Parallelisation and domain decomposition in FEM

SLI⊧⊡⊧G

dr. Borut Černe University of Ljubljana, Faculty of Mechanical Engineering

Typical FEM analysis workflow

- ▶ Analysis type: Static, thermal, modal...
- Constitutive/physical model
- ► Geometry: single body/multibody
- ▶ Geom. space: 2D/3D
- Element types: Line/surface/solid elements
- Symmetry conditions, etc.

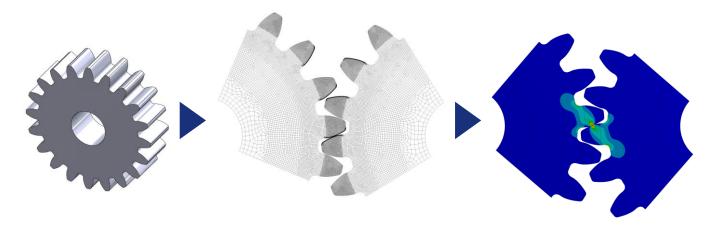
2. Preprocessing:

- ▶ Import/create geometry
- Mesh geometry

(BCs)

- Material properties
- **•** Loads and boundary conditions

- 3. Solving the model
- 4. Postprocessing:
- Review results
- Data analysis
- Verify/validate solution



C

EURO

Bottleneck of the

computational

procedure*

- Computational steps in typical FEM analysis:
 - **1.** Serial computation:

Meshing

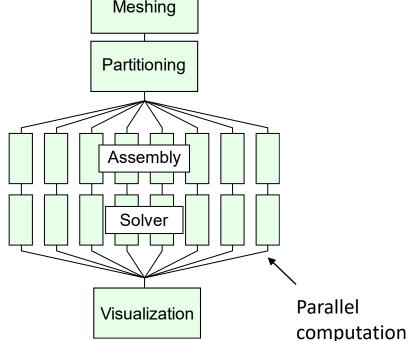
Assembly

Solver

Visualization

Meshing

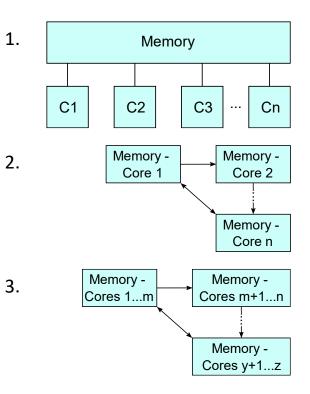
* For large cases the other steps can also be highly time consuming – parallelization there also required



- Data dependency does the computation of one task require data from other tasks to proceed?
 - FEM is inherently data dependent reflection of the physical reality of the problem
 - Parallel computers:
 - 1. Shared memory all cores access the

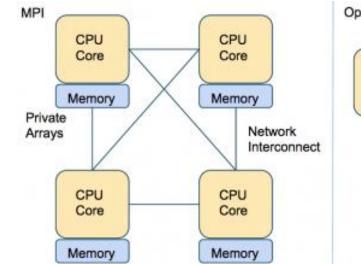
whole memory

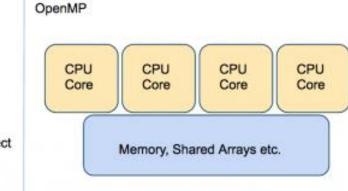
- 2. Distributed memory:
 - ► Each core has its own memory unit
 - Communication protocol for memory
 - access between different cores
- Typical HPC combines distributed and shared memory capabilities



• Message Passing Interface (MPI)

- Primarily used for distributed memory computing
- Can be used both in distributed and shared memory computers
- Programming model allows good parallel scalability
- Programming is quite explicit
- Threads (pthreads, OpenMP)
 - > Can be used only in shared memory computer
 - Limited parallel scalability
 - ➢ Simpler less explicit programming



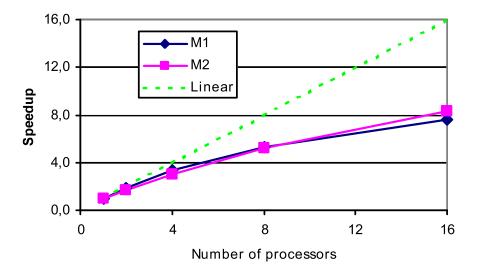


Typically less memory overhead/duplication. Communication often implicit, through cache coherency and runtime

- Scalability of parallelized FEM computations:
 - Strong scaling how the solution time decreases with an increased number of processors for a fixed total problem size

> Best case scenario: $N_p \cdot T = \text{const.}$

- Weak scaling how the solution time varies with the number of processors for a fixed problem size per processor
 - > Best case scenario: T = const.
- Typically >10⁴ FEs needed for suitable scaling



EURO

M Solvers

Iterative methods:

- Parallelized Conjugate Gradient (CG) with
 - Incomplete Cholesky preconditioner (ICCG) block (BICCG) or renumbering process ► (PICCG-RP) methods
 - Diagonal preconditioning (DPCG) method
- BI-Conjugate Gradient Stabilized method (BICGSTAB)
- Quasi-Minimal Residual (QMR) method
- QCR, GMRes, TFQMR,...

Direct methods:

- Sparse LU decomposition solvers
- Suitable for ill-conditioned cases (very stiff
 - bodies, large displacements, etc.)
- MUMPS parallel sparse solver



Example: PICCG-RP algorithm

Sparse FE system:

Interior part 1

Interface part 1

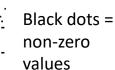
Interior part 2

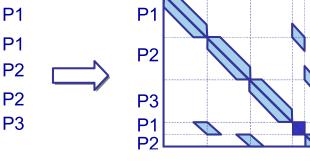
Interface part 2

Interior part 3

 $\mathbf{K}\mathbf{u} = \mathbf{f}$

- **K** Stiffness matrix
- **u** Displacement vector
- **f** External loads vector

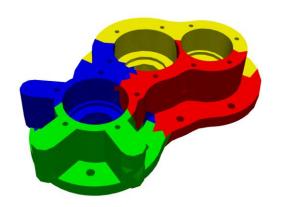


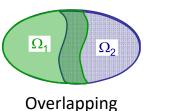


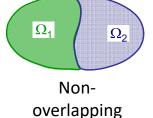
FEM Domani decomposition

Domain decomposition (I):

- Decomposition of the spatial domain into subdomains
- ▶ Iterative algorithms preferred to direct solvers (better efficiency)
- ► Overlapping or non-overlapping decomposition methods
- 1. Overlapping decomposition method:
 - Schwarz iterative methods
 - ► Approximation of BCs on interface
 - ▶ On each subdomain iterative or direct solver can be used



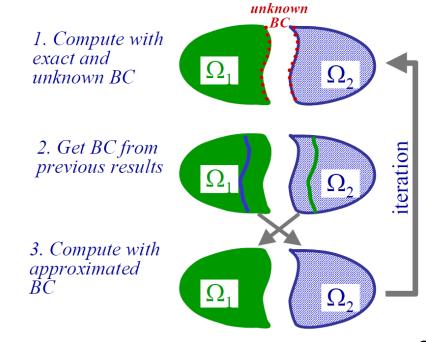




Overlapping decomposition:

C

EURO



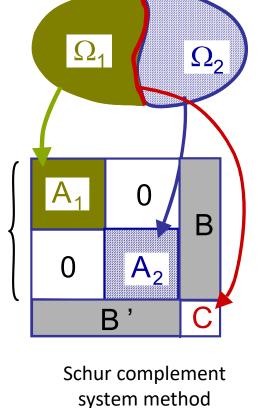
Domain decomposition (II):

- ▶ Non-overlapping decomposition method:
 - Schur complement system method

$$\begin{bmatrix} A & B \\ B' & C \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} \Rightarrow \begin{cases} x = A^{-1}b_1 - A^{-1}By & \rightarrow \text{Base system} \\ (C - B'A^{-1}B)y = b_2 - B'A^{-1}b_1 & \rightarrow \text{Schur comp. s.} \end{cases}$$

- Continuity of BCs on subdomain interfaces can also be obtained using Lagrange multipliers
 - Similar approach used in contact mechanics
 - FE Tearing and Interconnecting (FETI) method uses such approach

Non-overlapping decomposition



A

SLIЮ́G

How to choose FEM solver

Shared Memory Solver Guidelines

Solver	Typical Applications	Ideal Model Size	Memory Use	Disk (I/O) Use
<u>Sparse Direct Solver (direct</u> elimination)	When robustness and solution speed are required (nonlinear analysis); for linear analysis where iterative solvers are slow to converge (especially for ill-conditioned matrices, such as poorly shaped elements).	100,000 DOF (and beyond)	Out-of-core: 1 GB/MDOF	Out-of-core: 10 GB/MDOF
			In-core: 10 GB/MDOF	In-core: 1 GB/MDOF
PCG Solver (iterative solver)	Reduces disk I/O requirement relative to sparse solver. Best for large models with solid elements and fine meshes. Most robust iterative solver in ANSYS.	500,000 DOF to 20 MDOF+	0.3 GB/MDOF w/MSAVE,ON; 1 GB/MDOF without MSAVE	0.5 GB/MDOF
JCG Solver (iterative solver)	Best for single field problems - (thermal, magnetics, acoustics, and multiphysics). Uses a fast but simple preconditioner with minimal memory requirement. Not as robust as PCG solver.	500,000 DOF to 20 MDOF+	0.5 GB/MDOF	0.5 GB/MDOF
ICCG Solver (iterative solver)	More sophisticated preconditioner than JCG. Best for more difficult problems where JCG fails, such as unsymmetric thermal analyses.	50,000 to 1,000,000+ DOF	1.5 GB/MDOF	0.5 GB/MDOF
<u>QMR Solver (iterative solver)</u>	Used for full harmonic analyses. This solver is appropriate for symmetric, complex, definite, and indefinite matrices.	50,000 to 1,000,000+ DOF	1.5 GB/MDOF	0.5 GB/MDOF

SLIℕG

How to choose FEM solver

Distributed Memory Solver Selection Guidelines

Solver	Typical Applications	Ideal Model Size	Memory Use	Disk (I/O) Use
<u>Distributed Memory Sparse Direct</u> <u>Solver</u>	•	500,000 DOF to 10 MDOF (works well outside this range)	Out-of-core: 1.5 GB/MDOF on master machine, 1.0 GB/MDOF on slave machines	Out-of-core: 10 GB/MDOF
			In-core: 15 GB/MDOF on master machine, 10 GB/MDOF on slave machines	In-core: 1 GB/MDOF
Distributed Memory PCG Solver	Same as PCG solver but can also be run on distributed memory parallel hardware systems.	1 MDOF to 100 MDOF	1.5-2.0 GB/MDOF in total*	0.5 GB/MDOF
<u>Distributed Memory JCG Solver</u>	Same as JCG solver but can also be run on distributed memory parallel hardware systems. Not as robust as the distributed memory PCG or shared memory PCG solver.		0.5 GB/MDOF in total*	0.5 GB/MDOF

C

EURO

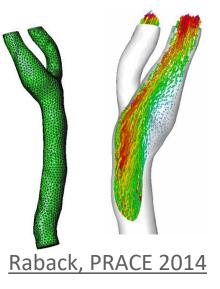
SLIℕG

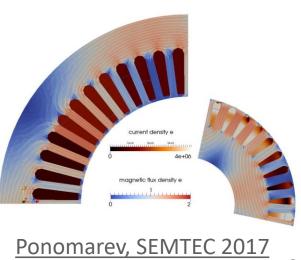
Linear v. nonlinear FEM problems

Physical models in FEM

- Heat transfer
 - Steady state heat equation
 - Transient heat equation
- Solid mechanics
 - Linear elasticity
 - Finite elasticity
 - Shell equations
- Fluid mechanics and transport phenomena
 - Navier-Stokes equation
 - Advection-diffusion equation
 - Reynolds equation thin film flow
- Acoustics
 - Helmholtz model
 - Linearized Navier-Stokes in the frequency domain

- Electromagnetism
 - Electrostatics
 - Circuits and dynamics solver
 - Magnetic induction equation
- Other
- User defined elements and models





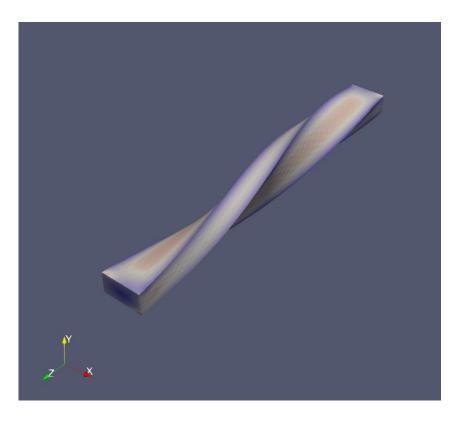
 \mathbb{C}

EURO

Linear v. nonlinear problems in FEM

Nonlinear model examples

- Heat transfer
 - Transient heat equation with **heat radiation effect**
- Solid mechanics
 - Geometric nonlinearities (e.g. finite elasticity)
 - **Mechanical nonlinearities** (e.g. hyperelasticity, viscoplasticity, nonlinear viscoelasticity)
 - Contact nolinearities (e.g. sliding frictional contacts)
- Fluid mechanics and transport phenomena
 - Navier-Stokes equation with inertial fluid force or convective effect
- Acoustics
 - Large-amplitude wave propagation
- Electromagnetism
 - Poisson-Boltzmann equation steady state electric potential law



EURO

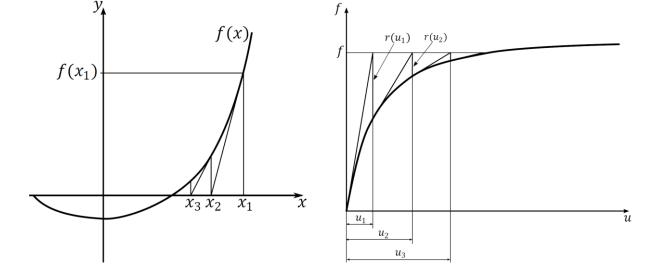
Linear v. nonlinear problems in FEM

How FEM solvers deals with nonlinear problems?

- Solver always iterative
- Problem always first linearized to the form

 $A(u_{i-1})u_i = b(u_{i-1})$

- Two iterative algorithms available: Newton (aka Newton-Raphson) and Picard schemes
- Choice of interative solution scheme depends on used model, e.g.:
 - Solid mechanics Newton method
 - Navier-Stokes Picard + Netwon method combination



Newton-Raphson method applied to a nonlinear solid material model

Cerne 2014 – Master thesis

See also: Wikiversity - Nonlinear finite elements

Linear v. nonlinear problems in FEM

Time-dependent physical problems

- Can be linear or nonlinear
- General first order differential eq. (DE) problem form:

 $M\frac{\partial\Phi}{\partial t} + K\Phi = F$

- Example viscoelastic solid models
- Time-dependent term can be solved numerically using various schemes:
 - 1. Backward Different Formula (BDF)

$$\left(\frac{1}{\Delta t}M+K\right)\Phi^{i+1}=F^{i+1}+\frac{1}{\Delta t}M\Phi^i \succ \mbox{First order implicit solution}$$

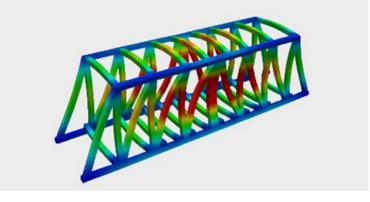
2. Crank-Nicholson method

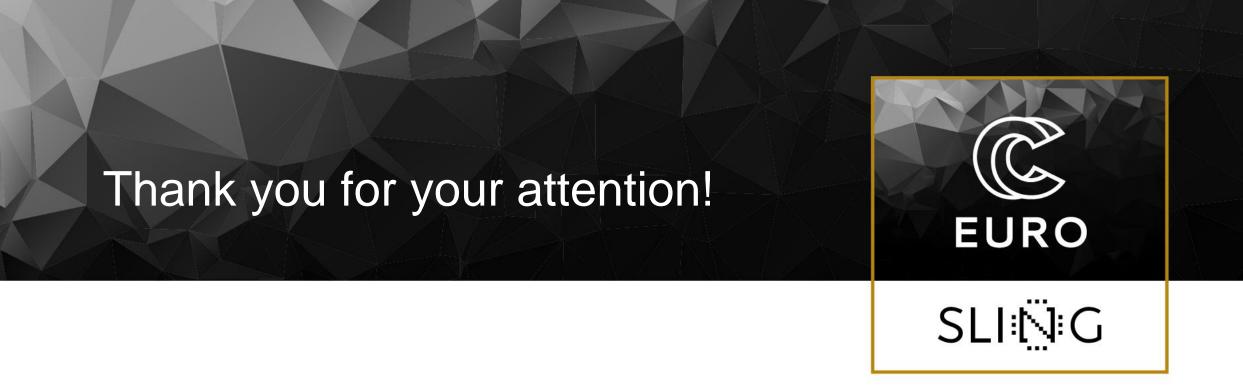
• Second order time derivatives:

$$M\frac{\partial^2\Phi}{\partial t^2}+B\frac{\partial\Phi}{\partial t}+K\Phi=F$$

Example – structural dynamics

 the <u>Bossak</u>-<u>Newmark</u> method can be used to solve the DE numerically





dr. Borut Černe

University of Ljubljana, Faculty of Mechanical Engineering