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• Usually is the program written for serial execution on one processor
• We divide the problem into series of commands that can be executed

in paralllel
• Only one command at a time can be executed on one CPU

Introduction to parallel computing
2



• Threading
• OpenMP – automatic parallelization
• Distributed memory model = Message Passing Interface (MPI) –

manual parallelization needed 
• Hybrid model OpenMP/MPI

Parallel programming models



• Parallel processing of the same subproblems on multiple prooocessors
• No communication is needed between processes

Embarrasingly simple parallel processing
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• Need to know computer 
architecture

• Interconnect bus for sharing  
memory between processors 
(NUMA interconnect)     

Logical view of a computing node



• Distributed computing
• Many nodes exchange messages 

on
• high speed,
• low latency interconnect such as 
Infiniband

Nodes interconnect



• Good understanding of the problem being solved in parallel
• How much of the problem can be run in parallel
• Bottleneck analysys and profiling gives good picture on scalability of  

the problem
• We optimize and parallelize parts that consume most of the computing 

time
• Problem needs to be disected into parts functionally and logically

Development of parallel codes
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• Having little an infrequent communication between processes is the 
best

• Determining the largest block of code that can run in parallel and still 
provides scalability

• Basic properties
• response time
• transfer speed - bandwidth
• interconnect capabilities

Interprocess communications
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• Amdahlov law  Speedup = 1/(1-p)

Parallel portion of the code
determines code scalability
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Direct Solver or Iterative Solver?

We are solving a set of matrix equations of the form [K]{u} = {f}. Here [K] is 
referred to as the stiffness matrix; {f} as the force vector and {u} as the set of 
unknowns. 
Several milions of unknowns
Lot of zeros in K

Direct solvers: Multfront, MUMPS, and LDLT, Pardiso, ...
Iterative solvers: PETSc and GCPC, ...



Computer Aided Engineering 
open source tools

CAD/CAM: Salome, Freecad, OpenSCAD, LibreCad, Pycam, 
Camotics, dxf2gcode & Cura
FEA, CFD & multiphysic simulation: Salome-Meca  / Code-
Aster, SalomeCFD/Code-Saturne, HelyxOs/OpenFOAM, Elmer 
FEM, Calculix with Launcher & CAE GUI,  Impact FEM, 
MBDyn, FreeFEM, MFEM, Sparselizard
Meshing, pre-post, & visualization: Salome, Paraview, Helyx-
OS, Elmer GUI, VoxelMesher, Tetgen, CGX, GMSH



Questions and practicals on the
HPCFS cluster• Demonstration of the work on the cluster by repeating
• Access with NX client
• Learning basic Linux commands
• SLURM scheduler commands
• Modules
• Development with OpenMP and OpenMPI parallel 

paradigms
• Excercises and extensions of basic ideas
• Instructions available at http://hpc.fs.uni-lj.si/
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Basic HPCFS cluster usage 

• Setting GNOME or KDE desktop locale preferences for keyboard, LANG environment 
• Using NX client (Disconnect, Terminate, Logout) 
• Console commands in Linux 
• Editors for programming (emacs, gedit, kate, eclipse, vi, pico, ...) on login only! 

Modules (LUA)
• module avail
• module help/info
• module show
• module load/unload 
• module list
• module purge 

SLURM batch scheduler 
Compiled-in OpenMPI support
• srun --nodes=N --ntasks=n cmd
• sbatch script.sh
• sinfo
• squeue
• Alias for interactive usage of nodes:
alias node='srun -N1 --time=1:00:00 --pty bash -i'



Using SLURM (interactivelly) and 
Message Passing Interface (MPI) 

[leon@viz mpi]$ module purge && module load foss/2019a
[leon@viz mpi]$ cat hello.f90
program hello

use mpi
integer rank, size, ierror, strlen, status(MPI_STATUS_SIZE)
character(len=MPI_MAX_PROCESSOR_NAME) :: hostname

call MPI_INIT(ierror)
call MPI_COMM_SIZE(MPI_COMM_WORLD, size, ierror)
call MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierror)
call MPI_GET_PROCESSOR_NAME( hostname, strlen, ierror )
print*, trim(hostname), rank, size
call MPI_FINALIZE(ierror)

end
[leon@viz mpi]$ mpif90 hello.f90
[leon@viz mpi]$ LD_PRELOAD= srun -n 4 --tasks-per-node=2 --kill-on-bad-
exit --partition=haswell ./a.out
cn80 2 4
cn79 0 4
cn80 3 4
cn79 1 4



OpenMP

#include <stdio.h>
#include <math.h>
#define N 1000000
int main()
{

double area = 0.0;
#pragma omp parallel for reduction(+:area)
for(int i = 0; i < N; i++)

{
double x = (i+0.5)/N;
area += sqrt(1.0 - x*x);

}
printf("Površina : %14lf\n", 4.0*area/N);
return 0;

}
[leon@cn36 pi]$ module purge && module load foss/2019a
[leon@cn36 pi]$ gcc -fopenmp pi-openmp.c -lm -o pi-openmp
[leon@cn36 pi]$ OMP_NUM_THREADS=4 ./pi-openmp
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