
Date: 9 Feb 2022

Introduction to HPC and HPCFS cluster usage

Leon Kos

1

• Usually is the program written for serial execution on one processor
• We divide the problem into series of commands that can be executed

in paralllel
• Only one command at a time can be executed on one CPU

Introduction to parallel computing
2

• Threading
• OpenMP – automatic parallelization
• Distributed memory model = Message Passing Interface (MPI) –

manual parallelization needed
• Hybrid model OpenMP/MPI

Parallel programming models

• Parallel processing of the same subproblems on multiple prooocessors
• No communication is needed between processes

Embarrasingly simple parallel processing
4

• Need to know computer
architecture

• Interconnect bus for sharing
memory between processors
(NUMA interconnect)

Logical view of a computing node

• Distributed computing
• Many nodes exchange messages

on
• high speed,
• low latency interconnect such as
Infiniband

Nodes interconnect

• Good understanding of the problem being solved in parallel
• How much of the problem can be run in parallel
• Bottleneck analysys and profiling gives good picture on scalability of

the problem
• We optimize and parallelize parts that consume most of the computing

time
• Problem needs to be disected into parts functionally and logically

Development of parallel codes
7

• Having little an infrequent communication between processes is the
best

• Determining the largest block of code that can run in parallel and still
provides scalability

• Basic properties
• response time
• transfer speed - bandwidth
• interconnect capabilities

Interprocess communications
8

• Amdahlov law Speedup = 1/(1-p)

Parallel portion of the code
determines code scalability

9

Direct Solver or Iterative Solver?

We are solving a set of matrix equations of the form [K]{u} = {f}. Here [K] is
referred to as the stiffness matrix; {f} as the force vector and {u} as the set of
unknowns.
Several milions of unknowns
Lot of zeros in K

Direct solvers: Multfront, MUMPS, and LDLT, Pardiso, ...
Iterative solvers: PETSc and GCPC, ...

Computer Aided Engineering
open source tools

CAD/CAM: Salome, Freecad, OpenSCAD, LibreCad, Pycam,
Camotics, dxf2gcode & Cura
FEA, CFD & multiphysic simulation: Salome-Meca / Code-
Aster, SalomeCFD/Code-Saturne, HelyxOs/OpenFOAM, Elmer
FEM, Calculix with Launcher & CAE GUI, Impact FEM,
MBDyn, FreeFEM, MFEM, Sparselizard
Meshing, pre-post, & visualization: Salome, Paraview, Helyx-
OS, Elmer GUI, VoxelMesher, Tetgen, CGX, GMSH

Questions and practicals on the
HPCFS cluster• Demonstration of the work on the cluster by repeating
• Access with NX client
• Learning basic Linux commands
• SLURM scheduler commands
• Modules
• Development with OpenMP and OpenMPI parallel

paradigms
• Excercises and extensions of basic ideas
• Instructions available at http://hpc.fs.uni-lj.si/

12

http://hpc.fs.uni-lj.si/

Basic HPCFS cluster usage

• Setting GNOME or KDE desktop locale preferences for keyboard, LANG environment
• Using NX client (Disconnect, Terminate, Logout)
• Console commands in Linux
• Editors for programming (emacs, gedit, kate, eclipse, vi, pico, ...) on login only!

Modules (LUA)
• module avail
• module help/info
• module show
• module load/unload
• module list
• module purge

SLURM batch scheduler
Compiled-in OpenMPI support
• srun --nodes=N --ntasks=n cmd
• sbatch script.sh
• sinfo
• squeue
• Alias for interactive usage of nodes:
alias node='srun -N1 --time=1:00:00 --pty bash -i'

Using SLURM (interactivelly) and
Message Passing Interface (MPI)

[leon@viz mpi]$ module purge && module load foss/2019a
[leon@viz mpi]$ cat hello.f90
program hello

use mpi
integer rank, size, ierror, strlen, status(MPI_STATUS_SIZE)
character(len=MPI_MAX_PROCESSOR_NAME) :: hostname

call MPI_INIT(ierror)
call MPI_COMM_SIZE(MPI_COMM_WORLD, size, ierror)
call MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierror)
call MPI_GET_PROCESSOR_NAME(hostname, strlen, ierror)
print*, trim(hostname), rank, size
call MPI_FINALIZE(ierror)

end
[leon@viz mpi]$ mpif90 hello.f90
[leon@viz mpi]$ LD_PRELOAD= srun -n 4 --tasks-per-node=2 --kill-on-bad-
exit --partition=haswell ./a.out
cn80 2 4
cn79 0 4
cn80 3 4
cn79 1 4

OpenMP

#include <stdio.h>
#include <math.h>
#define N 1000000
int main()
{

double area = 0.0;
#pragma omp parallel for reduction(+:area)
for(int i = 0; i < N; i++)

{
double x = (i+0.5)/N;
area += sqrt(1.0 - x*x);

}
printf("Površina : %14lf\n", 4.0*area/N);
return 0;

}
[leon@cn36 pi]$ module purge && module load foss/2019a
[leon@cn36 pi]$ gcc -fopenmp pi-openmp.c -lm -o pi-openmp
[leon@cn36 pi]$ OMP_NUM_THREADS=4 ./pi-openmp

This project has received funding from the European High-Performance Computing Joint Undertaking (JU) under grant
agreement No 951732. The JU receives support from the European Union’s Horizon 2020 research and innovation
programme and Germany, Bulgaria, Austria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Greece, Hungary,
Ireland, Italy, Lithuania, Latvia, Poland, Portugal, Romania, Slovenia, Spain, Sweden, United Kingdom, France, Netherlands,
Belgium, Luxembourg, Slovakia, Norway, Switzerland, Turkey, Republic of North Macedonia, Iceland, Montenegro

Hvala za pozornost!

