create such a small “drug-like” 
molecular subspace that will serve as a source for hit(s) mining? The answer to this question resides 
in the distinction between two substantial aspects:

1.  Generation of an isolated combinatorial chemical space comprised of all possible structural 
analogs (e.g., novel compounds under investigation) through implementation of the virtual 
combinatorial library design approach, and

2.  Encirclement and extraction of its embedded “drug-like” combinatorial subspace by sequential in 
silico knowledge-based evaluation supported by property-based filtering, QSAR-driven activity 
prediction, and structure-based virtual screening methodologies.

If carefully done, these two aspects could not only enable the generation of a high-quality “drug-
like” chemical library, but could also significantly contribute to a favorable outcome at the end of 
the screening strategy.

Predictive QSAR Modeling

One of the earliest, but still popular and useful computational strategies in the modern drug discovery is 
assuredly the methodology of establishing a quantitative relationship between the chemical structures for 
a given compound’s class and their experimentally-determined property values (Katritzky et al., 1997), 
i.e., an in silico modeling (statistical) technique commonly known as a quantitative structure-property 
relationship (QSPR). In the scope of the medicinal chemistry, the term “property” usually refers to an 
experimentally measured biological activity (e.g., IC50) or even toxicity (e.g., TD50) value and conse-
quently the acronym QSPR could be referred as QSAR (quantitative structure-activity relationship) 
or QSTR (quantitative structure-toxicity relationship). It was found that the concept of modeling the 
structure-activity relationship (SAR) of chemicals in a quantitative manner is of vital importance in 
various drug discovery segments (Gussio et al., 1996; Ekins et al., 2002; Lee et al., 2004; Kuz’min et 
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al., 2007). Regardless of its wide application for plain numerical predictions of biological activities or 
physicochemical properties for novel compounds, mechanistic interpretation of their chemical and/or 
biological nature encoded in a form of molecular descriptors, or even understanding the physicochemi-
cal features influencing the compound’s biological response, nowadays QSAR could be recognized as a 
viable approach within the framework of the modern multidimensional lead optimization (Lewis, 2005; 
Gedeck & Lewis, 2008).

Conceptually, QSAR is based on the essential principles of medicinal chemistry, by which the biological 
activity of a compound is in relation to its molecular structure. As a consequence, one could expect that 
structurally similar compounds may have similar biological activities (Esposito et al., 2004). In QSAR, 
the structural features of the compounds under study are usually encoded in a numerical form commonly 
known as molecular descriptors. Therefore, QSAR could also be regarded as a mathematical relationship 
between the calculated molecular descriptors (independent variables) and in vitro measured biological 
activity values (dependent variables) for a set of known molecules. The obtained result is commonly 
expressed in a form of predictive mathematical model, which could readily be utilized for estimation of 
the biological activity values for novel, not yet synthesized compounds (Figure 2).

When QSAR as a paradigm was introduced for the first time in its entirety in the middle of the pre-
vious century (Free & Wilson, 1964; Hansch & Fujita, 1964), a plethora of QSAR approaches have been 
devised. Except the traditional 2D-QSAR methods (e.g., the popular Free-Wilson and Hansch-Fujita 
models), which are still very useful, a further breakthrough in the QSAR progress was the introduction 
of 3D-QSAR methods (Cramer et al., 1988) such as the comparative molecular field analysis (CoMFA) 
and its relative, the comparative molecular similarity indices analysis (CoMSIA). Since then, the de-
velopment of QSAR approaches drastically evolved and several multidimensional QSAR congeners 
(e.g., 4D-, 5D, and 6D-QSAR approaches) were introduced recently (Lill, 2007; Vedani et al., 2005).

No matter which modeling method is employed, the general procedure for construction of a 
statistically-reliable predictive QSAR model is assembled of several consecutive steps: dataset prepa-
ration, dataset division on the so-called training and test set, calculation of molecular descriptors 
for both sets, modeling on the training set compounds with a simultaneous internal validation and 
selection of statistically-significant molecular descriptors, and finally assessment of the predictive 
power of the constructed QSAR model for estimation of the biological activity values for previously 
excluded test set compounds (Figure 3).

As shown in Figure 3, only training set compounds are considered in the construction of the QSAR 
model. In a mathematical sense, the aim is to establish a correlation between the chemical structures 
of the investigated compounds (training set objects) expressed in a form of calculated molecular 
descriptors and their corresponding biological activity values (Equation 1).

pA c c d c d c d c d
i i

= + + + + +
0 1 1 2 2 3 3

....  (1)

where pA denotes the biological activity A in the series expressed as a negative decade logarithm, ci are 
coefficients (the fitted parameters), while di are the calculated molecular descriptors for each compound 
i comprising the training set. For the purpose of modeling, different correlation methods (modeling 
algorithms) are available (Golbraikh & Tropsha, 2002), which can be generally divided in two major 
categories: linear modeling methods (e.g., multiple linear regression (MLR), partial least squares (PLS), 
etc.) and non-linear modeling methods (e.g., k-Nearest Neighbors (kNN), artificial neural networks 
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(ANN), support vector machines (SVM), etc.). Moreover, the squared correlation coefficient is frequently 
used as a measure for the quality of the established predictive QSAR model, which can be calculated 
as follows (Equation 2):
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where ntr indicates the total number of objects (compounds) in the training set, ŷ
i
andy

i
are the predicted 

and experimentally-determined (observed) biological activities for the i-th compound in the training set, 
respectively, whiley designates the average of the observed values.

Another important aspect, which directly determines the predictive quality of the established 
QSAR model, refers to its properly performed validation (internal and external). It has been dem-
onstrated that during the modeling, if the number of independent variables (molecular descriptors) 
is comparable to or higher than the number of objects (training set compounds), the probability 
to encounter a chance correlation between the experimental and predicted biological activity for 
the series significantly increases (Topliss & Edwards, 1979). In order to avoid such undesirable 
events, a validation of the established QSAR model is required and nowadays various validation 
criteria are proposed (Consonni et al., 2009; Consonni et al., 2010; Chirico & Gramatica, 2011; 
Roy et al., 2013). During the modeling, some commonly accepted internal validation techniques 
such as cross-validation leave-one-out (CV LOO) or cross-validation leave-many-out (CV LMO) 
are frequently utilized for assessing the statistical stability of the QSAR model (Wold, 1991). The 
estimation parameter carrying the statistical stability of the QSAR model is expressed as a cross-
validated squared correlation coefficient (usually designated as R2

cv or Q2), which can be calculated 
by implementation of the same formula above (Equation 2).

Figure 3. A general QSAR methodology flowchart
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In addition to the internal model validation, the robustness of the established predictive QSAR model 
should also be assessed. In that context, a broadly accepted methodology known as Y-randomization 
is commonly applied (Wold & Eriksson, 1995). The method is grounded on re-building of the QSAR 
model several times (usually around ten or even more) by iterative shuffling (randomizing) the values 
comprising the vector of dependent variables Y (e.g., the biological activity values) within the original 
data matrix, while the independent variables (e.g., molecular descriptors used in the construction of the 
original QSAR model) remain intact. Therefore, one should expect that the newly established random-
ized QSAR models have significantly lower statistical parameters (R2 and Q2) comparing to those of the 
original non-randomized one – a result that clearly demonstrates the significance and robustness of the 
constructed predictive QSAR model. In case this requirement is not satisfied, it generally indicates that 
the established QSAR model is obtained by chance and consequently could be considered as a model 
of a questionable quality for its further application.

The predictive QSAR model thus established and properly validated is now ready for testing of its 
external predictive performances on previously excluded test set compounds, which were not used dur-
ing the model development (external validation of the model). For this purpose, the external validation 
quantifier (Q2

(te/ext)) is determined that reflects the external predictability of the established QSAR model 
and can be calculated by using the following equation (Equation 3):
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where ntr is the total number of training set objects, while n(te/ext) designates the total number of test, i.e., 
external validation set objects, respectively.

Alongside the validation, the assessment of applicability domain (AD) for the established QSAR 
model is another important aspect, which must be taken under consideration as well (Figure 2). It 
directly reflects the model’s reliability for its further practical application (Eriksson et al., 2003). As 
stated by the OECD principles for validation of the QSAR models for regulatory purposes, the QSAR 
model should be used within the boundaries of its clearly defined AD (OECD, 2004). To date, several 
approaches for estimation of the AD for QSAR models have been introduced (Zhang et al., 2006; Sahi-
gara et al., 2012; Minovski, Župerl et al., 2013), which implementation generally vary on the modeling 
routine employed (linear or non-linear). Once the predictive QSAR model is rigorously validated and 
its robustness, predictability, and reliability are properly established, it could be readily extrapolated 
for estimation of the biological activity values for novel compounds (Figure 2).

Virtual Combinatorial Library Design by SAR-Based Fragments Examination

The methodology of compound library design usually refers to the generation of a list of molecules that 
could be synthesized utilizing either solid- or solution-phase combinatorial chemistry approach (Chabala, 
1995; Coe & Storer, 1999). Traditionally, the synthetic combinatorial chemistry alias high-throughput 
synthesis was the major production “device” for boosting the chemical space not only in a quantitative 



279

Integrated in Silico Methods for the Design and Optimization of Novel Drug Candidates
 

manner, but also in the terms of its structural diversity. As mentioned previously, this concept was gen-
erally based on the hypothesis: the bigger and more diverse is the generated chemical space, the higher 
is the probability to identify a potential lead by high-throughput screening (HTS). Unfortunately, such 
a strategy was disappointing for the pharmaceutical industry, since very frequently resulted in an unsat-
isfactory cost-benefit ratio (Lahana, 1999; Ramesha, 2000; O’Driscoll, 2004). Over the years, the drug 
discovery practice has evolved in a direction of swapping such unreasonable strategies with novel, cost-
effective, and smart knowledge-based approaches, and the methodology of virtual combinatorial library 
design (known as combinatorial enumeration) was found as a suitable one (Aronov, 2002). Nowadays, 
by using this in silico approach, one can rapidly and efficiently generate thousands of novel compounds 
in a virtual environment that could effortlessly be manipulated.

Two generally accepted strategies are commonly used for virtual enumeration of combinatorial 
libraries such as the Markush enumeration approach (Leland et al., 1997) as well as the reaction-based 
enumeration approach (Leach et al., 1999; Lobanov & Agrafiotis, 2002). In the Markush enumeration, 
the combinatorial library is characterized by using a Markush structural representation (widely known 
as “Core plus R-groups” molecular representation) that is the main molecular scaffold (the structural 
core of the combinatorial library) with one or more defined variable attachment points expressed as 
R-groups (e.g., R1-, R2-, R3-, etc.) and a set of reagents that should be “clipped” (transformed) into an 
appropriate set of substituents (Figure 4a). On the other hand, in the reaction-based enumeration, the 
combinatorial library is defined by using one- or multi-step generic reaction pathway where the variable 
entities are represented as reactants (e.g., R1-OH, R2-NH2, etc.) as illustrated in Figure 4b. Which one 
of these two approaches will be used, mainly depends on the complexity of the problem as well as the 
user’s preferences (Agrafiotis et al., 2002). For instance, if the synthetic pathway is long and complex, 
and the scaffold representing the final product is clearly defined (no significant inter-reaction scaffold 
changes exist), then the Markush enumeration approach would be appropriate. Conversely, if the scaffold 
is variable and must be progressively constructed during the virtual synthesis, then the reaction-based 
enumeration approach may be the method of choice.

A key part of both enumeration approaches that could directly influence the quality as well as diver-
sity of the generated combinatorial library is the selection of synthetically feasible reactants (e.g., frag-
ments, building-blocks) to be attached at the pre-defined variable scaffold positions. For this purpose, a 
variety of in-house developed or commercial reactants databases are available (e.g., Accelrys ACD15). 
Nevertheless, for the sake of medicinal chemistry, a viable approach is to pre-screen the reactants da-
tabase by using cheminformatically-based fragment-likeness filters such as the widely known “Rule of 
3” (“Ro3”) filtering set (MW ≤ 300 and nHBD, nHBA, nRB ≤ 3), where MW is the molecular weight, 
while nHBD, nHBA, and nRB, designate the number of hydrogen bond donors, hydrogen bond accep-
tors, and rotatable bonds, respectively (Congreve et al., 2003). This procedure assures the location of 
the obtained fragments within the “lead-like” chemical space (Hann & Oprea, 2004). Thus pre-treated, 
the obtained fragments are routinely assembled into fragment libraries, which are now ready to use in 
the next step – fragments selection for combinatorial enumeration.

The fragments selection is frequently done by substructure search (SSS) procedure enforced by the 
fragment(s) designation. For instance, the R1-OH designation determines the SSS-supported retrieval 
of all organic fragments from a fragment library that contain –OH group(s) including alcohols, phenols, 
carboxylic acids, etc. However, if one takes into account all the fragments retrieved by SSS without 
their subsequent examination, then the generated combinatorial library would be so diverse so it can be 
compared to the chemical space obtained by the traditional high-throughput synthesis that is not fully 
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in agreement with our expectations. In order to avoid this, the retrieved fragment subsets should be 
carefully examined (automatically and visually, if possible). In practice, the fragments examination is 
usually SAR-based, and therefore the availability of any SAR knowledge for the molecular entity (e.g., 
a drug with well-established potency) used as a template for analogs design would be of high signifi-
cance. Moreover, the SSS procedure can also be additionally employed for efficient elimination of those 
fragments with undesirable reactive functionalities and thereby the risk for late determination of in vitro 
false positives could be minimized (Rishton, 1997; Rishton, 2003). The fragment subsets prepared by 
using this way can finally enter the combinatorial enumeration process.

Figure 4. Combinatorial enumeration approaches (examples of 6-fluoroquinolones combinatorial librar-
ies): (a) Markush enumeration, (b) reaction-based enumeration, and (c) schematic representation of a 
combinatorial enumeration process for a simple reaction system configured of two subsets of reactants 
R1 (N1…Ni) and R2 (M1…Mj)
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The combinatorial enumeration (virtual combinatorial generation) can be regarded as a straightforward 
procedure of statistical non-repetitive fragmental permutation where each fragment of a given reactants 
subset “interact” with each fragment of the other reactants subsets within the previously defined molecular 
scaffold (Figure 4c). Let’s consider a simple reaction system configured of two subsets of reactants R1 
(N1…Ni) and R2 (M1…Mj). Following the combinatorial enumeration process (Figure 2 and Figure 4c), 
one could easily estimate the total number of combinatorial analogs obtained by the enumeration process 
as a multiplication product between each pair of reactants (N1…Ni and M1…Mj). Mathematically, this 
process can be expressed by using the following equation (Equation 4):

ρ = ×N M
i j

 (4)

where Ni are the total number of fragments within the R1 subset, Mj are the total number of fragments 
within the R2 subset, while ρ is the total number of products (combinatorial analogs) obtained by the 
combinatorial enumeration (Wieland, 1997). Furthermore, an additional check of the constructed virtual 
combinatorial library for duplicate molecular entities and their subsequent removal is frequently a good 
practice (Figure 2).

Property-Based Druggability Assessment and QSAR-Driven 
Construction of a Focused “Drug-Like” Combinatorial Library

As exemplified above, the methodology of virtual combinatorial library design resulted in obtaining 
a general virtual combinatorial library comprised of all possible combinations of structural analogs 
for the compound(s) under study (Figure 2); therefore, it can be regarded as an isolated part of the 
available chemical space (Bohacek et al., 1996). However, the essential question here is, whether this 
isolated molecular pool is useful (at all) for further selection of novel drug molecules?

Previously, we demonstrated that the so-called “drug-like” chemical space was estimated to contain 
approximately 1060 biologically relevant molecules with MW ~ 500 (Raymond et al., 2010; Deng et 
al., 2013). Thus, one should primarily assess whether our isolated virtual combinatorial library repre-
sents a part of it. Moreover, it was found that the combinatorial algorithm in first instance increases 
the molecular complexity (Hann et al., 2001); as a consequence, one should also bear in mind the 
low probability that each generated compound within such a virtual combinatorial library possess 
“drug-like” properties (Walters et al., 1999; Muegge, 2003). To eliminate these dilemmas as well as to 
identify and distill those compounds representing the “drug-like” chemical space, the constructed 
general virtual combinatorial library should be further subjected to a thorough property-based 
druggability assessment (Barril, 2012).

It was found that the “drug-like” properties confer favorable ADMET (absorption, distribution, 
metabolism, excretion, and toxicity) attributes to a compound. However, it is important to clarify 
which are those properties that describe a single molecule as a potential drug? In a broader sense, 
the “drug-like” properties are defined as intrinsic molecular features that can strongly influence the 
optimization of their pharmacological characteristics (Borchardt, 2004). During the last two decades, 
various attempts were made for identification of these molecular properties and clarification of their 
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role. Owing to the seminal work of Christopher A. Lipinski who pioneered the famous “Lipinski’s rule 
of 5” (“Ro5”), the concept of “drug-likeness” acquired a totally new dimension in the drug discovery 
world (Lipinski et al., 1997). It states that the probability for a compound to be poorly absorbed after 
oral administration increases if any two of the following rules are violated:

• Molecular weight (MW) is less than 500 Da.
• Number of hydrogen bond donors (nHBD: OH/NH groups) is equal or less than 5.
• Number of hydrogen bond acceptors (nHBA: O/N) is less than 10.
• Calculated logP is less than 5.0 (by using ClogP) or 4.15 (by using MlogP).

Nevertheless, an important aspect to be taken with precaution when using the “Ro5” as “drug-like” 
filter for druggability assessment is the lipophilicity parameter (logP). Namely, in the “Ro5” drug-
gability filter the logP parameter refers to the lipophilicity of a compound in its neutral state. On the 
other hand, the majority of the drug molecules (~ 95%) prevail in an ionizable state. Since the orally 
administered drugs are mainly absorbed in the small intestine where the environment is slightly 
acidic, the pH parameter should also be considered. Therefore, a modified “Ro5” concept was intro-
duced recently, favoring the implementation of the pH dependent version of logP at intestinal pH 
~ 5.5 (logD5.5), instead of the classical logP parameter for estimation of the compounds lipophilicity 
(Bhal et al., 2007).

Another critical molecular parameter that strongly correlates with the compounds membrane perme-
ability and consequently their oral bioavailability is the polar surface area (PSA) designated as a sum of 
the van der Waals surface areas of the polar atoms (O and N) within the molecule. Accordingly, Daniel 
F. Veber assembled a useful two-parameter rule set, i.e., “Veber rule” by which a molecule is likely to 
have a good bioavailability after oral administration if the following criteria passed (Veber et al., 2002):

• PSA is equal or less than 140 Å2 (or ≤ 12 nHBD + nHBA).
• Number of rotatable bonds (nRB) is equal or less than 10.

In addition to these “drug-like” filters, there are also some other similar rule sets carrying various 
drug-discriminating physicochemical properties including the Pardridge blood-brain barrier (BBB) 
permeability filter (Pardridge, 1995), Clark-Lobell’s BBB permeability filter (Clark, 2003; Lobell et al., 
2003), the Pharmacophore Point Filter (Muegge et al., 2001), and many others. It is important to stress 
out that these in silico filters should not be used indiscriminately, i.e., there must be a solid ground why 
to use one filter, and not another. For instance, if one needs to screen a set of intravenously administered 
compounds for their BBB penetrating abilities, then one of the available in silico BBB permeability 
filters should be applied (e.g., Clark-Lobell’s BBB filter), and not the filters for prediction of intestinal 
absorption (e.g., Lipinski’s Ro5). Once the appropriate “drug-like” filter is selected, it can be proficiently 
employed for in-depth screening of our previously constructed general virtual combinatorial library. 
Those combinatorially-generated compounds (if any) which successfully pass all the pre-defined filter’s 
criteria represent our so-called isolated “drug-like” combinatorial subspace.

The selected compounds are further subjected to the previously constructed predictive QSAR model 
(Figure 2) to obtain in silico prediction of the biological activity values. After sorting the compounds by 
decreasing the predicted biological activities, the priority list could be further reduced if some activity 
range data are available (usually obtained by in vitro functional and/or biochemical studies of known 
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drugs). This could be considered as an additional filter for extraction of those “drug-like” combinato-
rial analogs with predicted biological activity values within the desired pre-defined activity range. For 
example, the in vitro inhibition assays of 6-fluoroquinolone (6-FQ) antibacterials against M. tuberculosis 
DNA gyrase enzyme revealed that these inhibitors are active in the range of 0.0 ≤ MIC [μg/mL] ≤ 1.0-
2.0, where MIC refers to the minimal inhibitory concentration. Therefore, one can apply this activity 
range as in silico filter for selection of those combinatorially-generated 6-FQs which QSAR-predicted 
MIC values fall within the pre-defined MIC boundaries (predicted “active” 6-FQ analogs). The obtained 
combinatorial subset comprised of all “drug-like” plus “active” (as predicted by the QSAR model) com-
binatorial analogs can be regarded as a focused “drug-like” combinatorial library which is now prepared 
to enter the structure-based virtual screening stage of our in silico integrated protocol (Figure 2).

Structure-Based Virtual Screening and Post-Processing of 
QSAR Prioritized “Drug-Like” Combinatorial Compounds

The in silico strategies elaborated so far generally belong to the class of ligand-based methodologies 
which usefulness and versatility in various drug discovery segments are broadly reviewed (Vidal et al., 
2011). Notwithstanding their mounting success, a major drawback that follows all these approaches resides 
in their incapability to account for the possible intermolecular interactions between a given ligand and 
its biomolecular target. In that context, the structure-based virtual screening approaches were found as 
particularly important to proficiently complement the missing gap (Ghosh et al., 2006; Kroemer, 2007; 
Villoutreix, et al., 2009) and here the methodology of automated molecular docking was recognized as 
a pivotal one in the framework of the modern in silico drug discovery (Lybrand, 1995; Morris & Lim-
Wilby, 2008).

As mentioned previously, the availability of 3D structural information for the biological target at 
atomic resolution (preferably ≤ 2.5 Å, obtained by experimental techniques such as X-ray crystallography 
or NMR) is critical for its implementation as virtual ligand filter. Herein, the generic term “biological 
target” usually refers to a biomacromolecular structure (e.g., a protein, nucleic acid, or their complex) 
into which the ligand (e.g., a small drug molecule) is being docked. This concept ordinarily relates to a 
method commonly known as protein-ligand docking, however, during the last few years an expanding 
interest was observed for protein-protein docking methods as well (Gray et al., 2003; Wang et al., 2007; 
Moal et al., 2013). Nevertheless, for the purpose of in silico design of small molecular entities as possible 
future drug candidates, the protein-ligand docking methods were found as the most frequently exploited.

As illustrated in Figure 5, a key part of the protein-ligand docking methods is the target identifica-
tion and its subsequent selection. This imposes a profound understanding of the nature of the biological 
system under study including its function and mechanism in physiological or pathophysiological pur-
poses, the location of the catalytic and/or binding site(s), and preferably the ligand-binding mechanism if 
available (Seifert & Lang, 2007). Moreover, one should be aware of some possible scenarios that could 
frequently follow the target selection and later can strongly affect the final epilog of the docking study. 
Ideally, the availability of a protein-ligand complex structure originating from the designated organism 
is of invaluable importance in the protein-ligand docking studies. This often enables a successful run of 
the entire docking process in a straightforward way, and consequently obtaining a productive outcome 
at the end of the screening strategy. Unfortunately, this is not always a case. Some protein targets are not 
or cannot be co-crystallized with the ligand, even if they originate from the desired organism. There are 
also some cases where the structure of the protein-ligand complex is available, but originates from other 



284

Integrated in Silico Methods for the Design and Optimization of Novel Drug Candidates
 

species, or the desired protein structure is not available as a whole, but as separated subunits. In such 
cases, some alternative approaches in the scope of the target preparation stage could be applied includ-
ing automated homology modeling and/or ligand’s binding site recognition (Xiang, 2006; Minovski et 
al., 2013; Yang et al., 2013).

Once the designated biological target is identified and selected, it should be properly prepared for 
virtual screening. Except some preparation routines related to the entire target structure such as adding 
hydrogen atoms and elimination of the water molecules, the target preparation stage usually refers to 
the settings of the binding site for docking calculation. This often includes assignment of the proton-
ation, stereoisomeric, and tautomeric states of the amino acid residues covering the binding pocket 
(Anderson, 2003). Additionally, small molecular entities (e.g., water molecules, metal ions, and other 
co-factors) present in the binding pocket should also be removed, unless there is a strong evidence for 
their specific role in the protein-ligand binding mechanism (Cheng et al., 2012). For instance, the water 
molecules present in the binding pocket could serve as hydrogen bonding bridges between the ligand and 
surrounding amino acid residues. Furthermore, if a co-crystallized ligand conformation is available, it 
can be easily employed for assignment of the screening area, i.e., the ligand search space that is usually 
a sphere-shaped constrain with a centroid defined by the Cartesian coordinates (x, y, z) of a selected 
ligand’s atom. Otherwise, the screening area can algorithmically be assigned as an integrated part of 
the binding site recognition routine.

Figure 5. A typical methodology workflow covering the essential steps of a protein-ligand docking
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It should be stressed, however, that in cases where a protein-ligand complex is available (experimen-
tally determined or assembled by homology modeling), an initial docking validation run is required. 
This involves reproduction of the spatial orientation and conformation for the co-crystallized ligand 
that directly reflects the quality of all the settings performed previously. The ligand reproduction 
assessment usually consists of re-docking of the co-crystallized ligand conformation and its subse-
quent comparison to the calculated docking solutions. As judging criteria for the performed ligand 
reproduction, the all-atom or heavy-atoms root-mean-square deviation (RMSD) value between each 
calculated docking pose and the co-crystallized ligand conformation is usually calculated. The calcu-
lated RMSD values below 2.0 Å are generally accepted and often indicate a successfully performed 
ligand reproduction (Verdonk et al., 2003). Moreover, if a library comprised of compounds with 
experimentally-determined in vitro biological activities is on hand (e.g., similar to the one used for 
QSAR modeling), then it could be proficiently employed in an additional docking validation experi-
ment for evaluation of the target’s discriminatory performances – a valuable guideline that indicates 
the capability of our biological target to effectively discriminate between known active and inactive 
ligands (Figure 2). It was demonstrated that such a validation is of exceptional importance where one 
needs to rank two or more analogous protein homology models for their ligands discriminating capa-
bilities (Minovski et al., 2013). In that sense, a widely accepted strategy is the so-called enrichment 
of the library of known actives with an incomparably higher number of decoy molecules (Huang et 
al., 2006). Here, a decoy is defined as a molecular entity that physicochemically matches the known 
active compounds, i.e., shares the same physicochemical features, but at the same time is topologically 
distinct. The main idea behind this concept is to evaluate how good a constructed protein homology 
model can identify the known actives in the wave of decoy molecules. For that purpose, the “receiver 
operating characteristic” (ROC) curve methodology proved to be the most suitable one for solving 
binary classification problems (Triballeau et al., 2005; Hevener et al., 2009). The ROC curve covers 
the sensitivity (SE) and specificity (SP) of the model, where SE is graphically expressed as a func-
tion of (1-SP). These two features one could easily determine from the confusion matrix representing 
a binary classification (Manallack et al., 2002). Let’s consider a case where a docking-based virtual 
screening protocol was applied for evaluation of the discriminatory power of two analogous protein 
homology models to correctly identify active ligands among a large pool of decoy molecules. In the 
context of binary classification, four classes could be distinguished: true positives (TP = in vitro actives 
and in silico identified), true negatives (TN = in vitro inactives and in silico rejected), false positives 
(FP = in vitro inactives and in silico identified), and false negatives (FN = in vitro actives and in 
silico rejected). Consequently, SE and SP parameters for both homology models can be calculated as 
follows (Equation 5 and Equation 6):

SE
TP

TP FN
=

+
 (5)

SP
TN

TN FP
=

+
 (6)
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where SE is defined as the ratio of in silico correctly identified actives (positives) over all compounds 
which are known to be truly active in vitro, while SP is defined as the ratio of in silico correctly identi-
fied inactive molecules (negatives) over all compounds which are known to be truly inactive in vitro. 
Finally, the area under the ROC curve (ROC-AUC) is computed directly from the ROC plot – a con-
venient metric that reflects the discriminatory performances of a protein homology model as a virtual 
ligand filter (Equation 7).

ROC-AUC = −
=
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where NA represents the total number of actives, ND is the total number of decoy molecules, while N*i,D 
depicts the number of decoy molecules that are higher ranked than the i-th active compound.

The ROC-AUC values can vary between 0 (poor model’s discriminatory performances) and 1 (excel-
lent model’s discriminatory performances), whereas ROC-AUC = 0.5 corresponds to a random selection 
(Triballeau et al., 2005). Therefore, the higher values for ROC-AUC (preferably above 0.5), pinpoint to 
better discriminatory performances of a given protein homology model, and vice versa. Nevertheless, 
while ROC-AUC metric evaluates the overall performance of a given protein homology model considering 
the entire data (actives and decoys), it is not capable to effectively account for the early enrichment of 
active molecules in small portions of the entire compound library (e.g., 0.5%, 1.0%, or 2.0%). Therefore, 
to fulfill the missing gap an additional metric commonly known as enrichment factor (EFx%) should be 
applied, which is derived from the ROC curve as well (Jahn et al., 2011). The EFx% for a given library 
portion (x%) can be calculated as follows (Equation 8)
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where NA is the total number of active molecules in the entire library, ND is the total number of decoy 
molecules in the entire library, Nx% is the total number of compounds in the observed portion of the 
library (x%), and N*A represents the total number of actives found within the observed portion (Jahn et 
al., 2011). Thus validated, the target can now be used for performing molecular docking calculations on 
novel compounds such as those that comprise our previously constructed focused “drug-like” combina-
torial library derived by QSAR-driven prioritization (Figure 2).

The molecular docking calculation refers to a virtual examination of the pre-assigned ligand search 
space (screening area) followed by ranking of the calculated docking solutions (i.e., the generated 
ligand binding poses) for subsequent determination of the correct binding modes with the target 
(Morris & Lim-Wilby, 2008). In the attempt to find the energetically most favorable binding solutions, 
the search algorithm runs several times for each ligand entering the docking calculation. The number 
of trials per ligand is often assigned by the user and usually corresponds to the total number of cal-
culated poses at the end of the docking calculation (frequently 3-10). Whether the calculated ligand’s 
binding pose is energetically favorable depends on the computed protein-ligand interaction energy 
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(known as a score) for that ligand. For this purpose, many docking tools are equipped with various 
scoring functions (Halperin et al., 2002; Jain, 2006; Huang et al., 2010). The scoring function initially 
evaluates the spatial orientation and conformation of the calculated ligand pose by calculating a 
simple energy function (e.g., a force field constructed of electrostatic and attractive/repulsive van 
der Waals energy terms), while later more complex scoring schemes are used for estimation of the 
ligand binding affinity (Gohlke & Klebe, 2001).

The docking calculation is considered finished once a sufficient number of solutions (docking poses) 
have been generated for each compound entering the docking process. The obtained results are usually 
stored in a compact form (e.g., a virtual compound library) where the estimated docking solutions for each 
docked ligand are organized as small clusters. The docking poses within each cluster are frequently ranked 
by the calculated scoring function in a descending order, i.e., the highest scored docking pose is located 
at the top of each cluster. Naturally, one would expect that these top-scored solutions are indeed the best 
binding poses. Unfortunately, it was found that the hit(s) selection based solely on the highest calculated 
dock score is not always sufficient, mainly as a consequence of the imperfection of some scoring functions 
to correctly account for the ligand’s binding mode (Kitchen et al., 2004; Cheng et al., 2012). Therefore, 
irrespectively of the calculated dock scores, a post-processing of the obtained results, i.e., a thorough 
post-docking analysis should be accomplished (Minovski et al., 2012; Minovski et al., 2013). Thus, a good 
practice is to perform an in-pocket visual assessment of all the calculated docking solutions, which could 
raise the entire post-docking analysis to a significantly higher, chemically intuitive, knowledge-based level 
(Doman et al., 2002). From a drug design perspective, it may involve an evaluation of various useful at-
tributes such as dock pose spatial orientation, conformation, fitness of the calculated dock pose with the 
co-crystallized ligand, as well as an in-pocket SAR-based pharmacophore assessment based on the estima-
tion of how many common pharmacophoric features are shared between an investigated dock pose and the 
co-crystallized ligand (Minovski et al., 2013). The latter could be recognized as particularly interesting, 
since it could effectively account for the potential protein-ligand interactions. Nevertheless, while the visual 
inspection might be feasible in cases when a reasonable number of docking solutions should be checked 
(e.g., several hundreds of docking poses), it might be totally impractical when one needs to assess thousands 
of docking poses. In such circumstances, the automated solutions to this problem can be regarded as one 
of the most needed. Nowadays, owing to the advancements in cheminformatics, various useful tools for 
automated post-docking analysis based on mapping of the desired protein-ligand interactions are developed 
(Marcou & Rognan, 2007; Rastelli et al., 2009; Bouvier et al., 2010). However, within the framework of 
an integrated protocol for small-scale ligand screening (such the one illustrated in this chapter), where the 
starting compound library is significantly reduced throughout all the levels (Figure 2), only a reasonably 
small number of compounds are subjected to docking calculation. Therefore, taking into account all the 
attributes mentioned above, the post-docking analysis based on visual examination of the calculated dock-
ing solutions could be equally good for final identification and selection of potential novel hits.

HITS IDENTIFICATION, SELECTION, AND NOVEL SAR RECOMMENDATIONS

As mentioned above, the post-docking analysis based on visual examination provides some useful in-
formation about calculated dock poses as well as their putative binding mechanism with the key amino 
acid residues wrapping the target’s binding site. Nonetheless, the question that arises here is how this 
information might be helpful for identification and selection of the most promising hit candidates? For 
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the purpose of hits identification, various in silico methods and tools are devised (Marcou & Rognan, 
2007; Rastelli et al., 2009; Bouvier et al., 2010; Moldover et al., 2012; Liu et al., 2013), however, in the 
context of our proposed integrated in silico screening protocol, we introduce here a novel and simple 
semi-automated Boolean-based [T/F (true/false)] clustering method for hit(s) identification, covering all 
the attributes determined in the scope of the visually derived post-docking analysis (Minovski et al., 2013).

The Boolean-based clustering method is substantially organized in three consecutive levels:

• Level 1, Geometric Properties Assessment: Spatial examination of each calculated dock pose 
relative to the experimental co-crystallized ligand conformation and building a cluster of (T)-
signed dock poses. Within this level, a total of three geometric properties should be visually 
assessed: (1) spatial orientation (how a calculated dock pose is spatially oriented relative to the 
position of the co-crystallized ligand), (2) pose fitness (how well a calculated dock pose fits the 
co-crystallized ligand), and (3) number of matching pharmacophoric features (how many com-
mon pharmacophoric features are shared between a calculated dock pose and the co-crystallized 
ligand). The latter implies to an in-pocket generation of a structure-based pharmacophore model 
for both the co-crystallized ligand conformation and the investigated dock pose. For this pur-
pose, various powerful automatic pharmacophore generation tools are available (e.g., Catalyst16, 
LigandScout17). Contrary to the properties (1) and (2), which are evaluated qualitatively by 
using the Boolean-based (T/F) signing scheme, the third property (number of matching phar-
macophoric features) is evaluated quantitatively. Whether an investigated dock pose will pass to 
the next level or will be rejected, depends on the positive outcome for all three geometric prop-
erties. For instance, if the calculated dock pose is properly oriented (T), fits well (T), and shares 
the desired number of pharmacophoric features with the co-crystallized ligand conformation 
(e.g., 5), then as a consensus, the dock pose could be estimated as geometrically good (T) 
and consequently goes further. Otherwise, the dock pose will be rejected (F). This assessment 
should be repeated for all the calculated dock solutions. At the end, only those poses signed as 
(T) should be distilled as a separate cluster and used in the second level of the Boolean-based 
clustering method.

• Level 2, Score-Based Clustering: (T)-signing of the Level 1 dock poses with calculated dock 
score within a pre-defined, desired range (e.g., highly scored dock solutions) and building a new 
cluster of highly scored (T)-signed hits. Those calculated dock solutions, which dock score is 
outside the boundaries of the pre-defined range, would be rejected (F).

• Level 3, Activity-Based Clustering: (T)-signing of the Level 2 hits with predicted biological 
activity values within a pre-defined, desired range (e.g., highly “active” combinatorial analogs 
as estimated by the previously used predictive QSAR model) and building a new cluster of 
(T)-signed most “active” hits. It should be stressed, however, that all the combinatorial analogs 
comprising our previously constructed focused “drug-like” combinatorial library are somehow 
hypothetically “active” as defined by the additionally implemented biological activity range 
filter. For instance, as previously stated, it was found that 6-fluoroquinolone antibacterials are 
active as M. tuberculosis DNA gyrase inhibitors in the range of 0.0 ≤ MIC [μg/mL] ≤ 1.0 
or 2.0. Let’s consider that one needs to extract those highly “active” 6-fluoroquinolones with 
predicted MIC ≤ 0.05 μg/mL. Therefore, the dock solutions which QSAR predicted biological 
activity is less or equal then 0.05 μg/mL will be signed as (T) and used in the end phase of the 
hit(s) identification/selection process.
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Finally, all (T)-signed dock poses isolated within the last level of the Boolean-based clustering method, 
are further subjected to an additional substructural assessment of the combinatorially attached fragments. 
This selection procedure resides in the determination of the most frequently appearing fragments at the 
pre-defined variable scaffold positions followed by a subsequent comparative SAR analysis for exposing 
novel possible guidelines utilizing a well-established SAR for known drugs. The combinatorial hits thus 
selected are now ready for synthesis, purification, and further in vitro biological activity verification.

CASE STUDY: IN SILICO DESIGN AND IDENTIFICATION OF 
NOVEL 6-FLUOROQUINOLONES AS POTENTIAL INHIBITORS 
AGAINST MYCOBACTERIUM TUBERCULOSIS DNA GYRASE

The integrated in silico screening protocol elaborated in the previous section (Figure 2) could generally 
be applied for the design and identification of novel drug analogs, irrespectively of the drugs class that 
are derived from as well as the in silico methodologies employed. However, to demonstrate its practical 
implementation, we opted to illustrate a specific example related to the design and identification of novel 
6-fluoroquinolone (6-FQ) antibacterials as potential inhibitors against M. tuberculosis DNA gyrase enzyme.

M. tuberculosis DNA Gyrase as a Therapeutic Target 
and 6-Fluoroquinolone Antibacterials

It is widely known that in all living organisms, the correct spatial DNA topology is of crucial importance 
for the proper regulation of the DNA processing including all the basic biological processes, control 
of the gene replication and transcription, as well as the DNA segregation (Wasserman & Cozzarelli 
1986; Liu et al., 2009). In order to be spatially correct, the DNA topology is fundamentally maintained 
by a specific family of enzymes broadly known as the DNA topoisomerases (Sissi & Palumbo, 2010); 
this family of superior molecular nanomachines is substantially involved in the maintenance of two 
vital sub-cellular processes such as the DNA single-strand breaks (controlled by the so-called type I 
enzymes) and DNA double-strand breaks (controlled by the so-called type II enzymes).

In contrast to the other, mainly higher organisms, which possess multiple topoisomerase enzymes involved 
in various essential sub-cellular functions, the bacterial organisms usually possess two general types of 
topoisomerases (Levine et al., 1998) - DNA gyrase enzyme (responsible for the unwinding of the bacterial 
DNA during the DNA replication phase) and topoisomerase IV (a DNA gyrase paralogous form involved 
in the DNA decatenation process). However, unlike other bacterial species, M. tuberculosis is an unusual 
and unique bacterial organism, since it possesses only one type II topoisomerase - the DNA gyrase with a 
specific simultaneous functional role of topoisomerase IV (Cole et al., 1998; Collin et al., 2011; Bouige et 
al., 2013). Structurally, the mycobacterial DNA gyrase (Figure 6a) is comprised of two cardinal subunits 
GyrA and GyrB (relevant to the ParC and ParE subunits in topoisomerase IV) that together assemble a 
functional heart-shaped heterotetrameric complex A2B2 (C2E2 in topoisomerase IV). The structural and 
biochemical studies performed so far revealed that the GyrA subunit is responsible for the mycobacterial 
DNA breakage/reunion catalytic process (i.e., DNA replication and elongation), while the correct spatial 
topology of the mycobacterial DNA is maintained by the GyrB subunit (Levine et al., 1998; Cole et al., 
1998). This catalytic process in Mycobacteria was recognized as a promising targeting mechanism for ef-
ficient tuberculosis chemotherapy (Ferrero et al., 1994; Maxwell, 1997; Collin et al., 2011).
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The quinolone antibacterials (e.g., Nalidix acid and its structurally derived analogs) were found as 
the sole and most efficient DNA gyrase inhibitors so far. Among them, the 6-FQ class (quinolone’s 
structural congeners that contain a fluorine atom attached at the 6 position of the main quinolone 
core) are probably one of the most utilized antitubercular agents in the clinical practice (Figure 6b). 
Their unique mode of action is grounded on the inhibition of the essential DNA gyrase mechanisms 
(e.g., supercoiling and relaxation of the double-stranded DNA), followed by instant formation of an 
irreversible covalent complex between the GyrA subunit, 5’-end of the mycobacterial DNA, and the 
6-FQ inhibitor itself (Gellert et al., 1977; Sugino et al., 1977). It was found that the complex thus 
formed is highly stable and cytotoxic for the Mycobacteria, leading to an irrecoverable distortion 
of the entire DNA topology, failures in the DNA processing mechanisms, and finally bacterial cell 
destruction (Drlica & Malik, 2003).

Figure 6. (a) Three-dimensional structural views of the mycobacterial DNA gyrase enzyme; the individual 
DNA gyrase parts are colored differently – GyrA subunit (in light gray), GyrB subunit (in dark gray), and 
the mycobacterial DNA molecule (in black); (b) The current SAR knowledge of the 6- FQ antibacterials
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The current SAR knowledge of 6-FQ antibacterials (Tillotson, 1996) explicitly shows the crucial 6-FQs 
scaffold positions, which structural alteration could significantly enhance or reduce the antimycobacterial 
activity (Figure 6b). As demonstrated, the main quinolone moiety (1,4-dihydro-4-oxo-3-pyridinecarboxylic 
acid) is of significant importance for the antimycobacterial activity. At the position 1, the substitution 
of a cyclopropyl group was found as the optimal one, however, various bulky substituents could also be 
attached at this position, which could enhance not only the lipophilic profile of the entire drug, but could 
also increase its metabolic stability after possible oral administration. On the other hand, the positions 5 
and 8 could successfully be substituted with some small substituents (e.g., -NH2 or CH3 at position 5, i.e., 
-F, -Cl, or -OCH3 at position 8); these structural alterations could lead to an increased biological activity. 
The position 6 of the main scaffold is commonly reserved for a fluorine atom, which was found as the 
optimal one leading to an increased potency, however, it could also be replaced by some small substituents. 
Three positions (3, 4, and 7) on the main quinolone core were found as of exceptional importance for 
the 6-FQs antimycobacterial activity. The mechanistic studies revealed that the substituents attached at 
these positions could establish direct interaction not only with the enzyme (GyrA subunit), but also with 
the DNA molecule (Laponogov et al., 2009; Laponogov et al., 2010). Thus, the positions 3 and 4 should 
be occupied by a carboxyl and carbonyl group, respectively, as they lead to a significant enhancement 
of the 6-FQs potency through establishing a direct hydrogen-bonding interaction with the surrounding 
amino acid residues of the enzyme (Tillotson, 1996). On the other hand, the position 7 was recognized 
as a key attachment point for the biological activity of 6-FQ antibacterials, and aminopyrrolidinyl- or 
piperazinyl-like substituents were found as the most important, leading to an additional stabilization of 
the 6-FQ in the complex formed between the DNA gyrase enzyme and the mycobacterial DNA.

However, as a consequence of the considerable structural divergences between the available gyrase/
topoisomerase crystal structures (Laponogov et al., 2009; Laponogov et al., 2010; Wohlkonig et al., 
2010; Bax et al., 2010), the explicit protein-ligand interactions mainly remain unclear, and regrettably 
the 6-FQs binding mechanism is still a subject of speculation. Moreover, some recently confirmed 
quinolone-caused amino acids alterations largely located at the GyrA α2 and α3 helices delineating a 
key part of the quinolone-binding pocket (QBP), were found as one of the major determinants of the 
ineffectiveness of the current 6-FQs in the chemotherapy of tuberculosis (Johnson et al., 2006; Shi et 
al., 2006; Matrat et al., 2006; Groll et al., 2009). All these issues, represent a major challenge towards 
the structural optimization of the existing 6-FQs or even development of novel, more effective 6-FQ 
antituberculars, and nowadays, the integrated in silico drug design approaches (Figure 2) have proven 
to be skillfully applied in achieving these goals.

The structural information used in this study including the description of datasets of 6-FQs, i.e., 
DNA gyrase/topoisomerase crystal structures as well as all the methodologies employed are broadly 
elaborated in our previous publications (Minovski & Šolmajer, 2010; Minovski et al., 2011; Minovski 
et al., 2012, Minovski et al., 2013), and therefore we give here just a short summary.

6-FQs Compound Libraries

Two compound libraries of structurally similar 6-FQs coming from different sources (named as ExpLib 
and CombiLib, respectively) were primarily utilized as a starting point for QSAR predictive modeling, 
and later on to perform structure-based VS experiments for identification and selection of novel 6-FQ 
antitubercular agents.
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The ExpLib library comprised of 145 structurally similar 6-FQs with experimentally measured 
biological activity values expressed as minimal inhibitory concentrations – MICexp [μg/mL] was col-
lected from an online structural data source (Division of AIDS Anti-HIV/OI/TB Therapeutic database18; 
Minovski et al., 2011). According to the 6-FQs activity information obtained within the framework of 
various functional and biochemical studies performed so far, one could easily distinguish between the 
active and inactive 6-FQs comprising our ExpLib library (Aubrey et al., 2006; Pantel et al., 2011; Pantel 
et al., 2012); therefore, 114 out of total 145 6-FQs could be determined as active inhibitors against M. 
tuberculosis DNA gyrase enzyme (MICexp ≤ 1.0 μg/mL), while the rest of the ExpLib molecules (31 
compounds with MICexp > 1.0 μg/mL) belong to the class of inactive 6-FQs.

On the other hand, the CombiLib library comprised of 1.101 mixed “drug-like” 6-FQs was assembled 
in-house, by employing a classical virtual reaction-based combinatorial enumeration approach (Minovski 
& Šolmajer, 2010; Minovski et al., 2012). At the beginning, the original synthetic pathways of three most 
frequently used 6-FQs in tuberculosis chemotherapy, i.e., ciprofloxacin (CIP), moxifloxacin (MOX), and 
ofloxacin (OFL), were exploited as templates for construction of their virtual combinatorial synthetic 
schemes (Schwalbe et al., 2000; Martel et al., 1997; Serradel et al., 1983), while a commercial pre-filtered 
“Ro3” fragments library comprised of 6.995 building-blocks (Key Organics Bionet Fragment Library 
“Rule of 3”19) was utilized as a reactants subset for performing SAR-based fragmental permutations at the 
pre-defined 6-FQs variable scaffold positions (Figure 6b) for each virtual synthetic pathway separately 
(R1 and R7 substructural modifications for CIP and MOX, while only R7 substructural modifications for 
OFL analogs). According to the current SAR knowledge of 6-FQs (Figure 6b), the position R1 of the 
CIP and MOX scaffold was targeted by primary amines (e.g., R1-NH2), while the position R7 in all three 
cases (CIP, MOX, and OFL) was targeted by secondary amines (e.g., R1, R2-NH). Moreover, although 
contrary to the current SAR recommendations, an additional structural diversity was introduced by at-
taching non-amino fragments (e.g., R-*) at the position R7 in all three cases (CIP, MOX, and OFL). This 
resulted in obtaining a total of six reaction-based enumeration definitions (for more information check 
Minovski et al., 2012) for generation of six different 6-FQs virtual combinatorial libraries (Table 2).

As demonstrated in Table 2, the performed virtual reaction-based combinatorial enumerations yielded 
a general virtual combinatorial library comprised of total 53.871 compounds (CIP, MOX, and OFL struc-
tural analogs). Although, the resulting library could generally be considered as a small sub-space within 

Table 2. Virtual combinatorial definitions and substructural fragments used for construction of six dif-
ferent virtual combinatorial libraries of 6-FQ structural analogs 

ID 6-FQs Virtual Combinatorial Definition Substructural Fragments ρtot = Ni x Mj

R1 R7 R1 (Ni) R7 (Mj)

1. CIP-Ni-Mj R1-NH2 R2, R3-NH 116 106 12.296

2. CIP’-Ni-Mj R1-NH2 R2-* 115 191 21.965

3. MOX-Ni-Mj R1-NH2 R2, R3-NH 115 74 8.510

4. MOX’-Ni-Mj R1-NH2 R2-* 73 147 10.731

5. OFL-Mj N/A R1, R2-NH N/A 180 180

6. OFL’-Mj N/A R1-* N/A 189 189

Sum 53.871

(Minovski et al., 2012).
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the available chemical space (Bohacek et al., 1996), one should be aware about the very low probability 
that each compound in such a virtual compound library possess desired “drug-like” properties (Walters et 
al., 1999; Hann et al., 2001; Muegge et al., 2003). Therefore, in order to distill only those combinatorially 
generated 6-FQs delineating the “drug-like” chemical sub-space, the entire virtual combinatorial library 
was subjected to a robust druggability properties assessment. Assuming that our generated 6-FQs would 
be administered per os, we constructed a combined Lipinski-Veber “drug-likeness” filtering tool for 
automated isolation of the desired sub-space of “drug-like” 6-FQs (Minovski et al., 2012). This filtering 
strategy produced a list of 1.101 “drug-like” virtual combinatorial 6-FQ analogs, which were further used 
as an external dataset for prediction of their unknown biological activity values (MICpred-combi [μg/mL]) 
by employing a pre-constructed predictive QSAR model (Minovski et al., 2011, Minovski et al. 2012).

Development of an ANNs-Based Predictive QSAR Model

Following the integrated in silico screening protocol described previously (Figure 2), non-linear artificial 
neural networks (ANNs)-based predictive QSAR modeling was performed on the ExpLib library of 145 
6-FQs using a comprehensive set of approximately 600 calculated 2D molecular descriptors (Minovski et 
al., 2011). The heuristic algorithm that is a step-wise selection procedure was initially used for descriptors 
pool reduction to a sub-pool comprised of up to 10 significant parameters, while its further reduction 
was achieved by construction of an inter-correlation descriptor matrix and subsequent elimination of 
those descriptors for which the inter-correlation coefficient is R2(Pi, Pm) ≤ 0.40. Here, a proposed upper 
R2 value of 0.40 was used in order to avoid a possible chance correlation during the modeling (Topliss, 
1983). A total of 7 molecular descriptors retained at the end of the parameters reduction/selection pro-
cedure, which further served as independent input variables for the ANNs model development. Kohonen 
artificial neural networks (KANNs) were employed for division of the compound’s data (Kohonen, 1982; 
Novič & Zupan, 1995; Zupan & Gasteiger, 1999) on a training set (115 compounds) and an external 
validation set (30 compounds), while counter-propagation artificial neural networks (CP ANNs) were 
used for the purpose of modeling (Zupan et al., 1995; Zupan et al., 1997; Zupan & Gasteiger, 1999).

As stated previously, the modeling was performed solely on the training set objects, where various 
network architectures and number of learning epochs were extensively evaluated in the search for the 
most optimal CP ANN predictive model (Rtr = 0.96). The model was internally validated by using a CV 
LOO procedure (Rtr-cv = 0.62) as well as externally validated for its predictive performances using the 
previously excluded validation set objects (Qext = 0.84). Furthermore, the applicability domain (AD) 
of thus established and validated CP ANN predictive model was assessed by the minimum Euclidean 
distance space (MEDS) approach (Minovski, Župerl et al., 2013) – an efficient distance-based AD esti-
mation method reflecting the reliability of the established CP ANN predictive model through utilization 
of the Euclidean distance (ED) metric in the model’s structure-representation vector space (Figure 7).

As demonstrated in Figure 7, no external validation set compounds could be identified as outliers 
according to critical ED value (EDcrit = 0.062), i.e., a valuable information indicating that no signifi-
cant structural differences exist between the investigated 6-FQs (structure-representation vector space). 
On the other hand, two training set objects (ID = 74 and 99) are somehow wrongly predicted by the 
model as demonstrated by their calculated standardized residual values, which are slightly above the 
±3σ boundaries. Among the external validation set objects, only one compound (ID = 23) could be 
determined as an extreme point with calculated standardized residual value around 6.0, i.e., a very poor 
biological activity prediction (pMICexp[ID=23] = 0.7404, pMICpred[ID=23] = 0.2334). The structural analysis 
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of this compound shows that it belongs to a group of unconventional 6-FQs regarding the main scaffold 
(1,8-naphthyridine instead of quinoline moiety). In addition to this one, five more ExpLib compounds 
share the same structural feature, of which two (ID = 29 and 37) are training set objects, while three of 
them (ID = 5, 34, and 35) belong to the external validation set, and apparently all of them have accept-
ably predicted biological activity values, as they are situated within the boundaries of ±3σ units (Figure 
7). However, (ID = 23) is the only ExpLib compound that has attached (S)-3-aminopirrolydinil group 
at the position R7 of the naphthyridine ring and no similar compounds exist in the training set. These 
findings explicitly pinpoint to a certain degree of weakness of the established CP ANN model to cor-
rectly predict the biological activity values for naphthyridine-like 6-FQs with (S)-3-aminopirrolydinil 
fragments attached at the R7 position. Anyhow, the rest of the external validation set objects are situated 
within the boundaries of the model’s AD – a result that clearly confirms the reliability of the constructed 
CP ANN predictive model for its further utilization as an efficient tool for evaluation of the biological 
activities for novel, not yet synthesized 6-FQs.

Finally, the established CP ANN predictive model was used for prediction of the biological activ-
ity values (MICpred-combi [μg/mL]) for our previously generated 1.101 “drug-like” 6-FQ combinatorial 
analogs (Minovski et al., 2012). The predicted biological activities for these compounds were in the 
range between 0.0021 ≤ MICpred-combi [μg/mL] ≤ 6.3726, i.e., a mix of highly active 6-FQs, but also 
totally inactive representatives according to the in vitro inhibition assays performed so far (Aubrey et 
al., 2006; Pantel et al., 2011; Pantel et al., 2012). Taking this information into account, we defined a 
so-called global hypothetical activity (GHA) range 0.00 ≤ MICpred-combi [μg/mL] ≤ 1.00, which served as 

Figure 7. Graphical representation of the CP ANN predictive model’s applicability domain assessed by 
the MEDS-based AD estimation method; the AD boundaries are defined by the training set object (ID = 
13) with maximal ED to the central neuron (EDcrit = 0.062) and ±3σ units for the calculated standard-
ized residuals (predictability of the model), respectively. The training set objects (115 compounds) are 
represented as solid dark-gray rectangles, while the external validation set objects (30 compounds) as 
solid light-gray circles.
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an efficient activity-based filtering tool for our 1.101 CombiLib compounds. This filtering procedure, 
resulted in selection of a subset of 427 “drug-like”, but also hypothetically “active” 6-FQ combinatorial 
analogs, which were further used in structure-based calculations for final identification and selection of 
novel 6-FQs as potential M. tuberculosis DNA gyrase inhibitors.

Construction of M. tuberculosis DNA Gyrase Protein 
Homology Models for Molecular Docking Calculations

Although, various separate topoisomerase IIA subunits originating from different bacterial species are 
solved recently by X-ray crystallography (Laponogov et al., 2009; Laponogov et al., 2010; Wohlkonig et 
al., 2010; Bax et al., 2010; Tretter et al., 2010; Darmon et al., 2012; Bouige et al., 2013), unfortunately 
the entire crystal structure of the M. tuberculosis DNA gyrase holoenzyme in complex with the DNA 
molecule and an intercalated 6-FQ ligand still remains an indecipherable issue (Collin et al., 2011). 
Therefore, taking into consideration the recently proposed 6-FQs-topoisomerase binding mechanisms 
(Laponogov et al., 2010; Wohlkonig et al., 2010; Bax et al., 2010) as well as the structural and functional 
similarity between the both topoisomerase IIA paralogous forms (DNA gyrase and topoisomerase IV), 
we constructed three M. tuberculosis DNA gyrase protein homology models (Minovski et al., 2013).

The available topoisomerase IIA-DNA-6-FQ crystal structure complexes originating from three 
different bacterial species (Streptococcus pneumoniae topo IV-DNA-levofloxacin, PDB ID: 3K9F; Aci-
netobacter baumannii topo IV-DNA-moxifloxacin, PDB ID: 2XKK; and Staphylococcus aureus DNA 
gyrase-DNA-ciprofloxacin, PDB ID: 2XCT) and recently determined crystal structures of the separate 
M. tuberculosis DNA gyrase subunits - GyrA breakage-reunion domain, GyrA-BRD (PDB ID: 3IFZ) 
and GyrB-Toprim domain (PDB ID: 3M4I) were utilized for protein sequence alignment, while the pro-
posed key amino acid sequences covering the QBP in M. tuberculosis DNA gyrase (Piton et al., 2010) 
were exploited for structural interchange of the original QBP sequences. It should be stressed that during 
the modeling, the nascent conformations of the DNA molecule, the intercalated ligands (levofloxacin 
[LFX], moxifloxacin [MOX], and ciprofloxacin [CIP], respectively), as well as the contributing co-
factors present in the QBPs (e.g., water molecule(s) and/or Mg2+ ion(s)) were left intact. Moreover, the 
experimentally determined spatial coordinates of the co-crystallized 6-FQ conformations (LFX, MOX, 
and CIP, respectively) were used to define the QBP (a screening area with cavity radius of 12.5 Å) for 
each constructed homology model (for more details check Minovski et al., 2013).

The M. tuberculosis DNA gyrase protein homology models thus assembled and prepared (named as 
3K9Fmod, 2XKKmod, and 2XCTmod, respectively) which QBP emulates the one present in the wild-type 
enzyme (PDB IDs: 3IFZ and 3M4I), were further used as starting points to perform molecular docking 
calculations.

Molecular Docking Calculations and Protein Homology Models Validation

The molecular docking calculations on both 6-FQ compound libraries (ExpLib and CombiLib), within 
the previously defined QBP of each M. tuberculosis DNA gyrase protein homology model (3K9Fmod, 
2XKKmod, and 2XCTmod, respectively), were performed by using the GOLD docking suite20 (Jones et al., 
1997). The entire docking procedure (including all the GA settings and required technical parameters) 
for each protein homology model was accomplished as described in our previous work (Minovski et al., 
2013), while the GOLDScore Fitness (GSF) function was used for estimation of the 6-FQs binding affinity.
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At the beginning, the quality of the constructed protein homology models was confirmed by 
an initial re-docking validation run (ligand reproduction assessment) on the co-crystallized ligand 
conformations (LFX, MOX, and CIP, respectively) present within the QBP of each protein homology 
model separately, followed by heavy-atoms RMSD (Å) comparison between the experimental ligand 
conformations and their corresponding GOLD-derived ligand poses (Figure 8a and Table 3).

As demonstrated in Table 3, a total of three dock poses were computed for each co-crystallized li-
gand. Except 2XKKmod model for which the initial validation failed according to the calculated RMSD 
(Å) values for MOX-reproduced dock poses (RMSD > 2.0 Å; an apparently poor model), the rest two 
homology models (3K9Fmod and 2XCTmod) successfully reproduced their experimental ligand conforma-
tions (LFX and CIP, respectively) with calculated RMSD values significantly below 2.0 Å (Verdonk et 
al., 2003). These preliminary validation results suggest the following order of quality of our constructed 
M. tuberculosis DNA gyrase protein homology models (2XKKmod < 2XCTmod < 3K9Fmod), which result 
could also be visually determined (Figure 8a).

However, to thoroughly assess their quality as well as reliability as efficient VS filters, a second 
validation experiment of their discriminatory performances (an investigation of the models capability 
to correctly discriminate between known active and inactive compounds) was carried out as described 
previously (Hevener et al., 2009). For that purposes, the ExpLib library of 145 6-FQs was first docked 
within the QBP of each protein homology model (3K9Fmod, 2XKKmod, and 2XCTmod, respectively) by 
using the same GA settings, and afterwards only the subset of 114 active top-scored dock poses (MICexp 
≤ 1.0 μg/mL) was enriched with a multiconformer library of total 13.990 artificial decoy molecules 
randomly selected from the Asinex Elite Library21 (Minovski et al., 2013). Thus prepared, the library of 
active/decoy molecules was subjected to a robust similarity screening against the co-crystallized ligand 
conformations (LFX, MOX, and CIP, respectively) used as queries (Huang et al., 2006). vROCS tool22 
was used to evaluate the VS discriminatory performances of the constructed protein homology models 
(ROC-AUC and early enrichment parameters at 0.5, 1.0, and 2.0% retrieved within ±95% confidence 
interval) directly from the generated ROC curves (Figure 8b and Table 4).

Table 4 summarizes the statistical parameters carrying the discriminatory performances of our 
constructed M. tuberculosis DNA gyrase protein homology models as efficient VS filters calculated 
directly from the generated ROC curves where all the comparisons are performed relative to the 3K9Fmod 
model (Figure 8b). As displayed here, according to the highest calculated ROC-AUC value the best VS 
performances could be assigned to 3K9Fmod model (ROC-AUC[3K9Fmod] = 0.844), 2XCTmod has somehow 
moderate VS performances (ROC-AUC[2XCTmod] = 0.826), while 2XKKmod could be identified as a poorest 
one (ROC-AUC[2XKKmod] = 0.815). These findings are also supported by the calculated p-values – a prob-
ability for an investigated model to give a better outcome then the reference one (in our case 3K9Fmod) 
under assumption that the null hypothesis is true. As demonstrated, the calculated ROC-AUC p-values for 
2XKKmod and 2XCTmod models both tend toward 0 (p-value[2XKKmod] = 0.192 and p-value[2XCTmod] = 0.299, 
respectively), i.e., the probability for these two models to give a better outcome (identification of more 
active molecules than the reference model) is practically very low and this result is not due to a random 
chance (p-value < 0.5; the null hypothesis could be rejected). Similarly, the probability for 2XKKmod to 
give better outcome than 2XCTmod is very low as well (p-value[2XCTmod] > p-value[2XKKmod]), which results 
are additionally grounded by the estimated early enrichment factors (calculated at 0.5, 1.0, and 2.0% 
in the boundaries of ±95% confidence interval) and their corresponding probability values. Moreover, 
these results are also congruent with the initial re-docking validation results (Figure 8a and Table 3), 
allowing us to confirm our previously established quality order of our protein homology models (2XK-
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Figure 8. Validation of the constructed M. tuberculosis DNA gyrase protein homology models. (a) Re-
docking of the co-crystallized ligand conformations (LFX, MOX, and CIP, respectively) within the QBP 
of each protein homology model (3K9Fmod, 2XKKmod, and 2XCTmod), separately. The experimental ligand 
conformations and the corresponding GOLD-calculated ligand poses are depicted in dark and light 
gray, respectively (stick representation), the water molecule(s) are represented as black sphere(s), while 
Mg2+ ion as a light gray sphere. (b) Protein homology models discriminatory performances for correct 
identification of active and inactive 6-FQs assessed by ROC methodology. The diagonal line (line of no 
discrimination) corresponds to the randomly distributed data (RDD = 0.5).

Table 3. Ligand reproduction assessment for initial validation of the quality of the assembled M. tuber-
culosis DNA gyrase protein homology models (3K9Fmod, 2XKKmod, and 2XCTmod, respectively) performed 
by heavy-atoms RMSD (Å) comparison between each experimental ligand conformation (LFX, MOX, 
and CIP, separately) and their corresponding GOLD-computed dock poses 

Model 3K9Fmod [LFX] 2XKKmod [MOX] 2XCTmod [CIP]

Dock pose pose 1 pose 2 pose 3 pose 1 pose 2 pose 3 pose 1 pose 2 pose 3

RMSD (Å) 1.056 1.121 1.027 2.553 2.652 2.488 1.249 1.311 1.340
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Kmod < 2XCTmod < 3K9Fmod). Based on both validation experiments, the 3K9Fmod could be recognized as 
a model with by far the best VS discriminatory performances, and therefore it was selected for further 
utilization as a robust in silico filtering device for VS of our novel 6-FQ combinatorial analogs.

Finally, the CombiLib library of 427 “drug-like” 6-FQ combinatorial analogs was docked into QBP 
of the selected M. tuberculosis DNA gyrase protein homology model (3K9Fmod), while the experimental 
conformation of the co-crystallized LFX ligand present within the QBP was used as a template struc-
ture against which an in-depth post-docking analysis of the GOLD-computed docking solutions was 
performed (Minovski et al., 2013).

Boolean-Based Clustering for Identification and Selection of Novel 6-FQ Hits

As described previously, the generated docking solutions are usually stored in a form of extended virtual 
compound libraries where all computed dock poses per ligand are organized as small clusters. There-
fore, to thoroughly assess all the generated docking solutions for our 427 “drug-like” CombiLib 6-FQ 
analogs (a total of 1281 poses arranged into 427 clusters, i.e., 3 poses per cluster) as well as to identify 
and select the most promising 6-FQ hit candidates, each calculated dock pose was subjected to a detailed 
post-docking analysis based on their visual examination using the available structural data.

Following the Boolean-based (T/F) clustering method described in the previous section, the post-
docking analysis was carried out in three consecutively-coupled levels: geometric properties assessment, 
score-based clustering, and activity-based clustering (Minovski et al., 2013). Within the scope of the first 
level of the performed post-docking analysis (geometric properties assessment), a total of 162 (T)-signed 
6-FQ analogs were initially identified as geometrically well positioned relative to the experimental co-
crystallized LFX conformation. The structural analysis of these compounds clearly reflected the capabil-
ity of the selected protein homology model 3K9Fmod to correctly identify 6-FQ structural analogs that 
belong to different structural classes (CIP, MOX, and OFL CombiLib compounds). All (T)-signed 6-FQ 
combinatorial analogs thus selected were extracted as a separate cluster and used in the second level of 
the Boolean-based (T/F) post-docking analysis by taking into consideration their estimated GSF function 
(score-based clustering). Implementing a pre-defined GSF threshold of (GSF ≥ 80), a total of 92 top-
scored clusters were determined and accordingly a total of 92 (T)-signed top-scored 6-FQ combinatorial 
analogs were selected. Similarly, the selected docking solutions were distilled as a separate cluster and 

Table 4. The statistical parameters describing the VS performances of our constructed M. tuberculosis 
DNA gyrase protein homology models, calculated directly from the obtained ROC curves: ROC-AUC 
(area under the ROC curve), EF (enrichment factor), and p-values (the probability for a model to retrieve 
better outcome then the reference one, assuming that the null hypothesis is true). All comparisons are 
performed relative to the 3K9Fmod model used as reference. 

Model 3K9Fmod 2XKKmod p-Value 2XCTmod p-value

ROC-AUC 0.844 [0.795, 0.891] 0.815 [0.769, 0.864] 0.192 0.826 [0.774, 0.870] 0.299

EF (0.5%) 85.464 [66.67, 105.60] 68.829 [50.88, 89.23] 0.108 77.032 [57.14, 97.48] 0.273

EF (1.0%) 52.046 [45.50, 61.46] 43.473 [34.62, 52.73] 0.091 46.779 [36.84, 56.67] 0.215

EF (2.0%) 27.537 [22.80, 32.66] 24.786 [20.08, 29.31] 0.203 27.365 [23.61, 32.00] 0.479
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used as an input in the final level of the Boolean-based (T/F) post-docking analysis (activity-based 
clustering) by taking into account their QSAR-predicted biological activity values (MICpred-combi [μg/
mL]). It should be stressed once again that all 6-FQ analogs comprising our CombiLib library are 
somehow hypothetically active as inhibitors of M. tuberculosis DNA gyrase enzyme according to the 
previously implemented GHA range (0.00 ≤ MICpred-combi [μg/mL] ≤ 1.00). Nevertheless, in order to 
extract the most “active” 6-FQ hits, the cluster of (T)-signed highly-scored hits assembled at the end 
of the previous level, was subjected to an additional activity-based filtering routine (MICpred-combi ≤ 
0.05 μg/mL). In this procedure, a total of 48 (T)-signed combinatorial hits were identified as most 
“active”, mainly CIP and MOX structural analogs of which the most promising are listed in Table 5, 
while no OFL combinatorial compounds were identified at the end of the Boolean-based (T/F) post-
docking analysis.

Table 5. Some promising CombiLib 6-FQ representatives identified by using the Boolean-based (T/F) 
post-docking analysis; the most frequently occurring substructural fragments at R1 and R7 position are 
represented in bold. 

ID Code CombiLib Hits R1 R7
MICpred-combi [μg/mL] GSF

1. CIP’-028-059 028 059 0.0499 83.55

2. CIP’-028-073 028 073 0.0021 88.89

3. CIP-028-102 028 102 0.013 80.87

4. CIP-049-096 049 096 0.0329 86.57

5. MOX’-016-
137

016 137 0.03 89.89
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The substructural examination of the building-blocks attached at the pre-defined variable scaffold 
positions of the isolated 6-FQ combinatorial hits revealed the most frequently occurring fragments (Table 
5). Namely, at R1 position benzo[d]oxazole was found as the most frequently occurring one (fragment 
028 in CIP- and CIP’-analogs, which is relevant to the fragment 016 in MOX’-analogs). On the other 
hand, four fragments were identified as the most frequently appearing at R7 position including 8-chloro-
6-methyl-[1,2,4]triazolo[4,3-b]pyridazine (fragment 059), 7-methylquinolone-8-amine (fragment 073), 
1-methylpiperidine-2,3-dione (fragment 096), and 1,3-dimethyl-1H-pyrazol-5(4H)-one (fragment 102). 
From a medicinal chemistry perspective, these fragments are mainly small aromatic N-heterocyclic 
systems with molecular weight between 98 and 155 g/mol, which contain more than two HBA atoms on 
average – an important SAR feature that undoubtedly increases the probability of establishing HB inter-
actions between 6-FQs and surrounding amino acid residues of the GyrA/GyrB subunit of the enzyme.

CONCLUSION

In the current era of enormous technological advancements, we have witnessed a rapid breakthrough 
in the modern design and optimization of novel drug candidates. Nowadays, the in silico drug design 
methods are indeed an irreplaceable supplement to the experimentally grounded approaches not only 
in the early hit(s) identification and hit-to-lead stages, but also in the late points of the drug discovery 
pipeline. From the profusion of in silico drug discovery methods currently available, various two- and 
three-dimensional approaches (e.g., QSAR, ligand-based, structure-based, etc.) became a cornerstone 
of the modern drug discovery for rapid and efficient development of novel successful drug candidates. 
Unfortunately, it was found that their individual utilization as in silico ligand filters could frequently 
result in a very small number of newly identified or de novo developed drug candidates, and therefore, 
more and more efforts are currently devoted to a skillful, rational, and knowledge-based development 
of integrated in silico drug discovery platforms.

In this chapter, we illustrated such an integrated in silico screening platform for fast and efficient 
identification of novel drug candidates from a large number of possibilities. A variety of well-established 
in silico drug discovery methods were covered and their specific assemblage into an efficient screening 
integration for identification and selection of novel hit candidates was thoroughly reviewed. Finally, 
we illustrated its practical application in a case study related to the design and identification of novel 
6-FQ antibacterials as potential M. tuberculosis DNA gyrase inhibitors and proposed some new SAR 
guidelines. In conclusion, we believe that the future of the modern drug development resides in the 
implementation of such integrated in silico screening schemes, which could aid not only the develop-
ment of novel and potent drugs, but could also introduce some novel standards in the on-going drug 
discovery programs.
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KEY TERMS AND DEFINITIONS

Antibacterial Agents: A common term for chemicals including synthetic or semi-synthetic drugs 
or other similar chemical entities that either kill or inhibit the bacterial growth.

Artificial Neural Networks: Computational non-linear modeling tools that mimic the structure and 
functions of the biological neural networks in the brain. During the learning process (training of the 
network), a complex relationship between the input and output data is established. They can be used 
either for numerical predictions of properties or pattern recognition purposes.

DNA Gyrase: An omnipresent molecular nanomachine from the type II DNA topoisomerase super-
family that is responsible for the unwinding of the DNA molecule during the DNA replication phase. 
The bacterial DNA gyrase is a well-established target of many antibacterials including nalidixic acid 
and their derivatives 6-fluoroquinolones.

Drug-Likeness: A qualitative measure based on a set of complex in silico calculable physico-chemical 
properties (e.g., molecular weight, logP, number of rotatable bonds, number of hydrogen bond donors 
and acceptors, and polar surface area) that determine whether an investigated compound is similar to the 
known drugs. It was found as a useful measure in the modern drug discovery and it is frequently used 
to filter out the so-called “drug-like” compounds from massive chemical libraries.

Protein Homology Modeling: Construction of a three-dimensional model of the “target” protein at 
atomic resolution from its amino acid sequence and an experimental three-dimensional structure of a 
related homologous protein (“template”).

Quantitative Structure-Activity Relationship: An approach designed to establish relationships 
between the chemical structure and biological activity (or other target property) of investigated com-
pounds in a quantitative manner.

Virtual Combinatorial Library Design: Generation of a list of structurally similar molecules in 
a virtual (in silico) environment employing the principles of combinatorial chemistry where a set of 
reagents (substituents or building-blocks) are specifically attached at pre-defined scaffold positions on 
the main structure.

Virtual Screening: A computational methodology used in the modern drug discovery to search and 
identify those molecular entities (small molecules) from a chemical library which are most likely to bind 
to a drug target, usually protein receptor or enzyme.
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