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e analytic structure of classical hydrodynamics: holomorphicity

e reconstruction of spectra beyond hydrodynamics

e summary and future directions
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HYDRODYNAMICS

low-energy limit of QFTs — a Schwinger-Keldysh effective field theory
[SG, Polonyi (2013); Crossley, Glorioso, Liu (2015); Haehl, Loganayagam, Rangamani (2015); ...]

higher-f ts in MHD
uv wo__ uy gher-form currents
V/LT =0 V,LLJ =0 "t VMJ =0 [SG, Hofman, Igbal,
PRD (2017)]
(symmetries, gradient expansion, EFT) and (QFT)
oo [ N ] 00
| M vV, T* =0
= | 2N e =X
—— ! ut ~ T ~ e—zwt—i—zqz —1
out ~ 0T <« 1 > w/T ~q/T < 1
\ equilibrium
. . . temperature
dispersion relations: shear diffusion sound

a=Va?

w = —iDg" w = tv.q —il'q°




HYDRODYNAMICS FROM HOLOGRAPRHY

duality:

a result of string theory (quantum gravity) [Maldacena (1997)]

(extremely hard) (much easier)

<TMV(_W7 _q>7 TPU((’U? Q)>R ~

perturbations of black holes ( )

give spectra of QFT operators for w= % eC

invaluable explicit (toy) models:
the N =4 supersymmetric Yang-Mills theory
[SG, Kovtun, Starinets, Tadi¢, JHEP (2019)]

1 ] 3—-2In2 i(m2 —24+24In2 — 121n°2
V35 6nT 24+/372T2 86471373
e i 5 i(1-1n2) 4, i(24ln*2—72) 4
shear diffusion: W= 35373 4 06 @rT)° q

_i[2r*(n32 1)~ 21¢(3) — 2421 + n2(n32 = 3))] 5
384 (21T’




C o AN O S \ Lyapunov exponent N butterfly velocity
\

IAZ(t,x)| ~ |AZ(t;,%x;)| et xl/ve)

classical chaos means extreme

sensitivity to initial conditions t=1;

"what is quantum chaos?”

a measure: “out-of-time-ordered” correlation functions

[Larkin, Ovchinnikov; Kitaev]

C(t,%) = (W(13), V(0.0 W (t,%), V(0,0)]) ~ ep!Ix1/%8)
b\utterﬂy velocity

‘quantum’ Lyapunov exponent

the Maldacena-Shenker-Stanford bound on exponential Lyapunov chaos

holomorphicity

OTOC of /
~ AL (t—z/vp) < 97T
O(t. z) C(t,x) ~ece AL <27T/h
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CHAOS FROM HYDRODYNAMICS: POLE-SKIPPING

precise analytic connection between ‘low-energy’ hydrodynamics and quantum chaos
[SG, Schalm, Scopelliti, PRL (2017); Blake, Lee, Liu, JHEP (2018); Blake, Davison,
SG, Liu, JHEP (2018); SG, JHEP (2019)]

resumed all-order hydrodynamic series (e.g. sound) w(q) = Z an, (T, wi, (O;), \) ¢"
n=1

passes through a “chaos point” at imaginary momentum

w(q — i)\L/UB) — i)\L — 271"

where the associated 2-pt function is “0/0":

Res G% (w =iAp,q =tAp/vp) =0

infinite constraints on correlators .
[SG, Kovtun, Starinets, Tadi¢, JHEP (2019); w"(q") = —2mln
Blake, Davison, Vegh, JHEP (2019)]

[from Blake,

Davison,
Vegh,
JHEP (2019)]
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COMPLEX SPECTRAL CURVES

spectral curves are solutions to

P(z,y) =0 = y(=); ¢,y eC

simple example:  P(z,y) =2 4+y*—1=0

reqular point  P(z,,y,) =0, 0,P(x,,y,) # 0
Taylor series around  (2,,9.) = (0,1) y=y" (@) =1-F — =+

critical point (order 2) P(x.,y«) =0, 0yP(z4,ys) =0, 8§P(m*,y*) -0
around each (z.,y.) = (£1,0) has 2 branches

N|o

at (z.,9:) = (1,0):  y=9"(x) =iv2x —1)? +i272(z — 1)

y=yi (@)= V2@ -1 —i2 3 (z —1)2 + - --

W

at least up to nearest critical point ( : RI) =1, RFP) =2

.
// 7
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HYDRODYNAMICS FROM COMPLEX SPECTRAL CURVE

hydrodynamic modes as complex spectral curves
[SG, Kovtun, Starinets, Tadi¢, PRL (2019) and JHEP (2019)]

hydro: det £(q?,w) = 0

OIN\VE a(q®,w) =0 P(q",w) =0 | = | w;i(q) o » G cC

e.g., first-order hydrodynamics: Pl(qQ,w) — (w 4 iDq2)2 (wz + iTwg® — quQ) — 0

: there exists a convergent series around a critical point of any order

P(q?,wy) =0, 0,P(qz,ws) =0, ..., 0P P(qZ,wy) # 0

guaranteed up to the nearest level-crossing critical point ( )
cf., the Newton polygon or the [SG, Starinets, Tadié, JHEP (2021)]
—V . An41
f(z) ~r(2)(z—21)"", 2z = 21 v = lim |z (n+1)== -

next critical point



HYDRODYNAMICS FROM COMPLEX SPECTRAL CURVE

radius of convergence of to(q) = Z cnq”, |g| < g4, is set by the lowest momentum at which
i=1
the hydro pole collides ( ): |G« = min [|dcomision|]

2‘ ei@

q° = |q




HYDRODYNAMICS FROM COMPLEX SPECTRAL CURVE

radius of convergence of to(q) = Z cnq”, |g| < g4, is set by the lowest momentum at which
i=1
the hydro pole collides ( ): |G« = min [|dcomision|]

q2 — ’q2‘€i9

I9°] = 2.15

i o
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HYDRODYNAMICS FROM COMPLEX SPECTRAL CURVE

radius of convergence of to(q) = Z cnq”, |g| < g4, is set by the lowest momentum at which
i=1
the hydro pole collides ( ): |G« = min [|dcomision|]

@ q2:’q2‘€i9

il]"i = 2.20

i o




shear

sound

[mw
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HYDRODYNAMICS FROM COMPLEX SPECTRAL CURVE

O

radius of convergence of w(q) = Z cnq”, la| < q., is set by the lowest momentum at which

i=1
the hydro pole collides ( ): |G« = min [|dcomision|]
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g« ~ 1.49131 . 0. = V2~ 1.41421

shear:

t0(qy) ~ £1.4436414 — 1.06922503 SYM ' tw(q.) = +£1 — i
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HYDRODYNAMICS FROM COMPLEX SPECTRAL CURVE

hydrodynamic series are (shear , sound )
[SG, Kovtun, Starinets, Tadié, PRL(2019): ... : see also Withers; JHEP (2018); Heller, et.al. (2020, ...)]

WOshear = —1 Z Cn, (q2)n — —i@qQ + ... Wsound = —? Z aneian (qQ)n/2 = +v.q — %®q2 + ...
n=1

n=1

dispersion relations are holomorphic in a disk




HYDRODYNAMICS FROM COMPLEX SPECTRAL CURVE

hydrodynamic series are (shear , sound )
< 2\" ‘T g2 S imn o 9\n/2 Lo 2
mS ear = = n - = @ o« o o mSOU.n e n 2 p— :l: s — —6 ...
h znz_:lc (q ) 13)q° + d znz::la e (q ) Vsq 5 q- +

coupling dependence of in N' = 4 SYM [SG, Starinets, Tadi¢, JHEP (2021)]

Rshear()\) = Ui (1 4 674.15 )\_3/2 + - )

T ~ O(10
Rsound()\) =y <1 + 481.68 )\_3/2 + - - ) q/ ( )

orders of magnitude larger radius of convergence than naive ¢/T < 1 —
this is a precise incarnation of the
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RECONSTRUCTION OF SPECTRA
BEYOND HYDRODYNAMICS

[SG, Lemut, JHEP (2023)]



PUISEUX AND DARBOUX THEOREMS

Around a critical point of order p, we expect p branches of solutions

fze =0,y =0) =0, 8,£(0,0) =0, ..., OF(0,0)# 0

y:Y](Qf) — Z akxk/mja ]:1,,]?
k>ko

f some mj; > 1, we necessarily have a family of 1m; solutions

271l
y:Yz(a:):Zak(ema‘) xk/mj, [=0,1,...,m; —1
k> ko
. . . = :tiTFT’n 2\ 1 /2 _ ) 2
recall: sound Weound = —1 Z Qe (9°) " = tvsq — §Q5q + ...

21
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PUISEUX AND DARBOUX THEOREMS

@)
Consider a power series f(z) = Z anz"
n=0
that converges up to a critical point of order v [= —1/p|, which can be computed
—V IRT An+1 _
f(z) ~ (2 — z1) r(z) v= M el )= ==

as well as all coefficients in the expansion and subleading (non-singular) terms

m—v n m 1/ m— 1 —
r,m = lim (=1) nlz . — k)nTk
n—>00 (y—m)n — )nzin k
n 117y — m— 1 _
¢ = lim [ (=1)"* kn'( Y k&k Z (- Vk)an]
nooe |10 (Fv = m)n(n — k) 0 — m)p2f" "



PUISEUX AND DARBOUX THEOREMS

(a) One critical point (b) Two complex
at D, conjugated critical

Need generalisation to 2 e
different configurations of
critical points

(¢) Two general critical (d) One critical point (e) J critical points at
points at dD),,|. at 0D)|,,| and another or near 9D, |.
in its vicinity.

Potential problem: need to know either location of the critical point or exponent...

but this is resolved by following Hunter and Guerrieri (1980), which we generalise

Moreover, assume we only know a finite number of coefficients: a,, n =10,..., N

Xg(y, 21) = ay,

(n+v—-2m-1)_

ng—i_l(yazl):ng(V:Zl)_ n—l(yazl)v for m > 0

nzi
m . (_1)k+m_yk!(y_k)n—mrk vr—2m—1
R
k=m : ’

iteration

Xy=0, Xp_,=0 — XW=0 XV ,=0 Z1, V
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PUISEUX AND DARBOUX THEOREMS

Similarly, define

Yo, (o) = a
(n+v—2m—4{—2)
nzq

Y7 (v, 1) = Y7 (v, 1) — Yy (v, 1), form >0

14
m (=) (m+ €= k) = k)n—mTs y—2m—0—2
Yem ™ ];) nl(f — k)l tv=F O )

(—1)£_Vn!z?+y_£ vm _ § (m + ¢ — k) (=) *(v — k)pmTs

k=0 m (V _ E)n_mzf_k
subleading parts of the function (recall: g) follow in an analogous way

We also extended this algorithm to several
critical points in different configurations
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RECONSTRUCTION OF "ALL” UV MODES

momentum space analogue of resurgence [this workshop] — everything is

see related papers by Bender, et.al; Dunne, et.al.; Withers, JHEP (2019); ...

wo(z) = An2" i
° nz:% wo(z) = —ZZG

m™n

2 by(z — 21)

n/2

25




26

EXAMPLE: MOMENTUM DIFFUSION OF M2 BRANES

No=300
start from 300 coefficients g (2) = Z anz", z=q° = q>/4n*T?
n=1

analyse convergence and get a non-rigorous hint for the number of critical points

—40

60, N

[ logig lan| =n l()g[(_,(Rﬁf) + &

ha ¥

use algorithm with 2 complex conjugate critical points and ‘recover’ 12 coefficients

(N1=12)—1

1(z) = Z b (2 — 21)™?

n=0

the gap: analytic continuation within the same sheet

(e.g. Padé approximant, conformal maps...)

5 (0) = 1.23506 — 1.76338
tv(0) = 1.23455 — 1.77586i
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EXAMPLE: MOMENTUM DIFFUSION OF M2 BRANES

this is not good enough to continue;

as a proof of principle, we (re)compute the first 300 coefficients b,,

analyse convergence and get a non-rigorous hint for the number of critical points

log g |bn] | [ t’Ol’
s .

logyg |bu| = n logm(R“‘) + M 3

z=z1+ Ribtpto

la;ml] N
z=z1+Riitei¢

using algorithm with 2 general critical points and ‘recover’ 12 coefficients

(N2=12)—1

o(2) = Z cn(z — ,7;2)”/2

n=0

the gap: analytic continuation within the same sheet

5(0) = 2.16275 — 3.253415
t(0) = 2.12981 — 3.28100i

... exploration continues ...
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EXAMPLE: MOMENTUM DIFFUSION OF M2 BRANES

comparison with a Padé approximant from 300 coefficients [see also Withers, JHEP (2019)]

Darboux appears to be superior in recovering the location of critical points and subsequent

expansions

Darboux: 21 to 18 significant figures
Padé: 271 to 3significant figures

Padé appears to be superior in recovering the location of the gap

Darboux: m;(0) to 2 significant figures Note: we used Padé within the same sheet
Padé: m;(0) to 17 significant figures

if exact critical point is used, then Padé works spectacularly

Padé: tv(0) to 26 significant figures and 80 coefficients b,, to at least 10 significant figures

unsurprising conclusion: combination of numerical methods is best

is this useful for a reconstruction? conceptually yes, practically not quite (yet)...



SUMMARY AND
FUTURE DIRECTIONS



SUMMARY AND FUTURE DIRECTIONS

complex analytic structures of transport are a powerful tool for exploring physics

classical hydrodynamic dispersion relations are convergent in momentum space

in some QFTs reconstruction of a spectrum should be possible all the way from IR to UV
useful not only in QFTs but also for QNM reconstructions and other similar problems
improve practical aspects of reconstructions given a limited number of known coefficient

large-d story still has a few open questions...

can these techniques be used in realistic OFTs (Euler-Heisenberg, chiral Lagrangian)?

32



THANK YOU!



