
INTRODUCTION TO HADOOP
AND MAPREDUCE

Giovanna Roda & Liana Akobian

Big Data analysis with Hadoop and RHadoop, March 3-4, 2022

Outline

Introduction

What is Big Data?

The Hadoop distributed computing architecture

HDFS hands-on exercises

The YARN resource manager

MapReduce

MapReduce hands-on

MRjob

Concluding remarks

Introduction Schedule

Timetable

March 3rd

13:00–13:15 Introduction to the course
13:15–14:00 Hadoop for distributed computing

Big Data and the Hadoop architecture
14:00–14:15 break
14:15–15:00 Hadoop Distributed File System (HDFS)

Basic concepts and hands-on: manage data on HDFS
15:00–15:15 break
15:15–16:00 MapReduce (MR)

MR computing model: split/map/sort/shuffle/reduce
16:00–16:15 break
16:15–17:00 Hands-on exercises with MapReduce

Introduction to Hadoop and MapReduce 2/105

Outline/next

Introduction

What is Big Data?

The Hadoop distributed computing architecture

HDFS hands-on exercises

The YARN resource manager

MapReduce

MapReduce hands-on

MRjob

Concluding remarks

What is Big Data?

What is Big Data? Defining Big Data

What is Big Data?

“Big Data” is the catch-all term for massive amounts of data as well as for
frameworks and R&D initiatives aimed at working with them efficiently.

Image source: erpinnews.com

Introduction to Hadoop and MapReduce 4/105

What is Big Data? Defining Big Data

A short definition of Big Data

A nice definition from last year’s PRACE Summer of HPC presentation
“Convergence of HPC and Big Data”.

Introduction to Hadoop and MapReduce 5/105

https://www.youtube.com/watch?v=EP1bWMj0GHA&t=44s

What is Big Data? The three V’s of Big Data

The three V’s of Big Data

Big Data is often characterized by three V’s:

Volume (the sheer volume of data)
Velocity (rate of flow of the data and processing speed needs)
Variety (different sources and formats)

Introduction to Hadoop and MapReduce 6/105

What is Big Data? The three V’s of Big Data

The three V’s of Big Data

Data arise from disparate sources and come in many sizes and formats.
Velocity refers to the speed of data generation as well as to processing
speed requirements.

Volume Velocity Variety

MB batch table

GB periodic database

TB near-real time multimedia

PB real time unstructured

...

Introduction to Hadoop and MapReduce 7/105

What is Big Data? The three V’s of Big Data

Reference: metric prefixes

1000000000000000000000000 1024 yotta Y septillion
1000000000000000000000 1021 zetta Z sextillion
1000000000000000000 1018 exa E quintillion
1000000000000000 1015 peta P quadrillion
1000000000000 1012 tera T trillion
1000000000 109 giga G billion
1000000 106 mega M million
1000 103 kilo k thousand

Note: 1 Gigabyte (GB) is 109 bytes. Sometimes GB is also used to denote
10243 or 230 bytes, which is actually one gibibyte (GiB).

Introduction to Hadoop and MapReduce 8/105

What is Big Data? The three V’s of Big Data

Different processing paradigms

Batch processing is when data are collected and submitted to the
system in batches without human interaction. Processing is carried
out at a later time depending on the availability of resources.
Examples of batch processing are: monthly reporting, scientific
simulations, model building.

Real-time processing is when a response is guaranteed within a given
time frame (seconds, milliseconds, ...). Real-time processing is
required by interactive applications such as ATM transactions or
computer vision.

Hadoop’s MapReduce is a typical batch processing tool.

Introduction to Hadoop and MapReduce 9/105

What is Big Data? The three V’s of Big Data

Structured vs. unstructured data

by structured data one refers to highly organized data that are usually
stored in relational databases or data warehouses. Structured data are
easy to search but unflexible in terms of the three "V"s.

Unstructured data come in mixed formats, usually require
pre-processing, and are difficult to search. Structured data are usually
stored in noSQL databases or in data lakes (these are scalable storage
spaces for raw data of mixed formats).

With semi-structured data one usually refers to structured data
containing unstructured elements (such as free text).

Introduction to Hadoop and MapReduce 10/105

What is Big Data? The three V’s of Big Data

Examples of structured/unstructured data

Industry Structured data Unstructured data

e-commerce
products & prices
customer data
transactions

product reviews
phone transcripts
social media mentions

banking

financial
transactions
customer data

customer
communication
regulations &
compliance
financial news

Introduction to Hadoop and MapReduce 11/105

What is Big Data? The three V’s of Big Data

Examples of structured/unstructured data

Industry Structured data Unstructured data

healthcare
patient records
medical billing data
genomic data

clinical reports
radiology imagery
clinical speech

seismology
satellite images
seismic wave sensor data

historic records

Introduction to Hadoop and MapReduce 12/105

What is Big Data? The three V’s of Big Data

Forecast: Big Data in 2025

This table1 shows the projected annual storage and computing needs in
four domains (astronomy, social media, genomics).

1Stephens ZD et al. “Big Data: Astronomical or Genomical?” In: PLoS Biol (2015).
Introduction to Hadoop and MapReduce 13/105

What is Big Data? The three V’s of Big Data

The V’s of Big Data: additional dimensions

Three more “V”s to be considered:

Veracity (quality or trustworthiness of data)
Value (economic value of the data)
Variability (change over time of any of the aforementioned
characteristics)

Introduction to Hadoop and MapReduce 14/105

What is Big Data? Addressing the challenges of Big Data

The challenges of Big Data

When working with large amounts of data you will sooner or later face one
or more of these challenges:

disk and memory space
processing speed
hardware faults
network capacity and speed
need to optimize resources use

Big Data software tools address these challenges.

Introduction to Hadoop and MapReduce 15/105

What is Big Data? Addressing the challenges of Big Data

Distributed computing for Big Data

Source: VSC-4 ©Matthias Heisler

Traditional data processing tools are inadequate for large amounts of data.

Distributed computation makes it possible to work with Big Data
optimizing time and available resources.
Introduction to Hadoop and MapReduce 16/105

What is Big Data? Distributed computing

What is distributed computing?

A distributed computer system
consists of several interconnected
nodes. Nodes can be physical as well
as virtual machines or containers.

When a group of nodes provides
services and applications to the client
as if it were a single machine, then it
is also called a cluster.

Introduction to Hadoop and MapReduce 17/105

What is Big Data? Distributed computing

Benefits of distributed computing

▶ Performance: supports intensive workloads by spreading tasks across
nodes

▶ Scalability: new nodes can be added to increase capacity
▶ Fault tolerance: resilience in case of hardware failures

Introduction to Hadoop and MapReduce 18/105

Outline/next

Introduction

What is Big Data?

The Hadoop distributed computing architecture

HDFS hands-on exercises

The YARN resource manager

MapReduce

MapReduce hands-on

MRjob

Concluding remarks

The Hadoop distributed computing
architecture

The Hadoop distributed computing architecture Hadoop

Hadoop for distributed data processing

Hadoop is a framework for running jobs on clusters of computers that
provides a good abstraction of the underlying hardware and software.

“Stripped to its core, the tools that Hadoop provides for building distributed
systems—for data storage, data analysis, and coordination—are simple. If
there’s a common theme, it is about raising the level of abstraction—to
create building blocks for programmers who just happen to have lots of
data to store, or lots of data to analyze, or lots of machines to coordinate,
and who don’t have the time, the skill, or the inclination to become
distributed systems experts to build the infrastructure to handle it.2”

2White T. Hadoop: The Definitive Guide. O’Reilly, 2015.
Introduction to Hadoop and MapReduce 20/105

The Hadoop distributed computing architecture Hadoop

Hadoop: some facts

Hadoop3 is an open-source project of the Apache Software Foundation.
The project was created to facilitate computations involving massive
amounts of data.

▶ its core components are implemented in Java
▶ initially released in 2006. Last stable version is 3.3.1 from June 2021
▶ originally inspired by Google‘s MapReduce4 and the proprietary GFS

(Google File System)

3Apache Software Foundation. Hadoop. url: https://hadoop.apache.org.
4J. Dean and S. Ghemawat. “MapReduce: Simplified data processing on large

clusters.” In: Proceedings of Operating Systems Design and Implementation (OSDI).
2004. url: https://www.usenix.org/legacy/publications/library/proceedings/
osdi04/tech/full_papers/dean/dean.pdf.
Introduction to Hadoop and MapReduce 21/105

https://hadoop.apache.org/release/3.3.1.html
https://hadoop.apache.org
https://www.usenix.org/legacy/publications/library/proceedings/osdi04/tech/full_papers/dean/dean.pdf
https://www.usenix.org/legacy/publications/library/proceedings/osdi04/tech/full_papers/dean/dean.pdf

The Hadoop distributed computing architecture Hadoop

Hadoop’s features

Hadoop’s features addressing the challenges of Big Data:

▶ scalability
▶ fault tolerance
▶ high availability
▶ distributed cache/data locality
▶ cost-effectiveness as it does not need high-end hardware
▶ provides a good abstraction of the underlying hardware
▶ easy to learn
▶ data can be queried trough SQL-like endpoints (Hive, Cassandra)

Introduction to Hadoop and MapReduce 22/105

The Hadoop distributed computing architecture Hadoop

Mini-glossary of Hadoop’s distinguishing features

fault tolerance: the ability to withstand hardware or network failures
(also: resilience)
high availability : this refers to the system minimizing downtimes by
eliminating single points of failure
data locality : task are run on the node where data are located, in
order to reduce time-consuming transfer of data

Introduction to Hadoop and MapReduce 23/105

The Hadoop distributed computing architecture The Hadoop core

The Hadoop core

The core of Hadoop consists of:

Hadoop common, the core libraries
HDFS, the Hadoop Distributed File System
MapReduce
the YARN (Yet Another Resource Negotiator) resource manager

Introduction to Hadoop and MapReduce 24/105

The Hadoop distributed computing architecture Hadoop ecosystem

The Hadoop ecosystem

Source: Cloudera

There’s a whole constellation of open source components for collecting,
storing, and processing big data that integrate with Hadoop.
Introduction to Hadoop and MapReduce 25/105

The Hadoop distributed computing architecture Hadoop ecosystem

Some useful tools that integrate with Hadoop

Just to mention a few:

Spark in-memory computation engine superseding MapReduce
Kafka a distributed streaming system that allows to integrate

multiple streams of data for real-time processing
Zookeeper synchronization tool for distributed systems

Hbase a noSQL database (key-value store) that runs on the Hadoop
distributed filesystem

Hive a distributed datawarehouse system
Presto a distributed SQL query engine
Oozie a workflow scheduler

All these tools are open source.

Introduction to Hadoop and MapReduce 26/105

The Hadoop distributed computing architecture Hadoop ecosystem

The Hadoop Distributed File System (HDFS)

HDFS stands for Hadoop Distributed File System and it takes care of
partitioning data across a cluster.

In order to prevent data loss and/or task termination due to hardware
failures HDFS uses either

replication (creating multiple copies —usually 3— of the data)
erasure coding

Data redundancy (obtained through replication or erasure coding) is the
basis of Hadoop’s fault tolerance.

Introduction to Hadoop and MapReduce 27/105

The Hadoop distributed computing architecture Hadoop ecosystem

Replication vs. Erasure Coding

In order to provide protection against failures one introduces:

data redundancy
a method to recover the lost data using the redundant data

Replication is the simplest method for coding data by making n copies of
the data. n-fold replication guarantees the availability of data for at most
n− 1 failures and it has a storage overhead of 200% (this is equivalent to a
storage efficiency of 33%).

Erasure coding provides a better storage efficiency (up to to 71%) but it
can be more costly than replication in terms of performance.

Introduction to Hadoop and MapReduce 28/105

The Hadoop distributed computing architecture HDFS architecture

HDFS architecture

A typical Hadoop cluster installation
consists of:

a NameNode
a secondary NameNode
multiple DataNodes

Introduction to Hadoop and MapReduce 29/105

The Hadoop distributed computing architecture HDFS architecture

HDFS architecture: NameNode

NameNode

The NameNode is the main point of
access of a Hadoop cluster. It is

responsible for the bookkeeping of
the data partitioned across the
DataNodes, manages the whole
filesystem metadata, and performs
load balancing

Introduction to Hadoop and MapReduce 30/105

The Hadoop distributed computing architecture HDFS architecture

HDFS architecture: Secondary NameNode

Secondary NameNode

Keeps track of changes in the
NameNode performing regular
snapshots, thus allowing quick
startup.
An additional standby node is needed
to guarantee high availability (since
the NameNode is a single point of
failure).

Introduction to Hadoop and MapReduce 31/105

The Hadoop distributed computing architecture HDFS architecture

HDFS architecture: DataNode

DataNode

Here is where the data is saved and
the computations take place (data
nodes should actually be called “data
and compute nodes”).

Introduction to Hadoop and MapReduce 32/105

The Hadoop distributed computing architecture HDFS architecture

HDFS architecture: internal data representation

HDFS supports working with very large files.

Internally, data are split into blocks. One of the reason for splitting data
into blocks is that in this way block objects all have the same size.

The block size in HDFS can be configured at installation time and it is by
default 128128128MiB (approximately 134134134MB).

Note: Hadoop sees data as a bunch of records and it processes multiple
files the same way it does with a single file. So, if the input is a directory
instead of a single file, it will process all files in that directory.

Introduction to Hadoop and MapReduce 33/105

The Hadoop distributed computing architecture HDFS architecture

HDFS architecture

Introduction to Hadoop and MapReduce 34/105

The Hadoop distributed computing architecture HDFS architecture

Management of DataNode failures

Each DataNode sends a heartbeat
message to the NameNode
periodically.

Whenever a DataNode becomes
unavailable (due to network or
hardware failure), the NameNode
stops sending requests to that node
and creates new replicas of the blocks
stored on that node.

Introduction to Hadoop and MapReduce 35/105

The Hadoop distributed computing architecture HDFS architecture

Blocks versus partitions

In the next part of the course you will hear about data partitioning.

File partitions are logical divisions of the data and should not be confused
with blocks, that are physical chunks of data (i.e. each block has a physical
location on the hardware).

Introduction to Hadoop and MapReduce 36/105

The Hadoop distributed computing architecture WORM: Write Once Read Many

The WORM principle of HDFS

The Hadoop Distributed File System relies on a simple design principle for
data known as Write Once Read Many (WORM).

“A file once created, written, and closed need not be changed except for
appends and truncates. Appending the content to the end of the files is
supported but cannot be updated at arbitrary point. This assumption
simplifies data coherency issues and enables high throughput data access.5”

The data immutability paradigm is also discussed in Chapter 2 of "Big
Data".6

5Apache Software Foundation. Hadoop. url:
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-
hdfs/HdfsDesign.html.

6Warren J. and Marz N. Big Data. Manning publications, 2015.
Introduction to Hadoop and MapReduce 37/105

https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html

The Hadoop distributed computing architecture WORM: Write Once Read Many

Etymology and grammar of the word “data”

The word “data” comes from the Latin “datum”, which means
“given”—something that can’t be derived from anything else. This meaning
is reflected in Hadoop data immutability design.

In case you’re wondering whether “data” should be considered a plural
count noun (singular “datum”) or a singular count noun, the answer is:
both are allowed.

The correct English form is the plural one (“these data”) but the singular
form (“Big Data is”) is also commonly used (see7).

7J. Aronson. A Word About Evidence: 7. Data—etymology and grammar.
https://blogs.bmj.com/bmjebmspotlight/2018/07/01/a-word-about-evidence-
7-data-etymology-and-grammar/.
Introduction to Hadoop and MapReduce 38/105

https://blogs.bmj.com/bmjebmspotlight/2018/07/01/a-word-about-evidence-7-data-etymology-and-grammar/
https://blogs.bmj.com/bmjebmspotlight/2018/07/01/a-word-about-evidence-7-data-etymology-and-grammar/

The Hadoop distributed computing architecture WORM: Write Once Read Many

Data biases

Whenever one works with data, one should keep in mind that data is
inherently biased.

For instance, in data harvested from the web some categories of people or
themes could be underrepresented due to social, cultural, economic
conditions.

And if that’s not enough, alone choosing what kind of data to focus on
introduces bias.

A good starting point for thinking about biases is.8

8Ricardo Baeza-Yates. “Bias on the web.” In: Communications of the ACM 61.6
(2018), pp. 54–61.
Introduction to Hadoop and MapReduce 39/105

The Hadoop distributed computing architecture WORM: Write Once Read Many

Prerequisites for Hands-on

NoMachine - Cluster Connection

After NoMachine Client installation and configuration connect to:

Name: HPCSLO (or a name of your liking)

Host: viz.hpc.fs.uni-lj.si

Port: 4000

Protocol: NX

After entering your credentials and connecting, click on Create new
desktop -> Create new virtual desktop

Change Keyboard Layout if needed: Trinity Control Center ->
Keyboard Layout
Introduction to Hadoop and MapReduce 40/105

The Hadoop distributed computing architecture WORM: Write Once Read Many

Prerequisites for Hands-on

Course Resources

Pull all resources (slides, code files, ..) from the BitBucket repository
BDR_resources to your account.

On the command-line:

g i t c l o n e h t t p s : // g i t@b i t b u c k e t . o rg / b d t r a i n / r e s o u r c e s . g i t

Folder day_1 contains all resources for today´s training and folder day_2
for tomorrow’s.

Introduction to Hadoop and MapReduce 41/105

The Hadoop distributed computing architecture WORM: Write Once Read Many

Prerequisites for Hands-on

Jupyter Installation

Create Jupyter environment for Hands-on exercises:

python3 -m venv local

local/bin/pip install jupyter

local/bin/pip install mrjob

local/bin/jupyter-notebook

Introduction to Hadoop and MapReduce 42/105

Outline/next

Introduction

What is Big Data?

The Hadoop distributed computing architecture

HDFS hands-on exercises

The YARN resource manager

MapReduce

MapReduce hands-on

MRjob

Concluding remarks

HDFS hands-on exercises

HDFS hands-on exercises The module library

Get familiar with the module library

Module is a Python library used to manage software environments.

show available Hadoop installations
module avail Hadoop
load the default Hadoop installation
module load Hadoop
show loaded modules
module list
unload all modules
module purge
show currently loaded Hadoop version
module show Hadoop

These commands can be found in
resources/day_1/HDFS/useful_commands.txt

Introduction to Hadoop and MapReduce 44/105

HDFS hands-on exercises HDFS basic commands

Where to find commands listing

For this part of the training you will need to activate the Hadoop module
using the command:

module load Hadoop

All commands in this section can be found in the file:

HDFS_commands.txt

in the directory resources/day_1/HDFS

Introduction to Hadoop and MapReduce 45/105

HDFS hands-on exercises HDFS basic commands

Show cluster configuration

show namenode(s)
hdfs getconf -namenodes
show datanodes
yarn node -list -all
show more details for each datanode
yarn node -list
show blocksize
hdfs getconf -confKey dfs.blocksize|numfmt --to=iec
show replication factor
hdfs getconf -confKey dfs.replication

These commands can be found in
resources/day_1/HDFS/useful_commands.txt

Introduction to Hadoop and MapReduce 46/105

HDFS hands-on exercises HDFS basic commands

Basic HDFS filesystem commands

One can regard HDFS as a regular file system, in fact many HDFS shell
commands are inherited from the corresponding bash commands.

To run a command on an Hadoop filesystem use the prefix hdfs dfs, for
instance use:

hdfs dfs -mkdir myDir

to create a new directory myDir on HDFS.

Note: One can use interchangeably hadoop or hdfs dfs when working on
a HDFS file system. The command hadoop is more generic because it can
be used not only on HDFS but also on other file systems that Hadoop
supports (such as Local FS, WebHDFS, S3 FS, and others).

Introduction to Hadoop and MapReduce 47/105

HDFS hands-on exercises HDFS basic commands

Basic HDFS filesystem commands

Basic HDFS filesystem commands that also exist in bash

hdfs dfs -mkdir create a directory
hdfs dfs -ls list files
hdfs dfs -cp copy files
hdfs dfs -cat print files
hdfs dfs -tail output last part of a file
hdfs dfs -rm remove files

Introduction to Hadoop and MapReduce 48/105

HDFS hands-on exercises HDFS basic commands

Basic HDFS filesystem commands

Here’s three basic commands that are specific to HDFS.

hdfs dfs –put
Copy single src, or multiple srcs
from local file system to the
destination file system

hdfs dfs –get
Copy files to the local file sys-
tem

hdfs dfs -usage get help on hadoop fs

Introduction to Hadoop and MapReduce 49/105

HDFS hands-on exercises HDFS basic commands

Basic HDFS filesystem commands

To get more help on a specific hdfs command use: hdfs -help
<command>

$ hdfs dfs -help tail
-tail [-f] <file > :
Show the last 1KB of the file.

-f Shows appended data as the file grows.

Introduction to Hadoop and MapReduce 50/105

HDFS hands-on exercises HDFS basic commands

Some things to try

create a new directory called "input" on HDFS
hdfs dfs -mkdir input
copy local file wiki_1k_lines to input on HDFS
hdfs dfs -put wiki_1k_lines input/
list contents of directory ("-h" = human)
hdfs dfs -ls -h input
disk usage
hdfs dfs -du -h input
get help on "du" command
hdfs dfs -help du
remove directory
hdfs dfs -rm -r input

Introduction to Hadoop and MapReduce 51/105

HDFS hands-on exercises HDFS disk usage

Some things to try

What is the size of the file wiki_1k_lines? What is its disk usage?

show the size of wiki_1k_lines on the regular filesystem
ls -lh wiki_1k_lines
show the size of wiki_1k_lines on HDFS
hdfs dfs -put wiki_1k_lines
hdfs dfs -ls -h wiki_1k_lines

disk usage of wiki_1k_lines on the regular filesystem
du -h wiki_1k_lines
disk usage of wiki_1k_lines on HDFS
hdfs dfs -du -h wiki_1k_lines

Introduction to Hadoop and MapReduce 52/105

HDFS hands-on exercises HDFS disk usage

Disk usage on HDFS

The command hdfs dfs -help du will tell you that the output is of the
form:

size disk space consumed filename.

You’ll notice that the space on disk is larger than the file size (38.6MB
versus 19.3MB):

hdfs dfs -du -h wiki_1k_lines
19.3 M 38.6 M wiki_1k_lines

This is due to replication. You can check the replication factor using:

hdfs dfs -stat ’Block size: %o Blocks: %b Replication: %r’
input/wiki_1k_lines

Block size: 134217728 Blocks: 20250760 Replication: 2

Introduction to Hadoop and MapReduce 53/105

HDFS hands-on exercises HDFS disk usage

Disk usage on HDFS

From the previous output:

Block size: 134217728 Blocks: 20250760 Replication: 2

we can see that the HDFS filesystem currently supports a replication factor
of 2.

Note that the Hadoop block size is defined in terms of mebibytes, in fact
134217728 bytes corresponds to 128MiB and 134MB. One MiB is larger
than a MB since one MiB is 10242 = 220 bytes, while one MB is 106 bytes.

Introduction to Hadoop and MapReduce 54/105

Outline/next

Introduction

What is Big Data?

The Hadoop distributed computing architecture

HDFS hands-on exercises

The YARN resource manager

MapReduce

MapReduce hands-on

MRjob

Concluding remarks

The YARN resource manager

The YARN resource manager YARN

YARN: Yet Another Resource Negotiator

Hadoop jobs are usually managed by YARN (acronym for Yet Another
Resource Negotiator), that is responsible for allocating resources and
managing job scheduling. Basic resource types are:

memory (memory-mb)
virtual cores (vcores)

YARN supports an extensible resource model that allows to define any
countable resource. A countable resource is a resource that is consumed
while a container is running, but is released afterwards. Such a resource
can be for instance:

GPU (gpu)

Introduction to Hadoop and MapReduce 56/105

The YARN resource manager YARN

YARN architecture

Image source: Apache Software Foundation
Introduction to Hadoop and MapReduce 57/105

The YARN resource manager YARN

YARN architecture

Each job submitted to the Yarn is assigned:

a container : this is an abstract entity which incorporates resources
such as memory, cpu, disk, network etc. Container resources are
allocated by YARN’s Scheduler.
an ApplicationMaster service assigned by the Application Manager
for monitoring the progress of the job, restarting tasks if needed

Introduction to Hadoop and MapReduce 58/105

The YARN resource manager YARN

YARN architecture

The main idea of Yarn is to have two distinct daemons for job monitoring
and scheduling, one global and one local for each application:

the Resource Manager is the global job manager, consisting of:
Scheduler: allocates resources across all applications
Applications Manager: accepts job submissions, restart Application
Masters on failure

an Application Master is the local application manager, responsible
for negotiating resources, monitoring status of the job, restarting failed
tasks

Introduction to Hadoop and MapReduce 59/105

The YARN resource manager YARN

Dynamic resource pools

Sharing computing resources fairly can be a big issue in multi-user
environments.

YARN supports dynamic resource pools for scheduling applications.

A resource pool is a given configuration of resources to which a group of
users is granted access. Whenever a group is not active, the resources are
preempted and granted to other groups.

Groups are assigned a priority and resources are shared among groups
according to these priority values.

Additionally, resource configurations can be scheduled for specific intervals
of time.

Introduction to Hadoop and MapReduce 60/105

Outline/next

Introduction

What is Big Data?

The Hadoop distributed computing architecture

HDFS hands-on exercises

The YARN resource manager

MapReduce

MapReduce hands-on

MRjob

Concluding remarks

MapReduce

MapReduce MapReduce

MapReduce: Idea

The MapReduce paradigm is inspired by the computing model commonly
used in functional programming.

Applying the same function independently to items in a dataset either to
transform (map) or collate (reduce) them into new values, works well in a
distributed environment.

Introduction to Hadoop and MapReduce 62/105

MapReduce MapReduce

MapReduce: Idea

Image source: Stack Overflow

Introduction to Hadoop and MapReduce 63/105

MapReduce MapReduce

The origins of MapReduce

The 2004 paper “MapReduce: Simplified Data Processing on Large
Clusters” by two members of Google’s R&D team, Jeffrey Dean and Sanjay
Ghemawat, is the seminal article on MapReduce.

The article describes the methods used to split, process, and aggregate the
large amount of data for the Google search engine.

The open-source version of MapReduce was later released within the
Apache Hadoop project.

Introduction to Hadoop and MapReduce 64/105

MapReduce MapReduce

The phases of MapReduce

The phases of a MapReduce job:

split: data is partitioned across several computer nodes
map: apply a map function to each chunk of data
sort & shuffle: the output of the mappers is sorted and distributed to
the reducers
reduce: finally, a reduce function is applied to the data and an output
is produced

Introduction to Hadoop and MapReduce 65/105

MapReduce MapReduce

The phases of MapReduce

Image source: Nature

Introduction to Hadoop and MapReduce 66/105

MapReduce MapReduce

MapReduce: shuffling and sorting

The shuffling and sorting phase is often the the most costly in a
MapReduce job as the mapping outputs has to be merged and sorted in
order to transfer them to the reducer(s). The purpose of sorting is to

provide data that is already grouped by key to the reducer. This way
reducers can iterate over all values from each group.

Introduction to Hadoop and MapReduce 67/105

MapReduce shuffling and sorting

MapReduce: shuffling and sorting

Introduction to Hadoop and MapReduce 68/105

MapReduce shuffling and sorting

MapReduce: shuffling and sorting

It is also possible for the user to interact with the splitting, sorting and
shuffling phases and change their default behavior, for instance by
managing the amount of splitting or defining the sorting comparator. This
will be illustrated in the hands-on exercises.

While splitting, sorting and shuffling are done by the framework, the map
and reduce functions are defined by the user.

Introduction to Hadoop and MapReduce 69/105

MapReduce shuffling and sorting

MapReduce: Additional Notes

Usually a single mapper and reducer do not suffice for a task ->
Chaining MapReduce Jobs
Output key-value pair can contain custom input format or custom
data types in case e.g more or special objects have to be passed.

Introduction to Hadoop and MapReduce 70/105

MapReduce shuffling and sorting

MapReduce: Key Takeaways

the same map (and reduce) function is applied to all the chunks in the
data
the mapping and reduce functions have to be defined, custom splitting
or sorting are optional as they are given by most MapReduce libraries.
the map computations can be carried out in parallel because they’re
completely independent from one another.

Introduction to Hadoop and MapReduce 71/105

Outline/next

Introduction

What is Big Data?

The Hadoop distributed computing architecture

HDFS hands-on exercises

The YARN resource manager

MapReduce

MapReduce hands-on

MRjob

Concluding remarks

MapReduce hands-on

MapReduce hands-on

Where to find commands listing

Activate the Hadoop module if you haven´t:

module load Hadoop

All commands in this section can be found in the file:

MapReduce_commands.txt

Introduction to Hadoop and MapReduce 73/105

MapReduce hands-on The Mapreduce streaming library

MapReduce streaming

The mapreduce streaming library allows to use any executable as mappers
and reducers.

read the input from stdin (line by line)
emit the output to stdout

check if streaming library is present
echo $STREAMING
opt/apps/software/Hadoop /2.6.0 - cdh5 .8.0- native/share/

hadoop/tools/lib/hadoop -streaming -2.6.0 - cdh5 .8.0. jar

Introduction to Hadoop and MapReduce 74/105

MapReduce hands-on How to run a Mapreduce job

Check input and output

We’re going to use the file wiki_1k_lines (later you can experiment with
a larger, for instance wiki_1k_lines.

check that the output directory does not exist
hdfs dfs -rm -r output

check if file is in /public
hdfs dfs -cat /public/wiki_1k_lines | head

Note: If you use a directory or file name that doesn’t start with a slash
(‘/‘) then the directory or file is meant to be in your home directory (both
in bash and on HDFS). A path that starts with a slash is called an absolute
path name.

Introduction to Hadoop and MapReduce 75/105

MapReduce hands-on How to run a Mapreduce job

Run a simple MapReduce job

Using the streaming library, we can run the simplest MapReduce job.

launch MapReduce job
hadoop jar $STREAMING \

-input /public/wiki_1k_lines \
-output output \
-mapper /bin/cat \
-reducer ’/bin/wc -l’

This job uses as a mapper the cat command, that does nothing else than
echoing the input. The reducer wc -l counts the lines in the given input.
Note how we didn’t need to write any code for the mapper and reducer

because the executables (cat and wc) are already there as par of any
standard Linux distribution.

Introduction to Hadoop and MapReduce 76/105

MapReduce hands-on How to run a Mapreduce job

Run a simple MapReduce job

launch MapReduce job
hadoop jar $STREAMING \

-input /public/wiki_1k_lines \
-output output \
-mapper /bin/cat \
-reducer ’/bin/wc -l’

If the job was successful, the output directory on HDFS (we called it
output) should contain an empty file called _SUCCESS.

The file part-* contains the output of our job.

check if job was successful (output should contain a file
named _SUCCESS)

hdfs dfs -ls output
check result
hdfs dfs -cat output/part -00000

Introduction to Hadoop and MapReduce 77/105

MapReduce hands-on How to run a Mapreduce job

Run a simple MapReduce job

Launch a MapReduce job with 4 mappers

hdfs dfs -rm -r output

launch MapReduce job
hadoop jar $STREAMING \

-D mapreduce.job.maps=4 \
-input /public/wiki_1k_lines \
-output output \
-mapper /bin/cat \
-reducer ’/bin/wc -l’

check if job was successful (output should contain a file
named _SUCCESS)

hdfs dfs -ls output
check result
hdfs dfs -cat output/part -00000

Introduction to Hadoop and MapReduce 78/105

MapReduce hands-on How to run a Mapreduce job

Run a simple MapReduce job

Note how it is necessary to delete the output directory on HDFS (hdfs
dfs -rm -r output) because according to the WORM principle, Hadoop
will not delete or overwrite existing data!

The option -D mapreduce.job.maps=4 right after the jar directive (in
this example -D mapreduce.job.maps=4) allows to change MapReduce
properties at runtime.

The list of all MapReduce options can be found in: mapred-default.xml

Note: this is the link to the last stable version, there might be some slight
changes with respect to the version that is currently installed on the cluster.

Introduction to Hadoop and MapReduce 79/105

https://hadoop.apache.org/docs/stable/hadoop-mapreduce-client/hadoop-mapreduce-client-core/mapred-default.xml

MapReduce hands-on Wordcount with Mapreduce

Wordcount

We are now going to run a wordcount job using Python executables as
mapper and reducer.

The mapper will be called mapper.py and the reducer reducer.py. Since
these executables are not known to Hadoop, it is necessary to add them
with the options

-files mapper.py -files reducer.py

Note: it is possible to have several mappers and reducers in one Mapreduce
job, the output of each function is sent as input to the next one.

Introduction to Hadoop and MapReduce 80/105

MapReduce hands-on Wordcount with Mapreduce

Define the mapper

#!/bin/python3
import sys
for line in sys.stdin:

words = line.strip().split()
for word in words:

print("{}\t{}".format(word ,1))

Listing 1: mapper.py

Introduction to Hadoop and MapReduce 81/105

MapReduce hands-on Wordcount with Mapreduce

Define the reducer

#!/bin/python3
import sys
current_word , current_count = None , 0
for line in sys.stdin:

word , count = line.strip ().split(’\t’, 1)
try:

count = int(count)
except ValueError:

continue
if current_word == word:

current_count += count
else:

if current_word:
print("{}\t{}".format(current_word ,

current_count))
current_count = count
current_word = word

if current_word == word:
print("{}\t{}".format(current_word , current_count))

Listing 2: reducer.py

Introduction to Hadoop and MapReduce 82/105

MapReduce hands-on Wordcount with Mapreduce

Run the job

remove output directory
hdfs dfs -rm -r output

hadoop jar $STREAMING \
-files mapper.py \
-files reducer.py \
-mapper mapper.py \
-reducer reducer.py \
-input /public/wiki_1k_lines \
-output output

Check results.
check if job was successful (output should contain a file

named _SUCCESS)
hdfs dfs -ls output
check result
hdfs dfs -cat output/part -00000| head
Introduction to Hadoop and MapReduce 83/105

MapReduce hands-on Wordcount with Mapreduce

Sorting the output after the job

The reducer just writes the list of words and their frequency in the order
given by the mapper.

The output of the reducer is sorted by key (the word) because that’s the
ordering that the reducer becomes from the mapper. If we’re interested in
sorting the data by frequency, we can use the Unix sort command with the
options k2, n, r meaning respectively "by field 2", "numeric", "reverse".

hdfs dfs -cat output/part-00000|sort -k2nr|head

The output should be something like:
the 193778
of 117170
and 89966
in 69186
. . .
Introduction to Hadoop and MapReduce 84/105

MapReduce hands-on Wordcount with Mapreduce

Sorting with MapReduce

To sort by frequency using the mapreduce framework, we can employ a
simple trick: create a mapper that interchanges words with their frequency
values. Since by construction mappers sort their output by key, we get the
desired sorting as a side-effect.

Create a script swap_keyval.py

#!/bin/python3
import sys
for line in sys.stdin:

word , count = line.strip ().split(’\t’)
if int(count) >100:

print("{}\t{}".format(count , word))

Listing 3: swap_keyval.py

Introduction to Hadoop and MapReduce 85/105

MapReduce hands-on Wordcount with Mapreduce

Sorting with MapReduce

Run the new MapReduce job using output as input and writing results to
a new directory output2.
write the output to the directory output2
hdfs dfs -rm -r output2

hadoop jar $STREAMING \
-files swap_keyval.py \
-input output \
-output output2 \
-mapper swap_keyval.py

Looking at the output, one can see that it is sorted by frequency but
alphabetically.
hdfs dfs -cat output2/part -00000| head
10021 his
1005 per
101 merely
. . .
Introduction to Hadoop and MapReduce 86/105

MapReduce hands-on Wordcount with Mapreduce

Using comparator classes for sorting

In general, we can determine how mappers are going to sort their output by
configuring the comparator directive to use the special class
KeyFieldBasedComparator:

-D mapreduce.job.output.key.comparator.class =\
org.apache.hadoop.mapred.lib.KeyFieldBasedComparator

This class has some options similar to the Unix sort (-n to sort numerically,
-r for reverse sorting, -k pos1[,pos2] for specifying fields to sort by).
See documentation: KeyFieldBasedComparator.html

Introduction to Hadoop and MapReduce 87/105

https://hadoop.apache.org/docs/current/api/org/apache/hadoop/mapreduce/lib/partition/KeyFieldBasedComparator.html

MapReduce hands-on Wordcount with Mapreduce

Using comparator classes for sorting

hdfs dfs -rm -r output2

comparator_class=org.apache.hadoop.mapred.lib.
KeyFieldBasedComparator

hadoop jar $STREAMING \
-D mapreduce.job.output.key.comparator.class=

$comparator_class \
-D mapreduce.partition.keycomparator.options=-nr \
-files swap_keyval.py \
-input output \
-output output2 \
-mapper swap_keyval.py

Introduction to Hadoop and MapReduce 88/105

MapReduce hands-on Wordcount with Mapreduce

Using comparator classes for sorting

Now MapReduce has performed the desired sorting on the data.

hdfs dfs -cat output2/part -00000| head
193778 the
117170 of
89966 and
69186 in
. . .

Introduction to Hadoop and MapReduce 89/105

MapReduce hands-on Some things to try

Modify the Wordcount example

Try to modify the wordcount example:

using executables in other programming languages
adding a mapper that filters certain words
using larger files

Introduction to Hadoop and MapReduce 90/105

MapReduce hands-on Some things to try

Run the MapReduce examples

The MapReduce distribution comes with some standard examples including
source code.

To get a list of all available examples use:

hadoop jar \
$HADOOP_HOME/hadoop -mapreduce -examples -2.6.0 - cdh5 .8.0. jar

Run the Wordcount example:

hadoop jar \
$HADOOP_HOME/hadoop -mapreduce -examples -2.6.0 - cdh5 .8.0. jar
wordcount /public/wiki_1k_lines output3

Introduction to Hadoop and MapReduce 91/105

MapReduce hands-on Some things to try

MapReduce example: Electricity Consumption

Goal: Get the average daily electricity consumption of a consumer per
year. Data: 2.9 million rows of data

Introduction to Hadoop and MapReduce 92/105

MapReduce hands-on Some things to try

Electricity Consumption: First Mapper

#!/bin/python3
import sys

input comes from STDIN (standard input)
for line in sys.stdin:

remove leading and trailing whitespace
line = line.strip()
split the line into words
words = line.split(",")

customerID_date= words[-1] + "_" + words [3]
consumptionPerDay = words [6]

print("{}\t{}".format(customerID_date , consumptionPerDay
))

Listing 4: mapper.py

Introduction to Hadoop and MapReduce 93/105

MapReduce hands-on Some things to try

Electricity Consumption: First Reducer

#!/ b in / python3
impor t s y s
from ope r a t o r impor t i t emg e t t e r

cu r r en tCus tomer = None
cur r en tConsumpt ion = 0

f o r l i n e i n s y s . s t d i n :
l i n e = l i n e . s t r i p ()

customerID_date , consumptionPerDay = l i n e . s p l i t ("\ t " , 1)
consumptionPerDay = i n t (consumptionPerDay)

i f cu r r en tCus tomer == customerID_date :
cu r r en tConsumpt ion += consumptionPerDay

e l s e :
i f cu r r en tConsumpt ion :

p r i n t ("{}\ t {}" . fo rmat (cur rentCustomer , cu r r en tConsumpt ion))
cu r r en tConsumpt ion = consumptionPerDay
cu r r en tCus tomer = customerID_date

i f cu r r en tCus tomer == customerID_date :
p r i n t ("{}\ t {}" . fo rmat (cur rentCustomer , cu r r en tConsumpt ion))

Listing 5: reducer.py

Introduction to Hadoop and MapReduce 94/105

MapReduce hands-on Some things to try

Electricity Consumption: Second Mapper

#!/bin/python3
import sys

for line in sys.stdin:
line = line.strip()

customerID_date , consumptionPerDay = line.split("\t", 1)
customerID_date = customerID_date.split("-" ,1)[0]

print("{}\t{}".format(customerID_date , consumptionPerDay
))

Listing 6: second_mapper.py

Introduction to Hadoop and MapReduce 95/105

MapReduce hands-on Some things to try

Electricity Consumption: Second Reducer

#!/ b in / python3
impor t s y s
from ope r a t o r impor t i t emg e t t e r

a l lCon sumpt i on s = {}

f o r l i n e i n s y s . s t d i n :
l i n e = l i n e . s t r i p ()

customerID_date , consumptionPerDay = l i n e . s p l i t ("\ t " , 1)
consumptionPerDay = i n t (consumptionPerDay)

i f customerID_date i n a l lCon sumpt i on s :
a l lCon sumpt i on s [customerID_date] . append (consumptionPerDay)

e l s e :
a l lCon sumpt i on s [customerID_date] = []
a l lCon sumpt i on s [customerID_date] . append (consumptionPerDay)

f o r y ea r i n s o r t e d (a l lCon sumpt i on s) :
p r i n t ("{}\ t {}" . fo rmat (year , sum(a l lCon sumpt i on s [y ea r]) / l e n (a l lCon sumpt i on s [
y ea r])))

Listing 7: second_reducer.py

Introduction to Hadoop and MapReduce 96/105

MapReduce hands-on Some things to try

Run jobs

hadoop jar $STREAMING \
-mapper mapper.py \
-reducer reducer.py \
-input /public/electricity_data_recorded.csv \
-output output

And second job:

hadoop jar $STREAMING \
-mapper second_mapper.py \
-reducer second_reducer.py \
-input output \
-output result

Introduction to Hadoop and MapReduce 97/105

MapReduce hands-on Some things to try

MapReduce example: Electricity Consumption

Results
check if job was successful (output should contain a file

named _SUCCESS)
hdfs dfs -ls result
check result
hdfs dfs -cat result/part -00000| head

Introduction to Hadoop and MapReduce 98/105

Outline/next

Introduction

What is Big Data?

The Hadoop distributed computing architecture

HDFS hands-on exercises

The YARN resource manager

MapReduce

MapReduce hands-on

MRjob

Concluding remarks

MRjob

MRjob The MRjob Python library

MRjob

What is MRjob? It’s a wrapper for MapReduce that allows to write
MapReduce jobs in pure Python.

The library can be used for testing MapReduce as well as Spark jobs
without the need of a Hadoop cluster.

Here’s a quick-start tutorial:
https://mrjob.readthedocs.io/en/latest/index.html

Introduction to Hadoop and MapReduce 100/105

https://mrjob.readthedocs.io/en/latest/index.html

MRjob The MRjob Python library

A MRjob wordcount

from mrjob.job import MRJob

class MRWordFrequencyCount(MRJob):
"""
A class to represent a Word Frequency Count mapreduce
job
"""
def mapper(self , _, line):

yield "chars", len(line)
yield "words", len(line.split ())
yield "lines", 1

def reducer(self , key , values):
yield key , sum(values)

if __name__ == ’__main__ ’:
MRWordFrequencyCount.run()

Listing 8: word_count.py
Introduction to Hadoop and MapReduce 101/105

MRjob The MRjob Python library

A MRjob wordcount

Run the job:

mypython/bin/python3 word_count.py data/wiki_1k_lines

Introduction to Hadoop and MapReduce 102/105

Outline/next

Introduction

What is Big Data?

The Hadoop distributed computing architecture

HDFS hands-on exercises

The YARN resource manager

MapReduce

MapReduce hands-on

MRjob

Concluding remarks

Concluding remarks

Concluding remarks

Big Data on VSC course

As part of the Vienna Scientific cluster training program, we offered a
course "Big Data on VSC" in 2021.

Our Hadoop expertise comes from managing a Big Data cluster named
LBD (Little Big Data*) at the Vienna University of Technology (TU Wien).
The cluster—available since December 2017—is used for teaching and
research.

(*) https://lbd.zserv.tuwien.ac.at/

Introduction to Hadoop and MapReduce 104/105

https://vsc.ac.at/training/2021/BigData-Mar/
https://lbd.zserv.tuwien.ac.at

Concluding remarks

Thanks

Thanks to the course organisators:

▶ Janez Povh, Leon Kos, Pavel Tomšič (University of Ljubljana,
Slovenia)

▶ Claudia Blaas-Schenner (EuroCC Austria and VSC Research Center,
TU Wien)

And to

▶ Dieter Kvasnicka (VSC Research Center, TU Wien), responsible for
the Hadoop cluster at TU Wien’s dataLAB

Introduction to Hadoop and MapReduce 105/105

