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• Weather, Climatology, Earth Science
- degree of warming, scenarios for our future climate.
- understand and predict ocean properties and variations
- weather and flood events

• Astrophysics, Elementary particle physics, Plasma physics
- systems, structures which span a large range of different length and time scales
- quantum field theories like QCD, ITER

• Material Science, Chemistry, Nanoscience
- understanding complex materials, complex chemistry, nanoscience
- the determination of electronic and transport properties

• Life Science
- system biology, chromatin dynamics, large scale protein dynamics, protein 

association and aggregation, supramolecular systems, medicine
• Engineering

- complex helicopter simulation, biomedical flows, 
gas turbines and internal combustion engines, 
forest fires, green aircraft, 

- virtual power plant

Why supercomputing?



Aging Society
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Supercomputing drives science with simulations



▶ Usually is the program written for serial execution on one processor

▶ We divide the problem into series of commands that can be executed in parallel

▶ Only one command at a time can be executed on one CPU

Introduction to parallel computing



▶ Threading

▶ OpenMP – automatic parallelization

▶ Distributed memory model = Message Passing Interface (MPI) – manual 

parallelization needed 

▶ Hybrid model OpenMP/MPI

Parallel programming models



▶ Parallel processing of the same subproblems on multiple processors

▶ No communication is needed between processes

Embarrassingly simple parallel processing 



▶ Need to know computer 

architecture

▶ Interconnect  bus for sharing  

memory between processors 

(NUMA interconnect)     

Logical view of a computing 
node



▶ Distributed computing

▶ Many nodes exchange 

messages on

▶ high speed, 

▶ low latency interconnect 

such as Infiniband

Nodes interconnect



▶ Good understanding of the problem being solved in parallel

▶ How much of the problem can be run in parallel

▶ Bottleneck analysis and profiling gives good picture on scalability of  the 

problem

▶ We optimize and parallelize parts that consume most of the computing time

▶ Problem needs to be dissected into parts functionally and logically

Development of parallel codes



▶ Having little an infrequent communication between processes is the best

▶ Determining the largest block of code that can run in parallel and still provides 

scalability

▶ Basic properties

▶ response time

▶ transfer speed - bandwidth

▶ interconnect capabilities

Interprocess communications



▶ Amdahl’s law:  Speedup = 1/(1-p)

Parallel portion of the code determines 
code scalability



• We are solving a set of matrix equations of the form [K]{u} = {f}. Here 
[K] is referred to as the stiffness matrix; {f} as the force vector and {u} 
as the set of unknowns. 
• Several milions of unknowns
• Lot of zeros in K

• Direct solvers: Multfront, MUMPS, and LDLT, Pardiso, ...
• Iterative solvers: PETSc and GCPC, ...
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Direct Solver or Iterative Solver?



• CAD/CAM: Salome, Freecad, OpenSCAD, LibreCad, Pycam, Camotics, 
dxf2gcode & Cura
• FEA, CFD & multiphysic simulation: Salome-Meca / Code-Aster, 

SalomeCFD/Code-Saturne, HelyxOs/OpenFOAM, Elmer FEM, 
Calculix with Launcher & CAE GUI,  Impact FEM, MBDyn, FreeFEM, 
MFEM, Sparselizard
• Meshing, pre-post, & visualization: Salome, Paraview, Helyx-OS, Elmer 

GUI, VoxelMesher, Tetgen, CGX, GMSH

Computer Aided Engineering 
open source tools



▶ Demonstration of the work on the cluster by repeating

▶ Access with NX client

▶ Learning basic Linux commands

▶ SLURM scheduler commands

▶ Modules

▶ Development with OpenMP and OpenMPI parallel paradigms

▶ Exercises and extensions of basic ideas

▶ Instructions available at http://hpc.fs.uni-lj.si/

Questions and practicals on the 
HPCFS cluster

http://hpc.fs.uni-lj.si/


EURO
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NoMachine client

§ Setting up the NoMachine client version 6 available for installation at page 
https://www.nomachine.com/download-enterprise#NoMachine-Enterprise-Client
or https://bit.ly/1fal6ac

1. Select New

2. Protocol NX

3. Host: login.hpc.fs.uni-lj.si Port: 4000

4. Use Password authentication

5. Don’t use proxy

6. Done with Connection to login.hpc.fs.uni-lj.si

https://www.nomachine.com/download-enterprise
https://bit.ly/1fal6ac
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Connecting to HPCFS

1. Select and Connect

2. Use your account credentials

3. Create New desktop once

4. Use the Trinity (KDE) desktop

5. To Disconnect press Ctrl+Alt+T

6. To Reconnect select previous virtual desktop 
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KPersonalizer

Tuning desktop with KPersonalizer for remote speed (use less effects=slower processor)

Use Trinity Control Center to setup colors for Non TDE 
programs:
Uncheck “Enforce colors for Non-TDE programs”
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Basic HPCFS cluster usage 

§ Setting GNOME or KDE desktop locale preferences for keyboard, LANG environment 
§ Using NX client (Disconnect, Terminate, Logout) 
§ Console commands in Linux 
§ Editors for programming (emacs, gedit, kate, eclipse, vi, pico, ...) on login only! 

Modules (LUA):
§ module avail
§ module help/info
§ module show
§ module load/unload 
§ module list
§ module purge 

SLURM batch scheduler 

Compiled-in OpenMPI support
• srun --nodes=N --ntasks=n cmd
• sbatch script.sh
• sinfo
• squeue
• Alias for interactive usage of nodes:
alias node='srun -N1 --time=1:00:00 --pty bash -i'
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Using SLURM (interactivelly) and Message 
Passing Interface (MPI) 
[leon@viz mpi]$ module purge && module load foss/2019a
[leon@viz mpi]$ cat hello.f90
program hello

use mpi
integer rank, size, ierror, strlen, 

status(MPI_STATUS_SIZE)
character(len=MPI_MAX_PROCESSOR_NAME) :: hostname

call MPI_INIT(ierror)
call MPI_COMM_SIZE(MPI_COMM_WORLD, size, ierror)
call MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierror)
call MPI_GET_PROCESSOR_NAME( hostname, strlen, ierror )
print*, trim(hostname), rank, size
call MPI_FINALIZE(ierror)

end

[leon@viz mpi]$ mpif90 hello.f90
[leon@viz mpi]$ LD_PRELOAD= srun -
n 4 --tasks-per-node=2 --kill-on-
bad-exit --partition=haswell
./a.out
cn80 2 4
cn79 0 4
cn80 3 4
cn79 1 4
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OpenMP

#include <stdio.h>
#include <math.h>
#define N 1000000
int main()
{
double area = 0.0;
#pragma omp parallel for reduction(+:area)
for(int i = 0; i < N; i++)
{
double x = (i+0.5)/N;
area += sqrt(1.0 - x*x);

}
printf("Površina : %14lf\n", 4.0*area/N);
return 0;

}

[leon@cn36 pi]$ module purge && module 
load foss/2019a

[leon@cn36 pi]$ gcc -fopenmp pi-
openmp.c -lm -o pi-openmp

[leon@cn36 pi]$ OMP_NUM_THREADS=4 ./pi-
openmp
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