Luka Leskovec

Jožef Stefan Institute

Transition amplitudes from lattice QCD

IJS-FMF High-Energy Physics Seminars

Thursday, December 9th 2021

Rings in Alabor Scott Egel M. P. P.

transitions between quarks

* mass basis vs interaction basis

$$\begin{bmatrix} d^{W} \\ s^{W} \\ b^{W} \end{bmatrix} = \begin{bmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{bmatrix} \begin{bmatrix} d \\ s \\ b \end{bmatrix}$$

W V_{ub} \mathcal{U}

but it is not that simple...

PDG

* mesons

how to QCD?

- * there are many methods to study QCD:
 - * effective field theories
 - Chiral Perturbation Theory
 - * quark models
 - * AdS/QCD duality

- * lattice QCD:
 - * m_q, α_s
 - * QFT
 - * systematically improvable

lattice QCD

- * QFT
- * UV regulated (*a*)
- * IR regulated (*L*)
- * quark fields (q(x))
- * gauge fields $(U_{\mu}(x))$

lattice QCD so far

BMW 2014

lattice QCD so far

LL et al. 2019

lattice QCD so far

but most hadrons are resonances

• $f_0(500)$	0+(0++)	• $\pi(1300)$	1-(0-+)
aka σ ; was $f_0(600)$		• $a_2(1320)$	$1^{-}(2^{++})$
• $ ho(770)$	$1^+(1^{})$	• $f_0(1370)$	0+(0++)
• $\omega(782)$	0-(1)	• $\pi_1(1400)$	$1^{-}(1^{-+})$
• $\eta'(958)$	0+(0^+)	• $\eta(1405)$	0+(0^+)
• $f_0(980)$	0+(0++)	• $h_1(1415)$	$0^{-}(1^{+-})$
• $a_0(980)$	1-(0++)	was $h_1(1380)$	
• $\phi(1020)$	0-(1)	• $f_1(1420)$	0+(1++)
• $h_1(1170)$	0-(1+-)	• $\omega(1420)$	0-(1)
• $b_1(1235)$	$1^+(1^{+-})$	$f_2(1430)$	$0^+(2^{++})$
• $a_1(1260)$	$1^{-}(1^{++})$	• $a_0(1450)$	$1^{-}(0^{++})$
• $f_2(1270)$	0+(2++)	• $ ho(1450)$	$1^+(1^{})$
• $f_1(1285)$	0+(1++)	• $\eta(1475)$	0+(0-+)
• $\eta(1295)$	0+(0-+)	• $f_0(1500)$	0+(0++)

how do we study resonances?

and resonances on the lattice?

infinite volume: •O(3) symmetry • infinite irreps (J^P)

spectrum in a finite volume

- QCD
- flavor quantum numbers
- irreducible representation

$$F_{lM,l'M'}(E) = \frac{ik}{8\pi E} \left[\delta_{MM'} \delta_{ll'} + i \sum_{\bar{l},\bar{m}} \sqrt{\frac{(2l+1)(2\bar{l}+1)}{4\pi(2l'+1)}} \right]$$

Briceño et al. 2017 (but really a whole bunch of people)

the $\rho(770)$ resonance

the $\Delta(1232)$ resonance

LL et al. 2021

amplitude pole position $m_{\Delta} = (1378.3 \pm 6.6 \pm 9.0)$ MeV $\Gamma/2 = (8.2 \pm 1.0 \pm 1.4)$ MeV

$$T_l^{-1} = K_l^{-1} - \Theta(s - s_{thr}) \,\delta_{ij}$$

- * $K^{\star}(892)$: * Breit-Wigner
- * $K_0^{\star}(700)$ * 4 different *K* parameterizations
 - * 2 with Adler zero
 - * 2 without

 $L \approx 3.6, 4.2 \text{ fm}$ $a \approx 0.11, 0.088 \text{ fm}$ LL et al. 2020

the $K_0^{\star}(700)$ and $K^{\star}(892)$ resonances

the $K_0^{\star}(700)$ and $K^{\star}(892)$ resonances

how do we study transitions?

unitarity!

fixes threshold behavior mismatch!

analyticity!

transitions on the lattice?

$|E_n\rangle_L \sim \sqrt{\mathscr{R}_n} |\varphi\varphi(E = E_n)\rangle_{\infty}$

 $\mathscr{R}_n = \lim_{E \to E_n} \frac{E - E_n}{F^{-1} + T}$

thres.

 $|\langle n, E_n | J_{\mu}(\overrightarrow{q}) | E' \rangle| = \frac{1}{L^3 2E_n 2E'}$

 $\left[\mathcal{HR}_{n}\mathcal{H}\right]^{1/2}$

transitions on the lattice?

proof of concept: $\pi \gamma \rightarrow \pi \pi$

$$\mathscr{A}(q^{2}, s) = \frac{1}{1 - \frac{q^{2}}{m_{P}^{2}}} \sum_{n,m} A_{n,m} s^{m} z^{n}$$

$$z = \frac{\sqrt{t_+ - q^2} - \sqrt{t_+ - t_0}}{\sqrt{t_+ - q^2} + \sqrt{t_+ - t_0}},$$

LL et al. 2018

proof of concept: $\pi \gamma \rightarrow \pi \pi$

$$\mathscr{H} \approx \frac{G_{\rho\pi\pi} F_{\pi\gamma \to \rho}(q^2)}{s_P - s}$$

what about more complicated systems?

LL et al. 2021

outlook

what is in the pipeline?

outlook: $D \rightarrow \rho(\rightarrow \pi\pi)\ell\nu$

$$\begin{aligned} \pi(\varepsilon, p_f) \left| \bar{q} \gamma^{\mu} Q \right| D(p_i) \rangle &= \frac{2i V(q^2, s)}{m_D + 2m_\pi} \epsilon_{\mu\nu\alpha\beta} \varepsilon^{\nu^*} p_i^{\alpha} p_f^{\beta} \\ p_f) \left| \bar{q} \gamma^{\mu} \gamma^5 Q \right| D(p_f) \rangle &= \varepsilon^* \cdot q \frac{4m_\pi}{q^2} q^{\mu} A_0(q^2, s) \\ &+ (m_D + 2m_\pi) \left[\varepsilon^{\mu^*} - \frac{\varepsilon^* \cdot q}{q^2} q^{\mu} \right] A_1(q^2, s) \\ &- \frac{\varepsilon^* \cdot q}{(m_D + 2m_\pi)} \left[(p_i + p_f)^{\mu} - \frac{m_D^2 - 4m_\pi^2}{q^2} q^{\mu} \right] A_2(q^2, s) \end{aligned}$$

s)

outlook: $B \rightarrow \rho(\rightarrow \pi\pi) \ell \nu$

- * *bbūd* tetraquark
- * $\pi\pi$ scattering and the $\rho(770)$
- * $K\pi$ scattering and the $K_0^{\star}(700)$ and *K**(892)
- * $N\pi$ scattering and the $\Delta(1232)$
- * transitions $\pi \gamma \rightarrow \pi \pi$, toys
- heavy meson transitions
- chiral, continuum • extrapolations

summary

thank you :)