

SPS test beam analysis:

Efficiency for SC, CMS-Si and pCVD detectors

SIC LAB WEEKLY

Efficiency calculation

• Tracking cuts on the data, keep only well reconstructed events

Efficiency =
$$\frac{1}{N_{bins}} \sum_{N_{bins}} \frac{\text{N hits in bin where (peak signal > threshold)}}{\text{N hits in bin}}$$

Peak signal is determined in some time range based on the trigger

Threshold = Desired analog signal value in mV, can be determined based on noise, HighT, LowT...

- Peak value is determined between DRS bins 150-250 (37.5 ns 62.5 ns), where we expect the signals, most of them peak here
- Threshold for efficiency set at 20 mV, which equals around 10σ ($\sigma = 1.99$ mV)
- Example: run200073, -300 V, Fast-discharge enabled

- What about unsynchronised waveforms and peaks, a relatively large number of waveforms have peaks between DRS bins 250-500 (62.5 ns 115 ns).
- All test beam runs for various configurations have around 3% of such waveforms, which peaks between DRS bins 250-500.
- These unsynchronised waveforms should not be a consequence of Calypso unsynchronisation, but rather the telescope and trigger artefacts.

- Increase the range where we look for signal peak, now between DRS bins 150-500 (37.5 ns 115 ns), to include "late" signals
- Threshold kept at 20 mV, which equals around 10σ
- Example: run200073, -300 V, Fast-discharge enabled
- Efficiency rises to 99.87%!

- Range where we determine the peak now increased to entire waveform, DRS bins 0-1023
- Threshold at 20 mV, which equals around 10σ
- Example: run200073, -300 V, Fast-discharge enabled
- Efficiency rises to 99.97%, only 14 events out of 41828 don't have a signal over threshold!

Examples of inefficient events:

SingleCrystal analog efficiency

• Run200021, -500 V, threshold = 20 mV (around 10σ)

Only peaks between DRS bins 150-250: Efficiency for peak between bins 150-250, threshold at 20.0 mV:

Peaks between DRS bins 150-500:

Peaks anywhere in the waveform

pCVD diamond analog efficiency

• Run200099, -1000 V, large pad, threshold reduced to 12.5 mV (around 5σ) for easier separation

Only peaks between DRS bins 150-250: Efficiency for peak between bins 150-250, threshold at 12.5 mV: 4667 V [μm] 96.57 Contents below 12.5 mV: 1239, All contents: 36965, Raw efficiency: 96.65 perc. Entries 36965 200 Peak value [V] 5 0 0.05 0.1 0.15 0.2 0.25 0.3

Peaks anywhere in the waveform

0 0.05 0.1 0.15 0.2 0.25 0.3

Peak value [V]

200

pCVD diamond analog efficiency

• Run200099, -1000 V, medium pad, threshold reduced to 12.5 mV (around 5σ) for easier separation

Only peaks between DRS bins 150-250: Efficiency for peak between bins 150-250, threshold at 12.5 mV: 2254 V [μm] **–1000** ⊦ Contents below 12.5 mV: 444, All contents: 13160, Raw efficiency: 96.63 perc Entries 13160 50 Peak value [V] 5 0.05 0.1 0.15 0.2 0.25 0.3 0

Peaks anywhere in the waveform Efficiency for peak between bins 0-1023, threshold at 12.5 mV: Entries 2478 1000 **−1000 –2000** ⊦ Contents below 12.5 mV: 11, All contents: 13160, Raw efficiency: 99.92 perc. Entries 13160 50

A CONTRACTOR OF THE PROPERTY O

0.05 0.1 0.15 0.2 0.25 0.3

0

Peak value [V] 5

pCVD diamond analog efficiency

• Run200099, -1000 V, small pad, threshold reduced to 12.5 mV (around 5σ) for easier separation

Only peaks between DRS bins 150-250: Efficiency for peak between bins 150-250, threshold at 12.5 mV: V [μm] 1000 Contents below 12.5 mV: 118, All contents: 3464, Raw efficiency: 96.59 perc. Entries 3464 Peak value [V] 5 0.05 0.1 0.15 0.2 0.25 0.3 0

Peaks anywhere in the waveform Efficiency for peak between bins 0-1023, threshold at 12

pCVD diamond analog efficiency, rotated module

• Run200107, -1000 V, threshold reduced to 12.5 mV (around 5σ) for easier separation, all pads

Efficiency-threshold dependance: CMS-Si and LSC

 Si and SC detectors have good S/N ratio and large expected signals -> efficiency will only drop at "high" threshold

LSC: high average signals, visible inefficiency pattern at higher threshold

CMS-Si: uniform inefficiency at higher thresholds

Efficiency-threshold dependance: pCVD diamond

- pCVD diamond has the lowest expected signals, hard to discriminate between signal and noise
- Efficiency drops quickly as we increase threshold -> inefficiency areas appear in diamond pads

Largest pad: lowest average signals, efficiency drop is the quickest

Small pad: largest average signal, efficiency drop is slower

Efficiency-threshold dependance: pCVD diamond, rotated module

- Rotated module has higher average signals, noise remains the same as for "normal" pCVD
- Inefficiency areas appear, the same as for "normal" pCVD

Largest pad: lowest average signals, efficiency drop is the quickest

Contents below 50.0 mV: 7370, All contents: 35484, Raw efficiency: 79.23 perc. Entries 354 400 400 -0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 Peak value [V]

Small pad: largest average signal, efficiency drop is much slower

pCVD diamond efficiency, digital signal, rotated module

- Overnight run 200113, only digital signals, currently only around 50k events used due to multiple desynchronisations -> low statistics
- Threshold for efficiency set at 120 mV, to discriminate between "hit" or "miss"
- DAC threshold in Calypso set to 0x30 -> this causes lower efficiency in the largest pad, where analog signals are the lowest

Digital signal "hit" and "miss" (peak) distribution for largest pad:

Example of a digital signal, average signal height is around 250 mV:

