SPS beamtest analysis: LSC-3 noise, analogue signal & digital signal preliminary analysis F9 SiC lab weekly ### Analysis overview - SPS testbeam in October 2021 - Single-Crystal diamond LSC-3 mounted on board #4 - +500 V and -500 V applied to SC diamond - Calypso CH2 (analogue, D+, D-) and trigger connected to DRS - Low and Med threshold configurations used on Calypso - Around 1.5M recorded events used - Analysis: - Tracking cuts - Noise analysis (detector surface divided into 2D bins) - Analogue signal analysis (detector surface divided into 2D bins) - Digital signals analysis ### Binning of the detector fiducial area - Selected only events with U,V in the fiducial area of detector. - Fiducial area divided into 441 bins (21 x 21), 100 μ m x 100 μ m each. - Waveforms of events hitting the selected bin were added together - →The result is persistance waveform for each bin ### Binning of the detector fiducial area - Selected only events with U,V in the fiducial area of detector. - Fiducial area divided into 400 bins, 100 μ m x 100 μ m each. - Waveforms of events hitting the selected bin were added together - →The result is persistance waveform for each bin # Persistance for one of the bins: pers_ch0 0.35 0.25 0.15 0.05 Miha Mali Ljubljana, 10.12.2021 #### Tracking cuts - Additional cuts on fitted track parameters from Malta telescope: number of tracks, Chi2, slope - Cut on the digital signal ToA - Goal is to keep only well reconstructed events with amplitude above threshold, which arrive within a selected time window ## Tracking cuts: no cuts applied • HV: +500 V Persistance & projection of peak area (bins 202:212): | nTracks | Chi2 | SlopeX,Y | ToA [bin] | |---------|------|----------|-----------| | 1 | <10 | <0.00025 | 190-220 | # Tracking cuts: nTracks, Chi2, Slope, ToA • Diamond at +500 V, Low threshold settings | nTracks | Chi2 | SlopeX,Y | ToA [bin] | |---------|------|----------|-----------| | 1 | <10 | <0.00025 | 190-220 | # Tracking cuts: nTracks, Chi2, Slope, ToA • Diamond at +500 V, Low threshold settings # Tracking cuts: • Final cut gives a "clean" persistance plot with pedestal removed Miha Mali Ljubljana, 10.12.2021 ## Noise analysis - Estimated noise before the signal for each bin - Projected bins 140-150 from persistance graph - Gaussian fit to distribution ## Noise analysis - Results for entire fiducial area of the detector, HV: +500 V - Even distribution for different bins. Mean noise: 1.87 mV # Signal (MPV) analysis - Estimated MPV of signal for each bin - Projected persistance between bins 202 and 212 (peak area) - Fit LanGau function to distribution & estimate MPV # Signal (MPV) analysis +500 V nTracks Chi2 SlopeX,Y ToA [bin] 1 <10</td> <0.00025</td> 190-220 Cuts: • Diamond at +500 V, Low & Med threshold | nTracks | Chi2 | SlopeX,Y | ToA [bin] | |---------|------|----------|-----------| | 1 | <10 | <0.00025 | 190-220 | # Signal (MPV) analysis -500 V - Diamond at -500 V, Low & Med threshold - Non-homogenous signal distribution across the diamond! # Digital signals #### Differential ToT signals: Digital signal ToT+: Analogue signal: Digital signal ToT-: | nTracks | Chi2 | SlopeX,Y | ToA [bin] | |---------|------|----------|-----------| | 1 | <10 | <0.00025 | 190-220 | Cuts: # ToT signals for +500V, MedT, entire fid. region #### Analogue peak distribution: Mean: 0.123 V ToT+ distribution mean: 31.9 bins = 7.98 ns ToT+ vs Analog signal 1000 800 45 40 35 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 Peak amplitude [V] ToT- distribution mean: 32.4 bins = 8.1 ns # ToT signals for +500V, MedT, entire fid. region #### Cuts: | nTracks | Chi2 | SlopeX,Y | ToA [bin] | |---------|------|----------|-----------| | 1 | <10 | <0.00025 | 190-220 | #### Cuts: | nTracks | Chi2 | SlopeX,Y | ToA [bin] | |---------|------|----------|-----------| | 1 | <10 | <0.00025 | 190-220 | ## ToT signals for -500V, MedT, entire fid. region Analogue peak distribution: Mean: 0.116 V ToT+ distribution mean: 47.2 bins = 11.8 ns ToT+ vs Analog signal 600 600 400 45 400 300 200 100 200 100 ToT- distribution mean: 47.8 bins = 11.95 ns # ToT signals for -500V, MedT, entire fid. region #### Cuts: | nTracks | Chi2 | SlopeX,Y | ToA [bin] | |---------|------|----------|-----------| | 1 | <10 | <0.00025 | 190-220 | # Extra slides #### Analogue signal rise-time - Most probable or Mean signal calculated for each bin using the persistance graph - Gauss or LandGau function fitted to distribution ## Analogue signal rise-time - Rise-time estimated as time when signal rises 10%-90% - Equidistant bins, bin width 0.25 ns (needs to be corrected for each bin!) - Rise-time: 7.7 bins or 1.925 ns