Evidence for a doubly charm tetraquark pole with lattice QCD

Sasa Prelovsek

Faculty of Mathematics and Physics, University of Ljubljana Jozef Stefan Institute, Ljubljana, Slovenia

F1, IJS, 24th March 2022

based on **2202.101101**

done in collaboration with **M. Padmanath**

The longest lived discovered hadron with explicitly exotic quark content

LHCb July 2021, 2109.01038, 2109.01056

The doubly charmed tetraquark T_{cc}^+ , I = 0 and favours $J^P = 1^+$. No states observed in $D^0D^+\pi^+$: eliminates possibility of I = 1.

Near-threshold state: Demands pole identification to confirm existence.

 $\delta m_{
m pole} = -360 \pm 40^{+4}_{-0} \text{ keV/}c^2$ $\Gamma_{\rm pole} = 48 \pm 2^{+0}_{-14} \, {\rm keV} \, ,$

1

Theoretical predictions

- ✤ Phenomenological approaches →
 - * Janc & Rosina , Few Body Syst. 35, 175 (2004), hep-ph/0405208

one of the most sophisticated quark model predictions:

V_{ij} between all pairs of quarks, ground state energy of four-body problem

 $\delta m = -1.6 \pm 1.0 \text{ MeV}$

Lattice QCD

only finite-volume eigen-energy $E_n(L)$ was extracted: this does not suffice to establish a near-threshold state

Junnarkar, Mathur, Padmanath, PRD 99, 034507 (2019), 1810.12285 Hadron Spectrum, JHEP 11, 033 (2017), 1709.01417

To establish a near-threshold state: pole in T(E) needs to be found:

scattering amplitude T(E) $T(E) \propto \frac{1}{s-m^2} = \frac{1}{E^2 - m^2}$ $\textit{E=E_{cm}}$

T(E) has not been extracted by lattice QCD before our study

Our study 2202.101101

first and still the only extraction of T(E) with lattice QCD pole related to T_{cc} established for the first time with lattice QCD

Theoretical PREdictions courtesy: Ivan Polyakov, EPS-HEP 2021 (references at the back)

Summary of our lattice results

Pole of T(E)

 $\begin{array}{|c|c|c|c|c|c|}\hline \delta m_{T_{cc}} & [\mathrm{MeV}] & T_{cc} \\ \hline & -9.9^{+3.6}_{-7.2} & \mathrm{virtual\ bound\ st.} \\ \hline & -0.36(4) & \mathrm{bound\ st.} \\ \hline & \mathrm{omitting\ } D^0 D^0 \pi^+ \end{array}$

 $m_{u,d} > m_{u,d}^{phy}$ $m_{\pi} \approx 280 \text{ MeV}$ $m_{D} \approx 1927 \text{ MeV}$

- T(E) extracted via the Luscher's method
- Evidence for pole related to Tcc
- For m_{u,d} > m_{u,d}^{phy} one expects decreased attraction
 T_{cc} : bound state becomse virtual bound state
 indeed this is what we find

Sketch of expected binding energy

How did we arrive at these lattice QCD result ?

eigen-energies on the lattice -> T(E)

Lattice QCD ensembles employed

CLS Consortium with dynamical quarks: u,d,s $m_u = m_d > m_{u,d}{}^{phy}, m_\pi \approx 280 \text{ MeV}$

Clover Wilson fermions

$$\langle C \rangle = \int DG Dq D\overline{q} C e^{-S_{QCD}/\hbar}$$

Eucledian space-time

$$S^E_{QCD} = \int d^4 x_E \ \mathcal{L}^E_{QCD}(m_q, g_s)$$

strategy: $C \to E \to T(E)$

 $a \approx 0.086 \text{ fm}$

L = 2.1 fm, 2.7 fm

Energies of DD* in non-interacting limit

 $E_{DD^*} \equiv m_D + m_{D^*}$

Sasa Prelovsek

$$D(p_1)$$

periodic bc in space

$$\vec{p}_{1,2} = \vec{n}_{1,2} \frac{2\pi}{L}$$
$$E = \sqrt{m_D^2 + \vec{p}_1^2} + \sqrt{m_{D^*}^2 + \vec{p}_2^2}$$

periodic bc in space

 $\vec{p}_{1,2} = \vec{n}_{1,2} \ \frac{2\pi}{L}$ $E = \sqrt{m_D^2 + \vec{p}_1^2} + \sqrt{m_{D^*}^2 + \vec{p}_2^2}$

Sasa Prelovsek

Extracting eigen-energies from correlation functions

$$C_{ij}(t) = \left\langle 0 \middle| \mathcal{Q}_{i}(t) \middle| \mathcal{Q}_{j}^{+}(0) \middle| 0 \right\rangle = \sum_{n} \left\langle 0 \middle| \mathcal{Q}_{i} \middle| n \right\rangle e^{-E_{n}t} \left\langle n \middle| \mathcal{Q}_{j}^{+} \middle| 0 \right\rangle$$
$$\mathcal{O} = \left(\bar{u}\gamma_{5}c \right)_{\vec{p}_{1}} \left(\bar{d}\gamma_{i}c \right)_{\vec{p}_{2}} - \left(\vec{p}_{1} \leftrightarrow \vec{p}_{2} \right) \qquad \vec{p}_{1,2} = \vec{n}_{1,2} \frac{2\pi}{L}$$

J^P=1+, I=0

 $cc\bar{u}\bar{d}$

 $(\bar{u}\gamma_5\gamma_t c)_{\vec{p}_1} \ (\bar{d}\gamma_i\gamma_t c)_{\vec{p}_2}$

U

 \overline{c}

 \overline{c}

d

t

Diquark antidiquark operators [cc][ud] not incorporated: Emmanuel, Luka

ū

С

С

ā

Energies of DD* from lattice QCD

- energies shifted from non-interacting energies: renders info on T(E)
- focus on energy region near DD* threshold
- ✤ scattering in partial wave l=2 negligible

[2]: DD* with J^P=1⁺ in l=0,2 :both E degenerate in noninteracting limit

Luscher's relation $E \rightarrow T(E)$

Relation between E and $\delta(E)$, T(E): 1D quantum mechanics

Sasa Prelovsek

Luscher 1991

Relation between *E* and $\delta(E)$, T(E)

 $S = 1 + i\frac{4p}{E}T = e^{2i\delta}$ $T = \frac{E}{2}\frac{1}{p\cot\delta - ip}$

E = eigen-energy lattice from lattice in cmf

 $E = \sqrt{m_1^2 + p^2} + \sqrt{m_2^2 + p^2}$

Luscher's relation :

$$E \rightarrow T(E), \ \delta(E)$$

$$p \cot \delta(p) = \frac{2 Z_{00}(1, (\frac{pL}{2\pi})^2)}{\sqrt{\pi}L}$$

DD* scattering amplitude with 1=0

0.2 1.05 $p \cot(\delta_0)/E_{DD}^*$ 0.1 1.04 0.0 $D^* D^*$ 1.03 $N_{L} = 32$ --- E_{cm}/E_{DD}^* $- N_L = 24$ -0.1 -0.008 -0.004 0.000 1.02 0.004 0.008 0.012 φ [2] $(p/E_{DD^*})^2$ 1.01 green and blue points DD^* 1.00 Φ Luscher's relation Φ $E \rightarrow T(E)$ $T_1^+(0)$ 0.99 L[fm]

DD* scattering amplitude with 1=0

P=0, J^P=1⁺

1.05 1.04 $\overline{D}^*\overline{D}^*$ 1.03 E_{cm}/E_{DD}^* 1.02 Φ. [2] 1.01 DD^* 1.00 Φ⁴ Φ. $T_{1}^{+}(0)$ 0.99 L[fm]

red line

effective range expansion near threshold

 $T_{l=0}^{(J=1)}: \ p \cot \delta_0 = \frac{1}{a_0^{(1)}} + \frac{r_0^{(1)}p^2}{2}$

Fit parameters: $a_0^{(1)} = 1.10 \begin{pmatrix} +0.34 \\ -0.31 \end{pmatrix}$ fm $r_0^{(1)} = 0.95 \begin{pmatrix} +0.24 \\ -0.22 \end{pmatrix}$ fm

Eanalytic (fit params)

DD* scattering amplitude with 1=0

DD* scattering amplitude with l=0,1

Location of T_{cc} pole

 $\begin{array}{l} m_{\pi}\approx 280 \; \text{MeV} \\ m_{D}\approx 1927 \; \text{MeV} \\ m_{D} \ _{*}\approx 2049 \; \text{MeV} \end{array}$

Pole of T(E)

-	$\delta m_{T_{cc}}$ [MeV]	T_{cc}
lat	$-9.9^{+3.6}_{-7.2}$	virtual bound st.
LHCb	-0.36(4)	bound st.

- Iat: evidence for virtual bound state pole
- we expect this pole is related to
 Tcc bound state pole found by LHCb :
 arguments in Supplement of 2202.101101
 and in the following slides

Sketch of expected binding energy

Expected dependence of T_{cc} on $m_{u/d}$: simple QM arguments

exchanged particles: light mesons $\pi, \rho, ...$

increasing m_{u/d} increasing m_{ex} decreasing attraction |V| Yukava-like potential

 $V(r) \propto -\frac{e^{-m_{ex}r}}{r}$

Simplest Example: scattering in square-well potential in QM

All fully attractive potentials lead to analogous conclusions

video: courtesy M. Padmanath

Dependence on the charm quark mass

simulation at two charm-quak masses

 $M_{av} \equiv rac{1}{4}(m_{\eta_c}+3m_{J/\psi})$

	$m_D [{ m MeV}]$	m_{D^*} [MeV]	M_{av} [MeV]
lat. $(m_{\pi} \simeq 280 \text{ MeV}, m_c^{(h)})$	1927(1)	2049(2)	3103(3)
lat. $(m_{\pi} \simeq 280 \text{ MeV}, m_c^{(l)})$	1762(1)	1898(2)	2820(3)
exp. 2 , 37	1864.85(5)	2010.26(5)	3068.6(1)

closer to physical (presented till now)

DD* scattering amplitude with l=0,1

at *m_D*≈1927 *MeV*

DD* scattering amplitude with l=0,1 at $m_D \approx 1762 \text{ MeV}$ (lighter charm quark mass)

Lattice results at two m_c

	$m_D [{ m MeV}]$	m_{D^*} [MeV]	M_{av} [MeV]	$a_{l=0}^{(J=1)}$ [fm]	$r_{l=0}^{(J=1)}~[{ m fm}]$	$\delta m_{T_{cc}}$ [MeV]	T_{cc}
lat. $(m_{\pi} \simeq 280 \text{ MeV}, m_c^{(h)})$	1927(1)	2049(2)	3103(3)	1.04(29)	$0.96(^{+0.18}_{-0.20})$	$-9.9^{+3.6}_{-7.2}$	virtual bound st.
lat. $(m_{\pi} \simeq 280 \text{ MeV}, m_c^{(l)})$	1762(1)	1898(2)	2820(3)	0.86(0.22)	$0.92(^{+0.17}_{-0.19})$	$-15.0(^{+4.6}_{-9.3})$	virtual bound st.
exp. 2 , 3 7	1864.85(5)	2010.26(5)	3068.6(1)	-7.15(51)	[-11.9(16.9),0]	-0.36(4)	bound st.

Observed m_c dependence in agreement with QM arguments for fully attractive potential

 $V(r) = -V_0 f(r/R)$

exchanged particles: light mesons $\pi, \rho, ..$

V(r) independent on m_c ,

reduced mass m_r of D,D* system increases with m_c

likely dominant

+

Conclusions on doubly charm tetraquark

- The longest lived exotic hadron ever found
- It lies very close to DD* threshold
- Lattice QCD:

to establish a state near threshold, scattering amplitude has to be extracted and pole identified

Our study 2202.101101 :

- the only extraction of DD* scattering amplitude
- virtual bound state pole found at $m_\pi \approx 280 \; MeV$
- likely related to Tcc found by LHCb

Many interesting questions and quantities still to be explored ...

Backup

Previous lattice QCD study of T_{cc} channel

Junnarkar, Mathur, Padmanath, PRD 99, 034507 (2019), 1810.12285

lowest finite-volume eigen-energy for P=0, J^P=1⁺, I=0

- Study performed on LQCD ensembles with different lattice spacings.
 Single volume and only rest frame finite-volume irreps considered.
- Including a meson-meson and diquark-antidiquark interpolator.
 Diquark-antidiquark interpolators do not influence the low energy spectrum.
- ***** The ground state energy subjected to chiral and continuum extrapolations.
- ✿ A finite-volume energy level 23(11) MeV below DD* threshold.
 No rigorous scattering analysis and no pole structure determined.

- Single volume rest frame study on a relatively coarse lattice ($a_s \sim 0.12$ fm).
- Large basis of meson-meson and diquark-antidiquark interpolators.
- Diquark-antidiquark interpolators do not influence the low energy spectrum.
- ✿ No statistically significant energy shifts observed near DD^* threshold.
 ⇒ No scattering amplitude extraction.

Theory	pred	icti	ons

Poference		Voor	s'_{m} [MaV/ a^2]	[
Reference		rear	om [Mev/c]	
J. Carlson, L. Heller and J. A. Tjon	36	1987	~ 0	• •
B. Silvestre-Brac and C. Semay	37	1993	+19	
C. Semay and B. Silvestre-Brac	38	1994	[-1, +13]	
S. Pepin, F. Stancu, M. Genovese and	30	1996	< 0	
J. M. Richard	50	1550		
B. A. Gelman and S. Nussinov	40	2002	[-25, +35]	• · · ·
J. Vijande, F. Fernandez, A. Valcarce, A. and	41	2003	-112	
B. Silvestre-Brac			1 0 1	
D. Janc and M. Rosina	42	2004	[-3, -1]	
F. Navarra, M. Nielsen and S. H. Lee	43	2007	+91	
J. Vijande, E. Weissman, A. Valcarce	44	2007	[-16, +50]	
D. Ebert, R. N. Faustov, V. O. Galkin and	45	2007	+60	
W. Lucha	10	0000	20	
S. H. Lee and S. Yasui V. Yong, G. Dang, I. Diagonal T. Galdward	46	2009	-79	
Y. Yang, C. Deng, J. Ping and T. Goldman	47	2009	-1.8	
V. Brode, R. Charren, S. Aolti, T. Dai, T. Hateuda	40	2015	-215	
T. Ineura, N. Jahii, K. Musena, H. Nereura and	10	0012	[70 104]	
 Inoue, N. Ishii, K. Murano, H. Nemura and V. Gooshi 	49	2015	[-10, +124]	
S O Luo K Chen X Liu V B Liu and S	H			
J. Zhu	50	2017	+100	
M. Karliner and J. Rosner	51	2017	$7 \pm 12 \rightarrow 1$	
E. J. Eichten and C. Ouigg	52	2017	+102	-
Z. G. Wang	53	2017	$+25 \pm 90$	
G. K. C. Cheung, C. E. Thomas, J. J. Dudek and				· · ·
R. G. Edwards	54	2017	$\lesssim 0$	
W. Park, S. Noh and S. H. Lee	55	2018	+98	· · ·
A. Francis, R. J. Hudspith, R. Lewis and K. Malt-	20	0010	0	
man	50	2018	~ 0	
P. Junnarkar, N. Mathur and M. Padmanath	57	2018	[-40, 0]	· ·
C. Deng, H. Chen and J. Ping	58	2018	-150	· · ·
MZ. Liu, TW. Wu, V. Pavon Valderrama, J	50	2019	-3^{+4}	· · ·
J. Xie and LS. Geng	.00	2015	-9-15	
G. Yang, J. Ping and J. Segovia	60	2019	-149	
Y. Tan, W. Lu and J. Ping	61	2020	-182	
QF. Lü, DY. Chen and YB. Dong	62	2020	+166	
E. Braaten, LP. He and A. Mohapatra	63	2020	+72	•
D. Gao, D. Jia, YJ. Sun, Z. Zhang, WN. Liu	64	2020	[-250, +2]	· ·
and Q. Mei		0000		
JB. Cheng, SY. Li, YR. Liu, ZG. Si, T. Yao	65	2020	+53	-300 -200 -100 0 100 20
S. Noh, W. Park and S. H. Lee	66	2021	+13	$\delta m = MeV/c^2$
R. N. Faustov, V. O. Galkin and E. M. Savchenko	67	2021	+64	L 7

Ivan Polyakov, Syracuse University

Sasa Prelovsek

17

Refs. for theory predictions

- [36] J. Carlson, L. Heller, and J. A. Tjon, Stability of dimesons, Phys. Rev. D37 (1988) 744.
- [37] B. Silvestre-Brac and C. Semay, Systematics of L = 0 q²q² systems, Z. Phys. C57 (1993) 273, 2
- [38] C. Semay and B. Silvestre-Brac, Diquonia and potential models, Z. Phys. C61 (1994) [271] [2]
- [39] S. Pepin, F. Stancu, M. Genovese, and J. M. Richard, Tetraquarks with color blind forces in chiral quark models, Phys. Lett. B393 (1997) 119 arXiv:hep-ph/9609348
 [2]
- [40] B. A. Gelman and S. Nussinov, Does a narrow tetraquark ccud state exist?, Phys. Lett. B551 (2003) 296, arXiv:hep-ph/0209095.
- [41] J. Vijande, F. Fernandez, A. Valcarce, and B. Silvestre-Brac, Tetraquarks in a chiral constituent quark model, Eur. Phys. J. A19 (2004) 383, arXiv:hep-ph/0310007 [2]
- [42] D. Janc and M. Rosina, The T_{cc} = DD* molecular state, Few Body Syst. 35 (2004) 175, arXiv:hep-ph/0405208 2
- [43] F. S. Navarra, M. Nielsen, and S. H. Lee, QCD sum rules study of QQ ud mesons, Phys. Lett. B649 (2007) 166, arXiv:hep-ph/0703071, 2
- [44] J. Vijande, E. Weissman, A. Valcarce, and N. Barnea, Are there compact heavy four-quark bound states?, Phys. Rev. D76 (2007) 094027, arXiv:0710.2516 [2]
- [45] D. Ebert, R. N. Faustov, V. O. Galkin, and W. Lucha, Masses of tetraquarks with two heavy quarks in the relativistic quark model, Phys. Rev. D76 (2007) 114015, arXiv:0706.3853.
- [46] S. H. Lee and S. Yasui, Stable multiquark states with heavy quarks in a diquark model, Eur. Phys. J. C64 (2009) 283, arXiv:0901.2977, 2
- [47] Y. Yang, C. Deng, J. Ping, and T. Goldman, ps-wave QQqq state in the constituent quark model, Phys. Rev. D80 (2009) 114023, [2]
- [48] G.-Q. Feng, X.-H. Guo, and B.-S. Zou, QQ'ūd bound state in the Bethe-Salpeter equation approach, arXiv: 1309.7813 [2]
- [49] Y. Ikeda et al., Charmed tetraquarks T_{cc} and T_{cs} from dynamical lattice QCD simulations, Phys. Lett. B729 (2014) 85, arXiv:1311.6214, 2
- [50] S.-Q. Luo et al., Exotic tetraquark states with the qqQQ configuration, Eur. Phys. J C77 (2017) 709, arXiv:1707.01180, 2
- [51] M. Karliner and J. L. Rosner, Discovery of doubly-charmed \(\mathbb{\extstyle}\) baryon implies a stable (bb\(\overline{ud}\)) tetraquark, Phys. Rev. Lett. 119 (2017) 202001 arXiv:1707.07666
 [2]

- [53] Z.-G. Wang, Analysis of the axialvector doubly heavy tetraquark states with QCD sum rules, Acta Phys. Polon. B49 (2018) 1781, arXiv:1708.04545, 2
- [54] Hadron Spectrum collaboration, G. K. C. Cheung, C. E. Thomas, J. J. Dudek, and R. G. Edwards, *Tetraquark operators in lattice QCD and exotic flavour states in the charm sector*, JHEP **11** (2017) 033, arXiv:1709.01417.
- [55] W. Park, S. Noh, and S. H. Lee, Masses of the doubly heavy tetraquarks in a constituent quark model, Acta Phys. Polon. B50 (2019) 1151, arXiv:1809.05257.
- [56] A. Francis, R. J. Hudspith, R. Lewis, and K. Maltman, Evidence for charm-bottom tetraquarks and the mass dependence of heavy-light tetraquark states from lattice QCD, Phys. Rev. D99 (2019) 054505, arXiv:1810.10550 [2]
- [57] P. Junnarkar, N. Mathur, and M. Padmanath, Study of doubly heavy tetraquarks in Lattice QCD, Phys. Rev. D99 (2019) 034507, arXiv:1810.12285.
- [58] C. Deng, H. Chen, and J. Ping, Systematical investigation on the stability of doubly heavy tetraquark states, Eur. Phys. J. A56 (2020) 9, arXiv:1811.06462 2
- [59] M.-Z. Liu et al., Heavy-quark spin and flavor symmetry partners of the X(3872) revisited: What can we learn from the one boson exchange model?, Phys. Rev. D99 (2019) 094018 arXiv: 1902.03044 [2]
- [60] G. Yang, J. Ping, and J. Segovia, *Doubly-heavy tetraquarks*, Phys. Rev. D101 (2020) 014001, arXiv:1911.00215, 2
- Y. Tan, W. Lu, and J. Ping, QQqq in a chiral constituent quark model, Eur. Phys. J. Plus 135 (2020) 716, arXiv:2004.02106.
- [62] Q.-F. Lü, D.-Y. Chen, and Y.-B. Dong, Masses of doubly heavy tetraquarks T_{QQ} in a relativized quark model, Phys. Rev. D102 (2020) 034012, arXiv: 2006.08087 [2]
- [63] E. Braaten, L.-P. He, and A. Mohapatra, Masses of doubly heavy tetraquarks with error bars, Phys. Rev. D 103 (2021) 016001 arXiv:2006.08650 [2]
- [64] D. Gao et al., Masses of doubly heavy tetraquark states with isospin = $\frac{1}{2}$ and 1 and spin-parity 1^{+±}, arXiv:2007.15213 2
- [65] J.-B. Cheng et al., Double-heavy tetraquark states with heavy diquark-antiquark symmetry, arXiv:2008.00737.
- [66] S. Noh, W. Park, and S. H. Lee, The doubly-heavy tetraquarks $(qq'\bar{Q}\bar{Q}')$ in a constituent quark model with a complete set of harmonic oscillator bases, arXiv:2102.09614 [2]
- [67] R. N. Faustov, V. O. Galkin, and E. M. Savchenko, Heavy tetraquarks in the relativistic quark model, Universe 7 (2021) 94, arXiv:2103.01763, [2]

Interpolators

Example: P=0

 $J^{P}=1^{+} \rightarrow cubic irrep T_{1}^{+}$

Luscher 1991 + generalizations

Relation between *E* and $\delta(E)$, T(E)

$$S = 1 + i\frac{4p}{E}T = e^{2i\delta}$$
$$T = \frac{E}{2}\frac{1}{p\cot\delta - ip}$$

E = eigen-energy lattice from lattice in cmf

$${\rm E}=\sqrt{m_1^2+p^2}+\sqrt{m_2^2+p^2}$$

even and odd I contribute to given irrep for nonzero mom.

Luscher's relation (l=0,1):

$$\det\left[\begin{pmatrix} p\cot\delta_0 & 0\\ 0 & p^3\cot\delta_1 \end{pmatrix} - B(E,L)\right] = 0$$

known 2x2 matrix of kinematical functions (non-diagonal) Luscher's relation (only 1=0):

$$p \cot \delta_0 = B(E, L)$$

$$p \cot \delta_0 - B(E, L) = 0$$

$$\downarrow \qquad \downarrow \qquad \downarrow$$

$$known \qquad lattice \\kinematical \qquad eigen-energy \\function$$

s-wave scattering on spherical potential well

