

SAŠO GROZDANOV

HOW MUCH INFORMATION IS REQUIRED TO RECONSTRUCT A QFT SPECTRUM?

ANALYTIC STRUCTURE OF CORRELATORS

$$\langle \phi \phi \rangle_{p^2 = -\omega^2 + \mathbf{q}^2}$$

QFT at zero temperature

ANALYTIC STRUCTURE OF CORRELATORS

$$\langle T_{\mu\nu}(-\omega,-q),T_{\rho\sigma}(\omega,q)\rangle_R$$

$$\lambda \to 0$$
 $\lambda \to \infty$

'large-N' QFT at finite temperature

ANALYTIC STRUCTURE OF CORRELATORS

'large-N' QFT at finite temperature

spectra of linear non-Hermitian operators

quasinormal mode spectrum of black holes

zeros of (algebraic) equations

OUTLINE

analytic structure of classical hydrodynamics: holomorphicity

reconstruction of spectra beyond hydrodynamics

summary and future directions

ANALYTIC STRUCTURE OF CLASSICAL HYDRODYNAMICS: HOLOMORPHICITY

HYDRODYNAMICS

- low-energy limit of QFTs a Schwinger-Keldysh effective field theory [SG, Polonyi (2013); Crossley, Glorioso, Liu (2015); Haehl, Loganayagam, Rangamani (2015); ...]
- globally conserved operators

$$\nabla_{\mu}T^{\mu\nu} = 0 \qquad \nabla_{\mu}J^{\mu} = 0$$

$$\dots \nabla_{\mu} J^{\mu\nu} = 0$$

higher-form currents in MHD [SG, Hofman, Iqbal, PRD (2017)]

tensor structures (symmetries, gradient expansion, EFT) and transport coefficients (QFT)

$$T^{\mu\nu} = \sum_{n=0}^{\infty} \left[\sum_{i=1}^{N} \lambda_{i}^{(n)} \mathcal{T}_{(n)}^{\mu\nu} \right] \qquad \frac{\nabla_{\mu} T^{\mu\nu} = 0}{u^{\mu} \sim T \sim e^{-i\omega t + iqz}}$$

$$\nabla_{\mu} T^{\mu\nu} = 0$$

$$u^{\mu} \sim T \sim e^{-i\omega t + iqz}$$

$$\omega(q) = \sum_{n=1}^{\infty} \alpha_n q^n$$

$$\partial u^{\mu} \sim \partial T \ll 1$$

$$\omega/T \sim q/T \ll 1$$

dispersion relations:

shear diffusion sound
$$\omega = -iDq^2 \qquad \omega = \pm v_s q - i\Gamma q^2$$

equilibrium temperature
$$q=\sqrt{{f q}^2}$$

HYDRODYNAMICS FROM HOLOGRAPHY

- duality: theory A = theory B
- a result of string theory (quantum gravity) [Maldacena (1997)]

strongly coupled quantum theory (extremely hard)

weakly coupled gravity

(much easier)

- perturbations of black holes (quasinormal modes) give spectra of QFT operators for $\mathfrak{w}\equiv rac{\omega}{2\pi T}\in\mathbb{C}$
- invaluable explicit (toy) models: the $\mathcal{N}=4$ supersymmetric Yang-Mills theory [SG, Kovtun, Starinets, Tadić, JHEP (2019)]

sound:

shear diffusion:

$$\omega = \pm \frac{1}{\sqrt{3}} q - \frac{i}{6\pi T} q^2 \pm \frac{3 - 2\ln 2}{24\sqrt{3}\pi^2 T^2} q^3 - \frac{i(\pi^2 - 24 + 24\ln 2 - 12\ln^2 2)}{864\pi^3 T^3} q^4 \pm \cdots$$

$$\omega = -\frac{i}{4\pi T} q^2 - \frac{i(1 - \ln 2)}{32\pi^3 T^3} q^4 - \frac{i(24\ln^2 2 - \pi^2)}{96(2\pi T)^5} q^6$$

$$-\frac{i\left[2\pi^2(\ln 32 - 1) - 21\zeta(3) - 24\ln 2(1 + \ln 2(\ln 32 - 3))\right]}{384(2\pi T)^7} q^8 + \cdots$$

CHAOS

Lyapunov exponent butterfly velocity $|\Delta Z(t,\mathbf{x})| \approx |\Delta Z(t_i,\mathbf{x}_i)| \, e^{\lambda_L(t-|\mathbf{x}|/v_B)}$

- classical chaos means extreme sensitivity to initial conditions
- "what is quantum chaos?"
 a measure: "out-of-time-ordered" correlation functions
 [Larkin, Ovchinnikov; Kitaev]

$$C(t,\mathbf{x}) = \left\langle [W(t,\mathbf{x}),V(0,\mathbf{0})]^{\dagger}[W(t,\mathbf{x}),V(0,\mathbf{0})] \right\rangle_{T} \sim \epsilon \, e^{\lambda_{L}(t-|\mathbf{x}|/v_{B})}$$
 butterfly velocity 'quantum' Lyapunov exponent

• the Maldacena-Shenker-Stanford bound on exponential Lyapunov chaos

OTOC of
$$\mathcal{O}(t,x)$$

$$C(t,x) \sim \epsilon e^{\lambda_L(t-x/v_B)}$$

$$\lambda_L \le 2\pi T/\hbar$$

holomorphicity

CHAOS FROM HYDRODYNAMICS: POLE-SKIPPING

- precise analytic connection between 'low-energy' hydrodynamics and quantum chaos [SG, Schalm, Scopelliti, PRL (2017); Blake, Lee, Liu, JHEP (2018); Blake, Davison, SG, Liu, JHEP (2018); SG, JHEP (2019)]
- resumed all-order hydrodynamic series (e.g. sound)

 $\omega(q) = \sum_{n=1}^{\infty} \alpha_n (T, \mu_i, \langle \mathcal{O}_j \rangle, \lambda) q^n$

passes through a "chaos point" at imaginary momentum

$$\omega(q = i\lambda_L/v_B) = i\lambda_L = 2\pi Ti$$

where the associated 2-pt function is "0/0":

Res
$$G_R^{\varepsilon\varepsilon}$$
 ($\omega = i\lambda_L, q = i\lambda_L/v_B$) = 0

- triviality of Einstein's equations at the horizon [Blake, Davison, SG, Liu, JHEP (2018)]
- infinite constraints on correlators
 [SG, Kovtun, Starinets, Tadić, JHEP (2019);
 Blake, Davison, Vegh, JHEP (2019)]

$$\omega_n(q_n) = -2\pi T i n$$

[from Blake, Davison, Vegh, JHEP (2019)]

COMPLEX SPECTRAL CURVES

spectral curves are solutions to

$$P(x,y) = 0 \implies y(x); \ x,y \in \mathbb{C}$$

- simple example: $P(x,y) = x^2 + y^2 1 = 0$
- local analysis
 - regular point $P(x_r,y_r)=0,\ \partial_y P(x_r,y_r)\neq 0$ Taylor series around $(x_r,y_r)=(0,1)$ $y=y^{(T)}(x)=1-\frac{x^2}{2}-\frac{x^4}{8}+\cdots$
 - critical point (order 2) $P(x_*,y_*)=0,\ \partial_y P(x_*,y_*)=0,\ \partial_y^2 P(x_*,y_*)\neq 0$ Puiseux series around each $(x_*,y_*)=(\pm 1,0)$ has 2 branches

at
$$(x_*, y_*) = (1, 0)$$
: $y = y_1^{(P)}(x) = i\sqrt{2}(x - 1)^{\frac{1}{2}} + i2^{-\frac{3}{2}}(x - 1)^{\frac{3}{2}} + \cdots$
 $y = y_2^{(P)}(x) = -i\sqrt{2}(x - 1)^{\frac{1}{2}} - i2^{-\frac{3}{2}}(x - 1)^{\frac{3}{2}} + \cdots$

• convergence at least up to nearest critical point (branch point): $R_x^{(T)}=1,\ R_x^{(P)}=2$

vs. level-touching

hydrodynamic modes as complex spectral curves [SG, Kovtun, Starinets, Tadić, PRL (2019) and JHEP (2019)]

hydro:
$$\det \mathcal{L}(\mathbf{q}^2, \omega) = 0$$

ONM: $a(\mathbf{q}^2, \omega) = 0$
 $P(\mathbf{q}^2, \omega) = 0$
 $\Longrightarrow \omega_i(\mathbf{q}^2)$
 $\mathfrak{w} = \frac{\omega}{2\pi T}, \, \mathfrak{q} = \frac{|\mathbf{q}|}{2\pi T} \in \mathbb{C}$

- e.g., first-order hydrodynamics: $P_1(\mathbf{q}^2,\omega) = (\omega + iD\mathbf{q}^2)^2(\omega^2 + i\Gamma\omega\mathbf{q}^2 v_s^2\mathbf{q}^2) = 0$
- Puiseux theorem: there exists a convergent series around a critical point of any order

$$P(\mathbf{q}_*^2, \omega_*) = 0, \, \partial_{\omega} P(\mathbf{q}_*^2, \omega_*) = 0, \, \dots, \, \partial_{\omega}^p P(\mathbf{q}_*^2, \omega_*) \neq 0$$

convergence guaranteed up to the nearest level-crossing critical point (branch point) cf., the Newton polygon or the Darboux theorem [SG, Starinets, Tadić, JHEP (2021)]

$$f(z) \sim r(z)(z-z_1)^{-\nu}, \ z \to z_1$$

$$\nu = \lim_{n \to \infty} \left[z_1(n+1) \frac{a_{n+1}}{a_n} - n \right]$$

$$\nu = \lim_{n \to \infty} \left[z_1(n+1) \frac{a_{n+1}}{a_n} - n \right]$$

radius of convergence of $\mathfrak{w}(\mathfrak{q})=\sum_{i=1}^\infty c_n\mathfrak{q}^n$, $|\mathfrak{q}|<\mathfrak{q}_*$, is set by the lowest momentum at which

the hydro pole collides (level-crossing): $q_* = \min[|q_{\text{collision}}|]$

shear: $\begin{array}{c|c} \mathfrak{q}_* \approx 1.49131 \\ \mathfrak{w}(\mathfrak{q}_*) \approx \pm 1.4436414 - 1.0692250i \end{array}$

 $\mathcal{N}=4$ SYM

sound:

 $\mathfrak{q}_* = \sqrt{2} \approx 1.41421$ $\mathfrak{w}(\mathfrak{q}_*) = \pm 1 - i$

hydrodynamic series are convergent Puiseux series (shear p=1, sound p=2) [SG, Kovtun, Starinets, Tadić, PRL (2019); ...; see also Withers; JHEP (2018); Heller, et.al. (2020, ...)]

$$\mathfrak{w}_{\mathrm{shear}} = -i\sum_{n=1}^{\infty} c_n \left(\mathfrak{q}^2\right)^n = -i\mathfrak{D}\mathfrak{q}^2 + \dots$$

$$\mathfrak{w}_{\text{shear}} = -i\sum_{n=1}^{\infty} c_n \left(\mathfrak{q}^2\right)^n = -i\mathfrak{D}\mathfrak{q}^2 + \dots \qquad \mathfrak{w}_{\text{sound}} = -i\sum_{n=1}^{\infty} a_n e^{\pm \frac{i\pi n}{2}} \left(\mathfrak{q}^2\right)^{n/2} = \pm v_s \mathfrak{q} - \frac{i}{2}\mathfrak{G}\mathfrak{q}^2 + \dots$$

dispersion relations are holomorphic in a disk

hydrodynamic series are convergent Puiseux series (shear p=1, sound p=2)

$$\mathfrak{w}_{\mathrm{shear}} = -i\sum_{n=1}^{\infty} c_n \left(\mathfrak{q}^2\right)^n = -i\mathfrak{D}\mathfrak{q}^2 + \dots$$

$$\mathfrak{w}_{\text{shear}} = -i\sum_{n=1}^{\infty} c_n \left(\mathfrak{q}^2\right)^n = -i\mathfrak{D}\mathfrak{q}^2 + \dots \qquad \mathfrak{w}_{\text{sound}} = -i\sum_{n=1}^{\infty} a_n e^{\pm \frac{i\pi n}{2}} \left(\mathfrak{q}^2\right)^{n/2} = \pm v_s \mathfrak{q} - \frac{i}{2}\mathfrak{G}\mathfrak{q}^2 + \dots$$

coupling dependence of in $\mathcal{N}=4$ SYM [SG, Starinets, Tadić, JHEP (2021)]

$$R_{\text{shear}}(\lambda) = 2.22 \left(1 + 674.15 \,\lambda^{-3/2} + \cdots \right)$$

 $R_{\text{sound}}(\lambda) = 2 \left(1 + 481.68 \,\lambda^{-3/2} + \cdots \right)$

orders of magnitude larger radius of convergence than naive $q/T \ll 1$ – this is a precise incarnation of the "unreasonable effectiveness of hydrodynamics"

RECONSTRUCTION OF SPECTRA BEYOND HYDRODYNAMICS

[SG, Lemut, JHEP (2023)]

Puiseux theorem

Around a critical point of order p, we expect p branches of solutions

$$f(x_* = 0, y_* = 0) = 0, \ \partial_y f(0, 0) = 0, \ \dots, \ \partial_y^p f(0, 0) \neq 0$$

$$y = Y_j(x) = \sum_{k \ge k_0}^{\infty} a_k x^{k/m_j}, \quad j = 1, \dots, p$$

If some $\,m_j>1$, we necessarily have a family of $\,m_j$ solutions

$$y = Y_l(x) = \sum_{k \ge k_0}^{\infty} a_k \left(e^{\frac{2\pi i l}{m_j}} \right)^k x^{k/m_j}, \quad l = 0, 1, \dots, m_j - 1$$

recall: sound

$$\mathfrak{w}_{\text{sound}} = -i \sum_{n=1}^{\infty} a_n e^{\pm \frac{i\pi n}{2}} \left(\mathfrak{q}^2\right)^{n/2} = \pm v_s \mathfrak{q} - \frac{i}{2} \mathfrak{G} \mathfrak{q}^2 + \dots$$

Consider a power series

$$f(z) = \sum_{n=0}^{\infty} a_n z^n$$

that converges up to a critical point of order $\nu = -1/p$, which can be computed

$$f(z) \sim (z - z_1)^{-\nu} [=1/2] r(z) + q(z)$$

$$\nu = \lim_{n \to \infty} \left[z_1(n+1) \frac{a_{n+1}}{a_n} - n \right]$$

$$\nu = \lim_{n \to \infty} \left[z_1(n+1) \frac{a_{n+1}}{a_n} - n \right]$$

as well as all coefficients in the expansion and subleading (non-singular) terms

$$r(z) = \sum_{m=0}^{\infty} r_m \left(z - z_1\right)^m$$

$$r_m = \lim_{n \to \infty} \left[\frac{(-1)^{m-\nu} n! z_1^{n-m+\nu} a_n}{(\nu - m)_n} - \sum_{k=0}^{m-1} \frac{(-1)^{m-k} (\nu - k)_n r_k}{(\nu - m)_n z_1^{m-k}} \right]$$

$$q_m = \lim_{n \to \infty} \left[\sum_{k=0}^n \frac{(-1)^{n+m-k} n! (\nu)_{n-k} a_k}{(-\nu - m)_n (n-k)! z_1^{m-k}} - \sum_{k=0}^{m-1} \frac{(-1)^{k-m} (-\nu - k)_n q_k}{(-\nu - m)_n z_1^{m-k}} \right]$$

Darboux theorem

Need generalisation to different configurations of critical points

- Potential problem: need to know either location of the critical point or exponent...
 but this is resolved by following Hunter and Guerrieri (1980), which we generalise
- ullet Moreover, assume we only know a finite number of coefficients: $\,a_n,\,\,n=0,\ldots,N$

$$X_n^0(\nu, z_1) = a_n$$

$$X_n^{m+1}(\nu, z_1) = X_n^m(\nu, z_1) - \frac{(n + \nu - 2m - 1)}{nz_1} X_{n-1}^m(\nu, z_1), \text{ for } m \ge 0$$

$$X_n^m(\nu, z_1) \sim \sum_{k=m}^{\infty} \frac{(-1)^{k+m-\nu} k! (\nu - k)_{n-m} r_k}{n! (k-m)! z_1^{n+\nu-k}} \sim O(n^{\nu-2m-1})$$

$$X_N^1 = 0, \ X_{N-1}^1 = 0 \xrightarrow{\text{iteration}} X_N^m = 0, \ X_{N-1}^m = 0$$

 $z_1, \ \nu$

- Darboux theorem
- Similarly, define

$$Y_{\ell,n}^{0}(\nu, z_{1}) = a_{n}$$

$$Y_{\ell,n}^{m+1}(\nu, z_{1}) = Y_{\ell,n}^{m}(\nu, z_{1}) - \frac{(n + \nu - 2m - \ell - 2)}{nz_{1}} Y_{\ell,n-1}^{m}(\nu, z_{1}), \text{ for } m \ge 0$$

$$Y_{\ell,n}^m \sim \sum_{k=0}^{\ell} \frac{(-1)^{k-\nu} (m+\ell-k)! (\nu-k)_{n-m} r_k}{n! (\ell-k)! z_1^{n+\nu-k}} + \mathcal{O}(n^{\nu-2m-\ell-2})$$

$$r_{\ell} = \lim_{n \to \infty} \left[\frac{(-1)^{\ell - \nu} n! z_1^{n + \nu - \ell}}{m! (\nu - \ell)_{n - m}} Y_{\ell, n}^m - \sum_{k = 0}^{\ell - 1} {m + \ell - k \choose m} \frac{(-1)^{\ell - k} (\nu - k)_{n - m} r_k}{(\nu - \ell)_{n - m} z_1^{\ell - k}} \right]$$

subleading parts of the function (recall: q) follow in an analogous way

 We also extended this algorithm to several critical points in different configurations

RECONSTRUCTION OF 'ALL' UV MODES

claim: systematic reconstruction of *all* modes connected via *level-crossing* is possible by exploration (analytic continuations) of the Riemann surface connecting physical modes

- momentum space analogue of resurgence [this workshop] everything is convergent!
- see related papers by Bender, et.al; Dunne, et.al.; Withers, JHEP (2019); ...

conceptually fascinating! all UV modes from one IR mode

EXAMPLE: MOMENTUM DIFFUSION OF M2 BRANES

start from 300 coefficients

$$\mathfrak{w}_0(z) = \sum_{n=1}^{N_0 = 300} a_n z^n, \quad z \equiv \mathfrak{q}^2 \equiv q^2 / 4\pi^2 T^2$$

analyse convergence and get a non-rigorous hint for the number of critical points

use algorithm with 2 complex conjugate critical points and 'recover' 12 coefficients

$$\mathfrak{w}_1(z) = \sum_{n=0}^{(N_1=12)-1} b_n (z-z_1)^{n/2}$$

 the gap: analytic continuation within the same sheet (e.g. Padé approximant, conformal maps...)

$$\mathfrak{w}_1^{\text{calc}}(0) = 1.23506 - 1.76338i$$

$$\mathfrak{w}(0) = 1.23455 - 1.77586i$$

EXAMPLE: MOMENTUM DIFFUSION OF M2 BRANES

- this is *not* good enough to continue; as a proof of principle, we (re)compute the first 300 coefficients b_n
 - analyse convergence and get a non-rigorous hint for the number of critical points

using algorithm with 2 general critical points and 'recover' 12 coefficients

$$\mathfrak{w}_2(z) = \sum_{n=0}^{(N_2=12)-1} c_n (z-z_2)^{n/2}$$

the gap: analytic continuation within the same sheet

$$\mathfrak{w}_2^{\text{calc}}(0) = 2.16275 - 3.25341i$$

$$\mathfrak{w}_2(0) = 2.12981 - 3.28100i$$

... exploration continues ...

EXAMPLE: MOMENTUM DIFFUSION OF M2 BRANES

comparison with a Padé approximant from 300 coefficients [see also Withers, JHEP (2019)]

Darboux appears to be superior in recovering the location of critical points and subsequent

expansions

Darboux: z_1 to 18 significant figures

Padé: z_1 to 3 significant figures

Padé appears to be superior in recovering the location of the gap

Darboux: $w_1(0)$ to 2 significant figures

Padé: $w_1(0)$ to 17 significant figures

Note: we used Padé within the same sheet

• if exact critical point is used, then Padé works spectacularly

Padé: $w_1(0)$ to 26 significant figures and 80 coefficients b_n to at least 10 significant figures

- unsurprising conclusion: combination of numerical methods is best
- is this useful for a reconstruction? conceptually yes, practically not quite (yet)...

SUMMARY AND FUTURE DIRECTIONS

SUMMARY AND FUTURE DIRECTIONS

- complex analytic structures of transport are a powerful tool for exploring physics
- classical hydrodynamic dispersion relations are convergent in momentum space

- in some QFTs reconstruction of a spectrum should be possible all the way from IR to UV
- useful not only in QFTs but also for QNM reconstructions and other similar problems
- improve practical aspects of reconstructions given a limited number of known coefficient
- large-d story still has a few open questions...

• can these techniques be used in realistic QFTs (Euler-Heisenberg, chiral Lagrangian)?

THANK YOU!