
Date: 12 Jun 2022

Introduction to HPC with practicals on HPCFS

Presenter: Leon Kos, University of Ljubljana

1

• Weather, Climatology, Earth Science
- degree of warming, scenarios for our future climate.
- understand and predict ocean properties and variations
- weather and flood events

• Astrophysics, Elementary particle physics, Plasma physics
- systems, structures which span a large range of different length and time scales
- quantum field theories like QCD, ITER

• Material Science, Chemistry, Nanoscience
- understanding complex materials, complex chemistry, nanoscience
- the determination of electronic and transport properties

• Life Science
- system biology, chromatin dynamics, large scale protein dynamics, protein

association and aggregation, supramolecular systems, medicine
• Engineering

- complex helicopter simulation, biomedical flows,
gas turbines and internal combustion engines,
forest fires, green aircraft,

- virtual power plant

Why supercomputing?

Aging Society
Medicine
Biology

Materials/ Inf. Tech
Spintronics

Nano-science

Environment
Weather/ Climatology
Pollution / Ozone Hole

Energy
Plasma Physics

Fuel Cells

Supercomputing drives science with simulations

▶ Usually is the program written for serial execution on one processor

▶ We divide the problem into series of commands that can be executed in parallel

▶ Only one command at a time can be executed on one CPU

Introduction to parallel computing

▶ Threading

▶ OpenMP – automatic parallelization

▶ Distributed memory model = Message Passing Interface (MPI) – manual

parallelization needed

▶ Hybrid model OpenMP/MPI

Parallel programming models

▶ Parallel processing of the same subproblems on multiple processors

▶ No communication is needed between processes

Embarrassingly simple parallel processing

▶ Need to know computer

architecture

▶ Interconnect bus for sharing

memory between processors

(NUMA interconnect)

Logical view of a computing
node

▶ Distributed computing

▶ Many nodes exchange

messages on

▶ high speed,

▶ low latency interconnect

such as Infiniband

Nodes interconnect

▶ Good understanding of the problem being solved in parallel

▶ How much of the problem can be run in parallel

▶ Bottleneck analysis and profiling gives good picture on scalability of the

problem

▶ We optimize and parallelize parts that consume most of the computing time

▶ Problem needs to be dissected into parts functionally and logically

Development of parallel codes

▶ Having little an infrequent communication between processes is the best

▶ Determining the largest block of code that can run in parallel and still provides

scalability

▶ Basic properties

▶ response time

▶ transfer speed - bandwidth

▶ interconnect capabilities

Interprocess communications

▶ Amdahl’s law: Speedup = 1/(1-p)

Parallel portion of the code determines
code scalability

• We are solving a set of matrix equations of the form [K]{u} = {f}. Here
[K] is referred to as the stiffness matrix; {f} as the force vector and {u}
as the set of unknowns.
• Several milions of unknowns
• Lot of zeros in K

• Direct solvers: Multfront, MUMPS, and LDLT, Pardiso, ...
• Iterative solvers: PETSc and GCPC, ...

12

Direct Solver or Iterative Solver?

• CAD/CAM: Salome, Freecad, OpenSCAD, LibreCad, Pycam, Camotics,
dxf2gcode & Cura
• FEA, CFD & multiphysic simulation: Salome-Meca / Code-Aster,

SalomeCFD/Code-Saturne, HelyxOs/OpenFOAM, Elmer FEM,
Calculix with Launcher & CAE GUI, Impact FEM, MBDyn, FreeFEM,
MFEM, Sparselizard
• Meshing, pre-post, & visualization: Salome, Paraview, Helyx-OS, Elmer

GUI, VoxelMesher, Tetgen, CGX, GMSH

Computer Aided Engineering
open source tools

▶ Demonstration of the work on the cluster by repeating

▶ Access with NX client

▶ Learning basic Linux commands

▶ SLURM scheduler commands

▶ Modules

▶ Development with OpenMP and OpenMPI parallel paradigms

▶ Exercises and extensions of basic ideas

▶ Instructions available at http://hpc.fs.uni-lj.si/

Questions and practicals on the
HPCFS cluster

http://hpc.fs.uni-lj.si/

EURO

15

NoMachine client

§ Setting up the NoMachine client version 6 available for installation at page
https://www.nomachine.com/download-enterprise#NoMachine-Enterprise-Client
or https://bit.ly/1fal6ac

1. Select New

2. Protocol NX

3. Host: login.hpc.fs.uni-lj.si Port: 4000

4. Use Password authentication

5. Don’t use proxy

6. Done with Connection to login.hpc.fs.uni-lj.si

https://www.nomachine.com/download-enterprise
https://bit.ly/1fal6ac

EURO

16

Connecting to HPCFS

1. Select and Connect

2. Use your account credentials

3. Create New desktop once

4. Use the Trinity (KDE) desktop

5. To Disconnect press Ctrl+Alt+T

6. To Reconnect select previous virtual desktop

EURO

17

KPersonalizer

Tuning desktop with KPersonalizer for remote speed (use less effects=slower processor)

Use Trinity Control Center to setup colors for Non TDE
programs:
Uncheck “Enforce colors for Non-TDE programs”

EURO

18

Basic HPCFS cluster usage

§ Setting GNOME or KDE desktop locale preferences for keyboard, LANG environment
§ Using NX client (Disconnect, Terminate, Logout)
§ Console commands in Linux
§ Editors for programming (emacs, gedit, kate, eclipse, vi, pico, ...) on login only!

Modules (LUA):
§ module avail
§ module help/info
§ module show
§ module load/unload
§ module list
§ module purge

SLURM batch scheduler

Compiled-in OpenMPI support
• srun --nodes=N --ntasks=n cmd
• sbatch script.sh
• sinfo
• squeue
• Alias for interactive usage of nodes:
alias node='srun -N1 --time=1:00:00 --pty bash -i'

EURO

19

Using SLURM (interactivelly) and Message
Passing Interface (MPI)
[leon@viz mpi]$ module purge && module load foss/2019a
[leon@viz mpi]$ cat hello.f90
program hello

use mpi
integer rank, size, ierror, strlen,

status(MPI_STATUS_SIZE)
character(len=MPI_MAX_PROCESSOR_NAME) :: hostname

call MPI_INIT(ierror)
call MPI_COMM_SIZE(MPI_COMM_WORLD, size, ierror)
call MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierror)
call MPI_GET_PROCESSOR_NAME(hostname, strlen, ierror)
print*, trim(hostname), rank, size
call MPI_FINALIZE(ierror)

end

[leon@viz mpi]$ mpif90 hello.f90
[leon@viz mpi]$ LD_PRELOAD= srun -
n 4 --tasks-per-node=2 --kill-on-
bad-exit --partition=haswell
./a.out
cn80 2 4
cn79 0 4
cn80 3 4
cn79 1 4

EURO

20

OpenMP

#include <stdio.h>
#include <math.h>
#define N 1000000
int main()
{
double area = 0.0;
#pragma omp parallel for reduction(+:area)
for(int i = 0; i < N; i++)
{
double x = (i+0.5)/N;
area += sqrt(1.0 - x*x);

}
printf("Površina : %14lf\n", 4.0*area/N);
return 0;

}

[leon@cn36 pi]$ module purge && module
load foss/2019a

[leon@cn36 pi]$ gcc -fopenmp pi-
openmp.c -lm -o pi-openmp

[leon@cn36 pi]$ OMP_NUM_THREADS=4 ./pi-
openmp

This project has received funding from the European High-Performance Computing Joint Undertaking (JU) under grant
agreement No 951732. The JU receives support from the European Union’s Horizon 2020 research and innovation
programme and Germany, Bulgaria, Austria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Greece, Hungary,
Ireland, Italy, Lithuania, Latvia, Poland, Portugal, Romania, Slovenia, Spain, Sweden, United Kingdom, France, Netherlands,
Belgium, Luxembourg, Slovakia, Norway, Switzerland, Turkey, Republic of North Macedonia, Iceland, Montenegro

Thanks!

