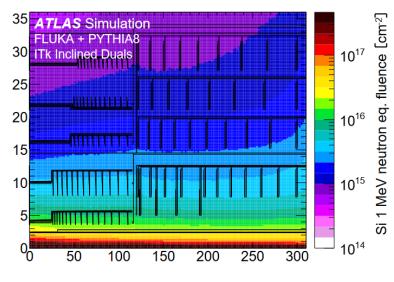


Development of the BCM' system for beam abort and luminosity determination at the HL-LHC based on polycrystalline CVD diamond

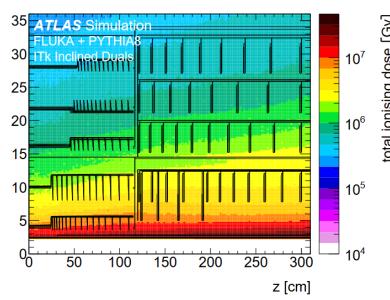
Lepton Photon 2021, virtual Manchester, 11. 01. 2022

Bojan Hiti, F9, Jožef Stefan Institute (JSI)

on behalf of BCM' collaboration


ATLAS Beam Conditions Monitor

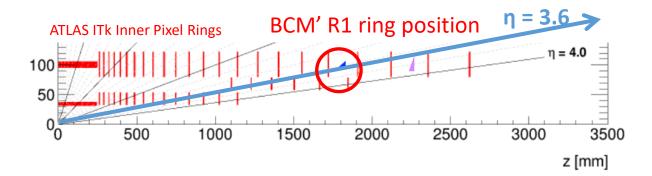
- Beam Conditions Monitor (BCM) in ATLAS at the LHC:
 - Installed since 2008
 - Located in the Pixel Detector at $z = \pm 184$ cm, r = 5.5 cm
 - Based on radiation tolerant diamond sensors
 - NIEL 1 x 10¹⁵ n_{eq}/cm², TID 50 Mrad, charged particle flux up to 60 MHz/cm²
- BCM provides bunch-by-bunch detection for Beam Protection and Luminosity measurement:
 - Per-bunch fast safety system (abort)
 - Background monitoring
 - Per-bunch luminosity meter (lumi)

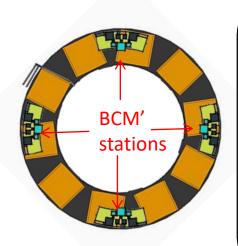

Can abort LHC beam to protect the tracking detector

- HL-LHC: particle density will increase by an order of magnitude
 - Charged particle flux up to 160 MHz/cm² at pile up $\mu = 140$
 - NIEL 3 x 10^{15} n_{eq} /cm², TID 300 Mrad after 2000 fb⁻¹ (including x 1.5 safety factor)
 - A new BCM' system will be installed in ATLAS ITk in 2024
 - BCM' collaboration: OSU, JSI, Manchester, Wiener Neustadt, CERN

r [cm]

[ATLAS ITk Pixel TDR]

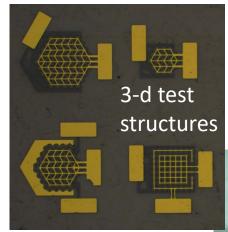



BCM' overview

ATLAS / ITK

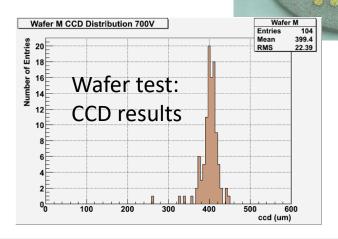
- Located at r = 100 mm, $z = \pm 1800 \text{ mm}$ (6.25 ns) from Interaction Point on both detector sides
- Collision/background separation based on Time of Flight
 - Luminosity: Collision products arrive simultaneously on both detector sides (in-time)
 - Beam protection: Background arrives out-of-time,
 12.5 ns delay between two sides
- Four stations per each side of the detector
- Multiple detectors by function
 - Abort (dynamic range > 10⁵ MIP)
 - Beam Loss Monitor (BLM) electronics copied from LHC machine (slow, integrating)
 - Luminosity (single MIP sensitivity)

Each with own sensor


• Collisions: in time • Background: out of time Toronad HAD HAD HAD TORONAD HOUSE H

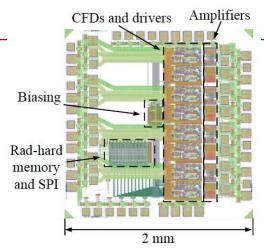
[2008 JINST 3 P02004]

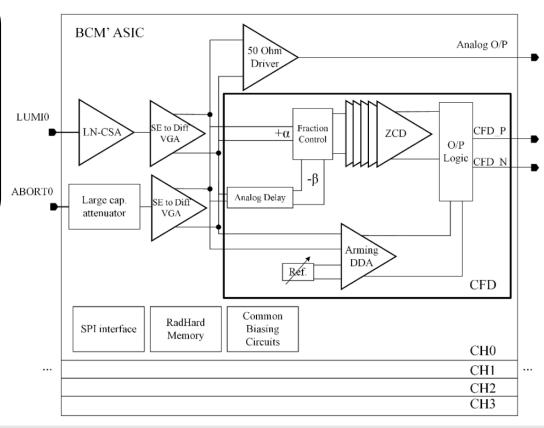
BCM' sensors


ATLAS A ITK

- Sensitivity on very broad range of particle fluxes required
 - Four orders of magnitude, $\mu_{vdM} = 0.01 \rightarrow \mu_{ultimate} = 140$
 - Dynamic range flexibility by segmenting the sensor into pads of varying size
- Three types of polycrystalline chemical vapor deposition (pCVD) diamond sensors and one silicon sensor per station:
 - 10 x 10 mm² (lumi), three pads (size 1 mm² 50 mm²)
 - 5 x 5 mm² (abort), four pads
 - 1 x 1 mm² 3D (lumi), single pad, hex or square electrode cells (53 μ m sense-to-field electrode spacing), C = 5 pF, highest radiation tolerance
 - Small Si pad/strip (lumi), 10 mm², 5 pF
- Diamond sensors produced by US vendor II-VI (worked with RD42)
 - Three 500 μm thick 5-inch wafers have been grown for the project
 - Prototypes delivered Dec 2021
 - Promising first measurements of charge collection, long term current stability
- SPR and PDR passed for sensors, FDR/PRR early 2022

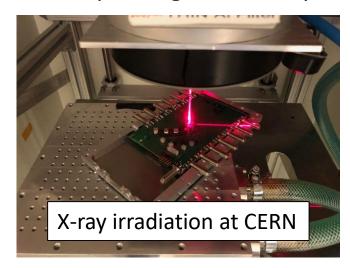
5" pCVD diamond wafer with test dots

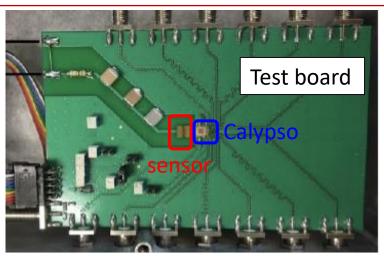

BCM' Front End - Calypso

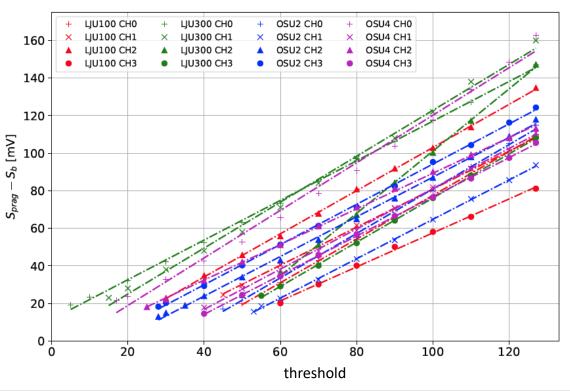

- Calypso: New custom 4-channel front end ASIC
 - TSMC 65 nm process, MPW
 - Reticle size 2 mm x 2 mm
 - Two (mutually exclusive) input options per channel: *lumi/abort*

CALYPSO specifications:

- Optimized for C_{det} 2–5 pF
- $t_{peak} < 1.5 \text{ ns}, t_{settling} < 15 \text{ ns} (at <math>C_{det} = 2 \text{ pF})$
- $\sigma_{\text{iitter}} < 100 \text{ ps}$ (at $C_{\text{det}} = 2 \text{ pF for} > 3.6 \text{ ke}^{-} \text{ signals in simulation}$)
- *lumi*: ± 50 ke⁻ dynamic range, (110 + 55/pF) e⁻ noise gain 55 mV/fC
- abort: ± 750 Me⁻ dynamic range, 830 ke⁻ noise, gain 8.2 μV/fC
- digital LVDS output, analog preamp output for testing
- 3rd iteration Calypso_C received Dec 2020
- 4th planned for June 2022
- ASIC FDR early 2022, PRR early 2023





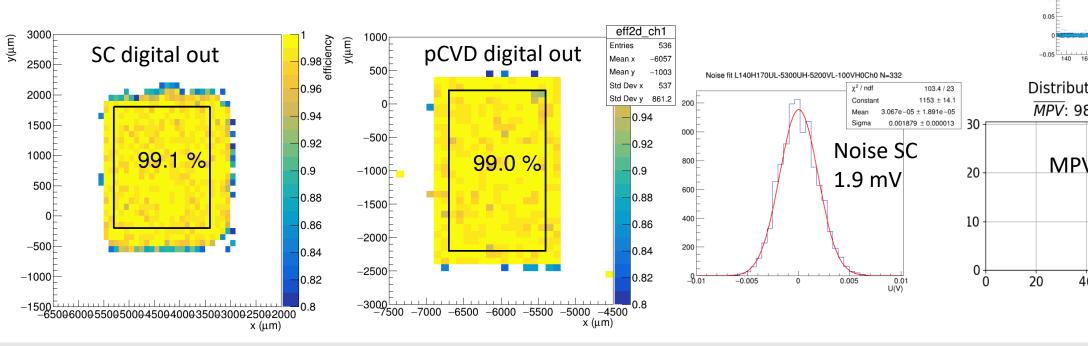

Calypso_C Bench Tests

ATLAS & ITK

- Single chip test boards assembled at OSU and JSI
- Basic functionality test ok
 - Except (much) larger threshold offset spread than expected from simulation
 - Consistent results at OSU and JSI
- Chips irradiated up to 300 Mrad X-ray (unpowered)
 - Functional after 300 Mrad
 - < 20 % of variation on analog parameters observed
 - Need to irradiate powered and cold (counter-effects!)
- I²C for chip configuration fully tested

Single Event Effects tests at PSI with Calypso_C

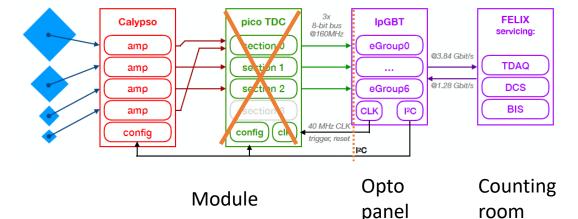
- Test 1 at PiM1 at PSI (Aug 2021), 260 MeV/c pions (4e11 pions/cm² total)
 - Unirradiated Calypso_C
- Test 2 at PIF at PSI (Oct 2021), 230 MeV protons (3.5e13 p/cm² total)
 - Unirradiated Calypso_C and Calypso_C irradiated with 300 Mrad (X-ray)
- Test procedure:
 - Triple Modular Redundancy (TMR) register cells with active feedback
 - 30 8-bit registers i.e. 240 bits loaded with a binary pattern, read out every 10 s
 - If change observed reload and re-start reading
- Pions:
 - 4 "events" observed, strange patterns due to readout interface errors
 - Readout issues fixed for subsequent test
- Protons:
 - No events observed with unirradiated chip
 - Rate consistent with ITk strips upper limit 1e-14 cm²
 - Two events observed in chip irradiated to 300 Mrad
 - TMR logic probably at edge of functionality
 - Not problematic, since registers can be written at will



 $1111 \ 1111 \rightarrow 1111 \ 1101$ $0010 \ 1100 \rightarrow 0100 \ 1100$

Test beam at CERN SPS

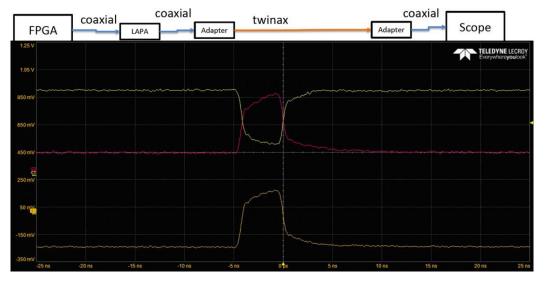
- Test beam in Oct and Nov 2021 with refurbished diamond sensors (5y old)
- 120 GeV pions, MALTA CMOS telescope
- Read out analog and digital signals with DRS4 oscilloscope
- Single crystal and pCVD diamond samples (unirradiated)
- Analysis still ongoing
- Efficiency above 99 % with digital signals in both samples



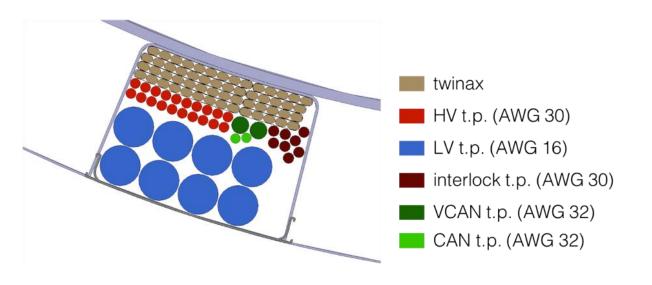
Original baseline was

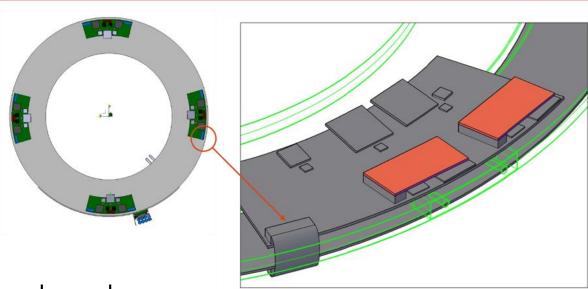
Calypso \rightarrow picoTDC (digitization) \rightarrow IpGBT (to optical) \rightarrow FELIX

- Use of picoTDC abandoned due to delivery, radiation issues
- IpGBT on opto-panel (lower radiation environment)
- Asynchronouse electrical signals up to opto boards (5 m)
 - Twinax cable like Pixels
 - LAPA asynchronous LVDS driver on station module (chip reused from MALTA CMOS pixel detector)
 - Sampling rate of 1.28 GHz on lpGBT
 - could still split & delay $(1.28 \rightarrow 2.56 \text{ G})$ if ToA jitter allows
 - First test over 5 m twinax done at CERN
- Layout to be finalized before services freezing (FDR early 2022)


Baseline

Twinax with LAPA




BCM' services

10

- Stations on dedicated R1 ring within ITk
- Several chips on the station
 - 3 sensors, 3 FE, BLM, DCDC converter, DCS
 - occupies 1/3 of available space on ring
- Thermal load 20 W per ring
 - Cooling required to mitigate radiation damage on ASIC
 - Diamond sensors do not require cooling
- Services occupy approximately 80 % of allocated service channel

	Name	TP/station	TP per side	Voltage	Current
н۷	BLM	1	4	500V	<1uA
	3D-diamond(Lumi)	1	4	150V	<1uA
	Planar diamond (Lumi + abort)	2	8	1000V	<1uA
	Silicon	1	4	1000V	<1uA
LV	From bPOL12V	2	8	11V	3A
MOPS VCAN	Nominal 2 (but may be 4 if the capacity is available)		2 (4?)	2V	35mA
TiLock		2	8		
CAN	Nominal 2 (but may be 4 if the capacity is available)		2(4?)	50V	350mA
Twinax	Uplinks		48		
	downlinks		8		

Summary

- BCM' system will be installed in ATLAS ITk pixel end cap for fast beam protection and luminosity measurement
- The system includes:
 - pCVD diamond sensors
 - Fast radiation hard front end ASIC
 - LHC machine-style BLM (slow integrating)
 - lpGBT + FELIX based readout chain baseline changed
- Different tests demonstrated functionality of the system: lab tests, SEE, test beam
- Several reviews passed, more to come
 - Sensor FDR/PRR early 2022
 - ASIC FDR & Services PDR in early 2022
 - ASIC PRR early 2023