
INTRODUCTION TO
R AND RHADOOP

Janez Povh and Lucia Absalom Bautista
EuroHPC Competence Center Slovenia

October 19–20 2022

Outline

Schedule

Introduction to R

Advanced and Big data management with R

Big data management with RHadoop

Parallelization with Rmpi

Schedule

Timetable

March 4th

13:00–13:15 Introduction to Day 2
13:15–14:00 Introduction to R
14:00–14:15 break
14:15–15:00 Advanced and Big data management with R

Dana manipulations with apply functions apply, lapply, sapply, vap-
ply, tapply, and mapply. Big Data management with function for
efficient parallel loops parLapply, parSapply, mcLapply and foreach-
dopar.

15:00–15:15 break
15:15–16:00 Big data management with RHadoop

Preparing and storing big data to HDFS using rhdfs library. Retriving
from and managing big data in HDFS by plyrmr and rhdfs library.

16:00–16:15 break
16:15–17:00 Big data analysis with RHadoop and Rmpi

Preparing map-reduce scripts to make basic data analysis tasks (ex-
treme values, counts, mean values, dispersions) using rhdfs library.
Creating jobs for parallel computations with Rmpi.

Introduction to R and RHadoop 2/88

Outline/next

Schedule

Introduction to R

Advanced and Big data management with R

Big data management with RHadoop

Parallelization with Rmpi

Introduction to R

Introduction to R Basics about R

What is R

Software for Statistical Data Analysis
Based on S
Programming Environment
Interpreted Language
Data Storage, Analysis, Graphing
Free and Open Source Software

Introduction to R and RHadoop 4/88

Introduction to R Basics about R

How to obtain R

R current version 4.2.1 (released on 2022-06-23).
http://cran.r-project.org

Binary source codes
Windows executables

Introduction to R and RHadoop 5/88

http://cran.r-project.org

Introduction to R Basics about R

Pros and Cons

Pros:

Free and Open Source
Strong User Community
Highly extensible, flexible
Implementation of high-end statistical methods
Flexible graphics and intelligent defaults

Cons

Steep learning curve
Slow for large datasets

Introduction to R and RHadoop 6/88

Introduction to R Basics about R

Data types

R Supports virtually any type of data
Numbers, characters, logicals (TRUE/ FALSE)
Arrays of virtually unlimited sizes
Simplest: Vectors and Matrices
Lists: Can Contain mixed type variables
Data Frame: Rectangular Data Set

Introduction to R and RHadoop 7/88

Introduction to R Basics about R

Data structures in R

Linear

vectors (all same type)
lists (mixed types)

Rectangular

data frame
matrix

Introduction to R and RHadoop 8/88

Introduction to R Running R

Running R

I recommend RStudio, an IDE for R.
It is available as RStudio Desktop and RStudio Server, which runs on
a remote server and allows accessing RStudio using a web browser.

Figure 1: https://rstudio.com/products/rstudio/download/

Introduction to R and RHadoop 9/88

https://rstudio.com/products/rstudio/download/

Introduction to R Running R

RStudio on HPCFS

Figure 2: http://viz.hpc.fs.uni-lj.si/rstudio/auth-sign-in

Introduction to R and RHadoop 10/88

http://viz.hpc.fs.uni-lj.si/rstudio/auth-sign-in

Introduction to R Running R

RStudio on HPCFS

Introduction to R and RHadoop 11/88

Introduction to R Running R

The first R script file

Open new script file CTRL+SHIFT+N

Save the script file.

Create directory for R scripts

work_dir=paste("/home", Sys.getenv("USER"),"resources", sep="/")

if (file.exists(work_dir)){
setwd(work_dir)
system("git pull")

} else {
dir.create(work_dir)
setwd(work_dir)
system("git clone git@bitbucket.org:bdtrain/resources.git")

}
dir()
dir("data/")

Introduction to R and RHadoop 12/88

Introduction to R Running R

Creating the first scrip file

Create and save simple data file

N=1000;
set.seed (2021)
Data=data.frame(group=character(N),ints=numeric(N),reals=numeric(N))
Data$group=sample(c("a","b","c"), 1000, replace=TRUE);
Data$ints=rbinom(N,10 ,0.5);
Data$reals=rnorm(N);

head(Data)
Data

write.table(Data , file=’Data/Data_Ex_1.txt’, append = FALSE , dec = ".",col.names = TRUE)

ls()
rm(list = ls())

Introduction to R and RHadoop 13/88

Introduction to R Running R

Load and analyse the data

Load data

Data_read <-read.table(file=’data/Data_Ex_1.txt’,header = TRUE)
first few rows
head(Data_read)

#10 th row
Data_read [10,]
column group
Data_read$group
Data_read[,1]

Introduction to R and RHadoop 14/88

Introduction to R Running R

Load and analyse the data

Load data

compute means and counts by groups
group count_ints mean_ints

a | 337 | 5.014837
b | 338 | 5.032544
c | 325 | 4.990769

primitive solution
Group_lev=sort(unique(Data_read$group))

Tab_summary=data.frame(group=character (3),count_ints=integer (3),mean_ints=numeric (3))
Tab_summary$group <-Group_lev
for (i in c(1:3)){

sub_data = subset(Data_read ,group == Group_lev[i])
Tab_summary$count_ints[i]<-nrow(sub_data)
Tab_summary$mean_ints[i]<-mean(sub_data$ints)

}

Introduction to R and RHadoop 15/88

Introduction to R Running R

Analyse the data with dplyr, magrittr

Library dplyr: ”select", "filter", "group_by","arrange", "mutate" and ”summarize".

Library magrittr: "%>%"

dplyr

library(dplyr)
library(magrittr)
Tab_summary1 <-group_by(Data_read ,group) %>% dplyr:: summarise(count_ints=n(),mean_ints=

mean(ints))

other operations on rows and columns
Data_read_group_ints <-Data_read %>% select(group ,ints)
add new variable reals/ints
Data_read <-mutate(Data_read ,ratio=reals/ints)
Data_read <-Data_read %>% mutate(ratio1=ints/reals)
#arrange
#sort accordind to increasing group
Data_read <-Data_read %>% arrange(desc(group))
Data_read <-Data_read %>% arrange(group)

Introduction to R and RHadoop 16/88

Introduction to R Running R

Analyze the data by split, aggregate, sapply

split, aggregate, sapply

s <- split(Data_read , Data_read$group)
Tab_summary1 <-t(sapply(s, function(x) return(c(mean(x$ints),length(x$group)))))

Tab_summary2 <-cbind(aggregate(ints~group ,data = Data_read ,FUN=length),aggregate(ints~
group ,data = Data_read ,FUN=mean))

Tab_summary2 <-Tab_summary2 [,-3]

Introduction to R and RHadoop 17/88

Outline/next

Schedule

Introduction to R

Advanced and Big data management with R

Big data management with RHadoop

Parallelization with Rmpi

Advanced and Big data
management with R

Advanced and Big data management with R Advanced and Big data management with R

apply, lapply, sapply

apply, lapply, sapply

apply(X, MARGIN , FUN)
Here:
-x: an array or matrix
-MARGIN =1: the manipulation is performed on rows
-MARGIN =2: the manipulation is performed on columns
-MARGIN=c(1,2): the manipulation is performed on rows and columns
-FUN: tells which function to apply. Built functions like mean , median , sum , min , max and

even
user -defined functions can be applied

Introduction to R and RHadoop 19/88

Advanced and Big data management with R Advanced and Big data management with R

apply

For data constructed above (Data_read) compute row and columns means
using apply

apply

Data_read <-read.table(file=’data/Data_Ex_1.txt’,header = TRUE)

Data_col_means_1 <- colMeans(Data_read[,-1])
Data_col_means_2 <- apply(Data_read[,-1],2,FUN =mean)

Data_row_means_1 <- rowMeans(Data_read[,-1])
Data_row_means_2 <- apply(Data_read[,-1],1,FUN =mean)

Data_both_squares <- apply(Data_read[,-1],c(1,2),FUN = function(x) return(x^2))

Introduction to R and RHadoop 20/88

Advanced and Big data management with R Advanced and Big data management with R

lapply

lapply function takes list, vector or data frame as input and returns
only list as output
sapply function takes list, vector or data frame as input. It is similar
to lapply function but returns only vector as output.

For data constructed above (Data_read) compute row and columns sums
using lapply

lapply

Data_col_sums_1 <- apply(Data_read[,-1],2,FUN =sum)
Data_col_sums_2 <- lapply(Data_read[,-1],FUN =sum)

typeof(Data_col_sums_1)
typeof(Data_col_sums_2)

Data_abs <- lapply(Data_read[,-1],FUN =abs)
Data_sq <- lapply(Data_read[,-1],FUN = function(x){x^2})

typeof(Data_abs)
length(Data_abs)Introduction to R and RHadoop 21/88

Advanced and Big data management with R Advanced and Big data management with R

sapply

For data constructed above (Data_read) compute row and columns sums
using sapply

sapply

Data_col_sums_1 <- apply(Data_read[,-1],2,FUN =sum)
Data_col_sums_2 <- lapply(Data_read[,-1],FUN =sum)
Data_col_sums_3 <- sapply(Data_read[,-1],FUN =sum)

typeof(Data_col_sums_1)
typeof(Data_col_sums_2)
typeof(Data_col_sums_3)

Data_col_sums_4 <- lapply(list(Data_read$ints ,Data_read$reals),FUN =sum)
Data_col_sums_5 <- sapply(list(Data_read$ints ,Data_read$reals),FUN =sum)
Data_col_len_1 <- lapply(list(Data_read$ints ,Data_read$reals),FUN =length)
Data_col_len_2 <- sapply(list(Data_read$ints ,Data_read$reals),FUN =length)

Introduction to R and RHadoop 22/88

Advanced and Big data management with R Advanced and Big data management with R

for loop

Let us compute sums of all elements of 12 random matrices of order
3000 × 3000

for

N=3000
set.seed (2021)
sum_rand=rep(0,11);
tic()
for (i in c(1:12)){

A=randn(N,N)
sum_rand[i]=sum(A)

}
time_for=toc()

Introduction to R and RHadoop 23/88

Advanced and Big data management with R Advanced and Big data management with R

foreach do loop

Let us compute sums of all elements of 12 random matrices of order
3000 × 3000

for

N=3000
set.seed (2021)
sum_rand=rep(0,11);
tic()
foreach (i = c(1:12)) %do% {

A=randn(N,N)
sum_rand[i]=sum(A)

}
time_foreach=toc()

Introduction to R and RHadoop 24/88

Advanced and Big data management with R Advanced and Big data management with R

Parallel foreach dopar loop

Let us compute sums of all elements of 12 random matrices of order
3000 × 3000 using foreach ...dopar from foreach and doParallel

for

N=3000
set.seed (2021)
sum_rand=rep(0,11);
tic()
foreach (i = c(1:12)) %dopar% {

A=randn(N,N)
sum_rand[i]=sum(A)

}
time_foreach_dopar=toc()

Do you observe any difference?

Introduction to R and RHadoop 25/88

Advanced and Big data management with R Advanced and Big data management with R

Parallel foreach dopar loop

Let us compute sums of all elements of 12 random matrices of order
3000 × 3000 using foreach ...dopar from foreach, doParallel.
Create cluster!
for

N=3000
set.seed (2021)
registerDoParallel (12) # use multicore , set to the number of our cores - needed for

foerach dopar

sum_rand=rep(0,11);
tic()
foreach (i = c(1:12)) %dopar% {

A=randn(N,N)
sum_rand[i]=sum(A)

}
time_foreach_dopar_1=toc()
registerDoSEQ ()

Do you observe any difference?
Introduction to R and RHadoop 26/88

Advanced and Big data management with R Advanced and Big data management with R

Library parallel

encapsulates existing libraries multicore, snow

two ways of parallelization:

The socket approach: launches a new version of R on each core via
networking (e.g. the same as if you connected to a remote server), but
the connection is happening all on your own computer.

pros: (i) Works on any system (including Windows); (ii) Each
process on each node is unique so it can’t cross-contaminate.
cons: (i) Each process is unique so it will be slower (ii) Things
such as package loading need to be done in each process
separately. Variables defined on your main version of R don’t exist
on each core unless explicitly placed there. (iii) More complicated
to implement.

use parLapply, parSapply

Introduction to R and RHadoop 27/88

Advanced and Big data management with R Advanced and Big data management with R

Library parallel

The forking approach copies the entire current version of R and moves it to
a new core.

(i) Faster than sockets. (ii) Because it copies the existing version of R,
your entire workspace exists in each process. (iii) Easy to implement.
Cons (i) Only works on POSIX systems (Mac, Linux, Unix, BSD) and
not Windows. (ii) it can cause issues specifically with random number
generation or when running in a GUI (such as RStudio). This doesn’t
come up often.

use mclapply

Introduction to R and RHadoop 28/88

Advanced and Big data management with R Advanced and Big data management with R

Parallel versions of lapply

By using library parallel and parSapply, mclapply compute sums of
all elements of 12 random matrices of order 3000 × 3000. Create cluster!

parallel versions of apply

mat_sum <-function(x){
A=rand(x)
return(sum(A))

}
tic()
time_lapply <-system.time({

set.seed (2021)
sum_rand_lapply=lapply(rep (3000 ,12),FUN=mat_sum)
time_lapply=toc()

})

time_sapply <-system.time({
set.seed (2021)
sum_rand_sapply=sapply(rep (3000 ,12),FUN=mat_sum)

})

Introduction to R and RHadoop 29/88

Advanced and Big data management with R Advanced and Big data management with R

Parallel versions of lapply

parallel versions of apply

time_mcLapply <-system.time({
set.seed (2021)
sum_rand_mcLapply=mclapply(X=rep (3000 ,12),FUN=mat_sum ,mc.cores = 12)

})

time_parLapply <-system.time({
clust <- makeCluster (12, type="PSOCK")
set.seed (2021)
sum_rand_parLapply=parLapply(cl,rep (3000 ,1000) ,fun=mat_sum)
stopCluster(clust)

})

time_parSapply <-system.time({
clust <- makeCluster (12, type="PSOCK")
set.seed (2021)
sum_rand_parSapply=parSapply(cl,rep (3000 ,20),FUN=mat_sum)
stopCluster(clust)

})

Introduction to R and RHadoop 30/88

Advanced and Big data management with R Advanced and Big data management with R

Parallel versions of lapply

parallel versions of apply

times_apply <-rbind(time_lapply ,time_sapply ,time_parLapply ,time_parSapply ,time_mcLapply)

> times_apply [,1:3]
user.self sys.self elapsed

time_lapply 5.120 0.954 6.072
time_sapply 5.049 0.885 5.932
time_parLapply 0.076 0.209 47.999
time_parSapply 0.021 0.105 4.286
time_mcLapply 0.003 0.040 0.531

Introduction to R and RHadoop 31/88

Advanced and Big data management with R Advanced and Big data management with R

Libraries for shared memory parallelization in R

Parallel for-loop (foreach...dopar). Cluster created by
registerDoParallel(N) and registerDoSEQ(). Library foreach,
doParalel needed.
Parallel apply: parLapply, parSapply, mcLapply need library
parallel.

Introduction to R and RHadoop 32/88

Outline/next

Schedule

Introduction to R

Advanced and Big data management with R

Big data management with RHadoop

Parallelization with Rmpi

Big data management with
RHadoop

Big data management with RHadoop Big data management with RHadoop

The goals of the second part

Demonstrating basic data management operations with RHadoop;
By few examples showing basic data analysis with RHadoop;

Introduction to R and RHadoop 34/88

Big data management with RHadoop Big data management with RHadoop

Motivation

Do data analysis (statistics), do not bother with low level settings
Stay within R (and RStudio)

Introduction to R and RHadoop 35/88

Big data management with RHadoop Big data management with RHadoop

Overall picture

Figure 3:
https://www.r-bloggers.com/slides-and-replay-from-r-and-hadoop-webinar/

Introduction to R and RHadoop 36/88

https://www.r-bloggers.com/slides-and-replay-from-r-and-hadoop-webinar/

Big data management with RHadoop Big data management with RHadoop

Overall picture

Introduction to R and RHadoop 37/88

Big data management with RHadoop Big data management with RHadoop

First little example

content...

Introduction to R and RHadoop 38/88

Big data management with RHadoop Big data management with RHadoop

Setting up RHadoop using terminal window

export LD_LIBRARY_PATH=/opt/apps/software/Java/1.7.0_80/lib:${LD_LIBRARY_PATH}
export PATH=/opt/apps/software/Java/1.7.0_80:${PATH}
export JAVA_HOME=/opt/apps/software/Java/1.7.0_80
export PATH=/opt/apps/software/Hadoop/2.6.0-cdh5.8.0-native/bin:${PATH}
export PATH=/opt/apps/software/Hadoop/2.6.0-cdh5.8.0-native/sbin:${PATH}
export LD_LIBRARY_PATH=/opt/apps/software/Hadoop/2.6.0-cdh5.8.0-native/lib:${LD_LIBRARY_PATH}
export HADOOP_HOME=/opt/apps/software/Hadoop/2.6.0-cdh5.8.0-native/share/hadoop/mapreduce

Introduction to R and RHadoop 39/88

Big data management with RHadoop Big data management with RHadoop

Rhadoop

5 R packages provided by RevolutionAnalytics12:

rhdfs - basic connectivity to the Hadoop Distributed File System
(browse, read, write, and modify files stored in HDFS)
rhbase - basic connectivity to the HBASE distributed database, using
the Thrift server.
plyrmr - enables the R user to perform common data manipulation
operations, as found in plyr and reshape2
rmr2 - allows R developer to perform statistical analysis in R via
Hadoop MapReduce functionality on a Hadoop cluster.
ravro - adds the ability to read, write and manipulate avro files from
local and HDFS file system.

1https://github.com/RevolutionAnalytics
2https://github.com/RevolutionAnalytics/RHadoop/wiki/Downloads

Introduction to R and RHadoop 40/88

https://github.com/RevolutionAnalytics
https://github.com/RevolutionAnalytics/RHadoop/wiki/Downloads

Big data management with RHadoop Big data management with RHadoop

Setting up the Rhadoop - cnt.

Establish the connectivity to the Hadoop Distributed File System by
loading the library rhdfs. library(rhdfs)
Load libraries to work with Hadoop MapReduce library(rmr2)

Initialize HDSF hdfs.init().
All together:
library(rmr2)
library(rhdfs)
hdfs.init()

Introduction to R and RHadoop 41/88

Big data management with RHadoop Big data management with RHadoop

Basic data operations with RHadoop.

List files in the root directory of DFS hdfs.ls("/")

> hdfs.ls("/")
permission owner group size modtime file
1 -rw-r--r-- hadoop supergroup 184814018 2021 -09 -25 22:16 /BigData_reg_class
2 -rw-r--r-- hadoop supergroup 33602002 2021 -09 -25 22:16 /CEnetBig
3 -rw-r--r-- hadoop supergroup 476054348 2021 -09 -25 22:16 /electricity -energy.txt
4 drwxrwxrwx hadoop supergroup 0 2021 -09 -28 02:14 /tmp
5 drwxr -xr -x hadoop supergroup 0 2021 -09 -25 11:49 /user

Introduction to R and RHadoop 42/88

Big data management with RHadoop Big data management with RHadoop

Basic data operations with RHadoop.

List files in the home directory of each user
hdfs.ls("/user/campus01")

hdfs.ls("/user/campus01")
permission owner group size modtime

file
1 -rw-r--r-- campus01 hadoop 12466 2020 -09 -16 06:47 /user/campus01/

OurSmallData
2 -rw-r--r-- campus01 hadoop 18836041094 2020 -09 -11 09:16 /user/campus01/safecast.

csv
3 -rw-r--r-- campus01 hadoop 336031560 2020 -09 -15 15:30 /user/campus01/

wiki321MB
4 drwxr -xr -x campus01 hadoop 0 2020 -09 -15 15:30 /user/campus01/wordcount_

out

Introduction to R and RHadoop 43/88

Big data management with RHadoop Big data management with RHadoop

Moving data around - FileZilla

Introduction to R and RHadoop 44/88

Big data management with RHadoop Big data management with RHadoop

Moving data around with Linux

Copy from other account
cp /home/campus01/R/data/iris.csv /home/campusxx/R/data/iris.csv

Copy from internet
curl -o /home/campus01/R/data/iris.csv
https://gist.githubusercontent.com/curran/a08a1080b88344b0c8a7/raw/
639388 c2cbc2120a14dcf466e85730eb8be498bb/iris.csv

Introduction to R and RHadoop 45/88

Big data management with RHadoop Big data management with RHadoop

Moving data around with Linux or RHadoop

Copy from internet address or local folder to hdfs within RHadoop
curl https://gist.githubusercontent.com/curran/a08a1080b88344b0c8a7/raw/639388

c2cbc2120a14dcf466e85730eb8be498bb/iris.csv |
hadoop fs -appendToFile - /user/campus01/iris.csv

system(’curl https://gist.githubusercontent.com/curran/a08a1080b88344b0c8a7/raw/639388
c2cbc2120a14dcf466e85730eb8be498bb/iris.csv |

hadoop fs -appendToFile - /user/campus01/iris.csv’)

system(’curl file:///home/campus01/R/data/iris.csv | hadoop fs -appendToFile - /user/
campus01/iris.csv’)

system(’hadoop fs -appendToFile /home/campus01/R/data/iris.csv /user/campus01/iris.csv’)

Introduction to R and RHadoop 46/88

Big data management with RHadoop Big data management with RHadoop

Create and store data in HDFS

Use small data created at the beginning and stored as
file_name = paste("/home", Sys.getenv("USER"),’myRscripts ’,’Data_Ex_1.txt’, sep="/")
Data_read <-read.table(file=file_name ,header = TRUE)

myDFS_File=paste("/user", Sys.getenv("USER"), "OurSmallData", sep="/")
hdfs.rm(myDFS_File)
OurSmallData=to.dfs(Data_read , myDFS_File ,format="native")
SmallData1_DFS=from.dfs(OurSmallData)
system("hdfs fsck /user/campus01/OurSmallData")

Introduction to R and RHadoop 47/88

Big data management with RHadoop Big data management with RHadoop

CEnetBig

CEnetBig contains data about customers of company X: for each customer
we have one row containing

ID of the customer;
the values of their bills for period January 2016-December 2016;
type of product that they have;

> head(CEnetBig)
id 2016_1 2016_2 2016_3 2016_4 2016_5 2016_6 2016_7 2016_8 2016_9 2016_10 2016_11
2016_12 type

1 1001 2957 2624 2931 2342 1829 1982 2273 3142 2384 2369 2714
2821 2

2 1002 2564 2710 2307 2632 2471 2330 2051 2785 2784 2696 2884
2751 4

3 1003 2955 2618 2431 2217 2033 1823 2081 3264 2765 2687 2143
3024 1

4 1004 2856 2849 2826 2818 2123 2094 2890 3040 2270 2794 2538
2642 4

5 1005 2558 3086 2667 2457 2430 1752 2355 2959 2059 2388 2995
2609 4

6 1006 3182 3248 2483 2315 1838 2391 2345 3253 2559 2017 2003
2866 3

Introduction to R and RHadoop 48/88

Big data management with RHadoop Big data management with RHadoop

HDFS statistics for CEnetBig

From RStudio system("hdfs fsck /tmp/CEnetBig")
From command line: hadoop fsck /tmp/CEnetBig
> system("hdfs fsck /tmp/CEnetBig")
Status: HEALTHY
Number of data -nodes: 20
Number of racks: 1
Total dirs: 0
Total symlinks: 0

Replicated Blocks:
Total size: 28987096 B
Total files: 1
Total blocks (validated): 1 (avg. block size 28987096 B)
Minimally replicated blocks: 1 (100.0 %)
Over -replicated blocks: 0 (0.0 %)
Under -replicated blocks: 0 (0.0 %)
Mis -replicated blocks: 0 (0.0 %)
Default replication factor: 3
Average block replication: 3.0
Missing blocks: 0
Corrupt blocks: 0
Missing replicas: 0 (0.0 %)
Blocks queued for replication: 0
FSCK ended at Thu Oct 20 09:45:12 CEST 2022 in 1 milliseconds
The filesystem under path ’/tmp/CEnetBig ’ is HEALTHY

Introduction to R and RHadoop 49/88

Big data management with RHadoop Big data management with RHadoop

HDFS statistics for CEnetBig

From RStudio system("hdfs fsck /user/jpovh/safecast.csv")
Connecting to namenode via http ://viz.hpc :50070
FSCK started by campus01 (auth:SIMPLE) from /10.0.2.99 for path /user/campus01/

safecast.csv at Wed Sep 16 07:39:21 CEST 2020
.Status: HEALTHY
Total size: 18836041094 B
Total dirs: 0
Total files: 1
Total symlinks: 0
Total blocks (validated): 141 (avg. block size 133588943 B)
Minimally replicated blocks: 141 (100.0 %)
Over -replicated blocks: 0 (0.0 %)
Under -replicated blocks: 0 (0.0 %)
Mis -replicated blocks: 0 (0.0 %)
Default replication factor: 3
Average block replication: 3.0
Corrupt blocks: 0
Missing replicas: 0 (0.0 %)
Number of data -nodes: 16
Number of racks: 8
FSCK ended at Wed Sep 16 07:39:21 CEST 2020 in 10 milliseconds

The filesystem under path ’/user/campus01/safecast.csv’ is HEALTHY

Introduction to R and RHadoop 50/88

Big data management with RHadoop Big data management with RHadoop

CEnetBig

Load data into active memory:
CEnetBig <-from.dfs("/tmp/CEnetBig")

CEnetBig is a key-value pair with void key.
> CEnetBig$key
NULL
> CEnetBig$val[1:3 ,]

id 2016_1 2016_2 2016_3 2016_4 2016_5 2016_6 2016_7 2016_8 2016_9 2016_10 2016_
11 2016_12 type

1 1001 2957 2624 2931 2342 1829 1982 2273 3142 2384 2369
2714 2821 2

2 1002 2564 2710 2307 2632 2471 2330 2051 2785 2784 2696
2884 2751 4

3 1003 2955 2618 2431 2217 2033 1823 2081 3264 2765 2687
2143 3024 1

Introduction to R and RHadoop 51/88

Big data management with RHadoop Big data management with RHadoop

First Big Data challenge

Goal: In the column 2016_1 find the maximum value.
Use: max{∪iAi} = maxi{maxAi}.

9 = max{1, 5, 4, 7, 9, 2, 3, 5}

= max{1, 5, 4, 7},max{9, 2, 3, 5}︸ ︷︷ ︸
max

Suppose XX is submatrix of CEnetBig of 1st 100 rows. We find the
maximum of column 2016_1 by

XX=CEnetBig$val [1:100 ,]
M=max(XX[,2])

Introduction to R and RHadoop 52/88

Big data management with RHadoop Big data management with RHadoop

Finding maximum by Map-Reduce

MAP:
mapper = function (., X) {

M=max(X[,2]);
keyval(1,M)

}

REDUCE:
reducer = function(k, A) {

keyval(k, list(Reduce("max", A))) # take maximum of maxima
}

Introduction to R and RHadoop 53/88

Big data management with RHadoop Big data management with RHadoop

Finding maximum by Map-Reduce - cnt.

MAP-REDUCE:
GlobalMaxMR = from.dfs(

mapreduce(
input = "/tmp/CEnetBig",
map = mapper ,
reduce = reducer
)

)

Final code:

GlobMax =GlobalMaxMR$val

Result
> GlobalMaxMR$val
[[1]]
[1] 3500

Introduction to R and RHadoop 54/88

Big data management with RHadoop Big data management with RHadoop

Finding maximum, number of map calls and block sizes

mapper2 = function (., X) {
M=max(X[,2]);
keyval (1:3, list(1,M,dim(X)[1]))

}

reducer2 = function(k, A) {
if(k==1){

keyval(k, list(Reduce("+", A))) # take sum
} else if (k==2) {

keyval(k, list(Reduce("max", A))) # take maximum of maxima
} else {

keyval(k, A)
}

}

GlobalMaxNumMR = from.dfs(
mapreduce(

input = "/tmp/CEnetBig",
map = mapper2 ,
reduce = reducer2

)
)

Introduction to R and RHadoop 55/88

Big data management with RHadoop Big data management with RHadoop

Finding maximum, number of
map calls and block sizes - cnt.

> GlobalMaxMR
$key
[1] 1

$val
$val [[1]]
[1] 3500

> GlobalMaxMR$val
[[1]]
[1] 3500

> GlobalMaxNumMR
$key
[1] 1 2 3 3 3 3 3 3 3 3

$val
$val [[1]]
[1] 8

$val [[2]]
[1] 3500

$val [[3]]
[1] 490752

$val [[4]]
[1] 83331

$val [[5]]
[1] 83332

$val [[6]]
[1] 83332

$val [[7]]
[1] 83331

$val [[8]]
[1] 83331

$val [[9]]
[1] 9259

$val [[10]]
[1] 83332
> sum(unlist(GlobalMaxNumMR$val [3:10]))
[1] 1000000

Introduction to R and RHadoop 56/88

Big data management with RHadoop Big data management with RHadoop

Second Big Data challenge

Goal: Compute the mean value of the column 2016_1 ..
Note: x̄ =

∑
i Xi/n

Suppose XX is submatrix of CEnetBig of 1st 100 rows. We find mean
value of column 2016_1 by

XX=CEnetBig$val [1:100 ,]
m=mean(XX[,2])

If si and ni are sums and sizes of blocks of data, respectively, then the
mean value of all data is

x̄ =

∑
i si∑
i ni

Introduction to R and RHadoop 57/88

Big data management with RHadoop Big data management with RHadoop

Finding mean value by Map-Reduce

MAP:
mapper_mean = function (., X) {

n=nrow(X);
mi=sum(X[,2]);
keyval (1:2, list(n,mi));

}

REDUCE:
reducer_mean = function(k, A) {

keyval(k,list(Reduce(’+’, A)))
}

Introduction to R and RHadoop 58/88

Big data management with RHadoop Big data management with RHadoop

Finding mean value by Map-Reduce - cnt.

MAP-REDUCE:
Block_means <- from.dfs(

mapreduce(
input = "/tmp/CEnetBig",
map = mapper_mean ,
reduce = reducer_mean

)
)

Final code:
GlobalMean=Block_means$val [[2]]/Block_means$val [[1]]

Result
> GlobalMean
[1] 3000.127

Introduction to R and RHadoop 59/88

Big data management with RHadoop Big data management with RHadoop

Third Big Data challenge

Goal: Compute the variance of σ2 of the CEnetBig[,2] .

Note: σ2 =
∑

k (Xk,2−x̄2)2

n =
∑

k X
2
k,2

n − x̄2
2 .

Introduction to R and RHadoop 60/88

Big data management with RHadoop Big data management with RHadoop

Third Big Data challenge - cnt.

mapper_var = function (., X) {
n=nrow(X);
mi=sum(X[,2]);
si=sum(X[,2]^2);
keyval (1:3, list(n,mi,si));

}

reducer_var = function(k, A) {
keyval(k,list(Reduce(’+’, A)))

}

Block_var <- from.dfs(
mapreduce(

input = "/tmp/CEnetBig",
map = mapper_var ,
reduce = reducer_var

)
)

globalVar=Block_var$val [[3]]/Block_var$val [[1]] -(Block_var$val [[2]]/Block_var$val [[1]]) ^2
> globalVar
[1] 83361.3

Introduction to R and RHadoop 61/88

Big data management with RHadoop Big data management with RHadoop

MOOC

Visit our MOOC:

Introduction to R and RHadoop 62/88

Big data management with RHadoop Big data management with RHadoop

Challenge

Count the number of consumers with total consumption larger than 30000.

Introduction to R and RHadoop 63/88

Big data management with RHadoop Big data management with RHadoop

Word count example

Count the words in text document by Map-Reduce

Word count

library(readr)
library(rmr2)
library(rhdfs)
hdfs.init()
#rmr.options(backend = "local")
rmr.options(backend = "hadoop")
ebookLocation_hdfs <- "/public/ullyses.txt"
wikiLocation_hdfs <- "/public/wiki_1k_lines"
m <- mapreduce(input = ebookLocation_hdfs ,
output = ebookLocation_hdfs ,

input.format = "text",
map = function(k, v){

words <- unlist(strsplit(v, split = "[[: space :][: punct :]]"))
words <- tolower(words)
words <- gsub("[0-9]", "", words)
words <- words[words != ""]
wordcount <- table(words)
keyval(

key = names(wordcount),
val = as.numeric(wordcount)

)
},
reduce = function(k, counts){

keyval(key = k,
val = sum(counts))

}
)

Introduction to R and RHadoop 64/88

Big data management with RHadoop Big data management with RHadoop

Word count example

Count the words in text document by Map-Reduce

Word count

Retrieve results and prepare to plot ------------------------------------
x <- from.dfs(m)
dat <- data.frame(

word = keys(x),
count = values(x)

)
dat <- dat[order(dat$count , decreasing=TRUE),]
> head(dat , 6)

word count
825 the 15130
121 of 8260
201 and 7285
1 a 6581
152 to 5043
93 in 5004

Introduction to R and RHadoop 65/88

Big data management with RHadoop Big data management with RHadoop

Fourth Big Data challenge

Goal: Compute the covariance matrix Σ of the CEnetBig[,2:13] .

Note: Σij =
∑

k (Xik−x̄i)(Xjk−x̄j)
n = 1

n (X̃
T X̃)ij .

Suppose XX is submatrix of CEnetBig of 1st 100 rows and with
columns ’2016_1’,..., ’2016_12’. We find covariance matrix of
XX

XX=CEnetBig$val [1:100 ,2:13]
Sigma=cov(XX)

Note: Naive approach will visit the data several times.

Introduction to R and RHadoop 66/88

Big data management with RHadoop Big data management with RHadoop

Fourth Big Data challenge - cnt.

> Sigma
2016_1 2016_2 2016_3 2016_4 2016_5 2016_6 2016_7 2016_8 2016_9 2016_10

2016_11 2016_12
2016_1 554.66627 197.7795 144.7789 131.1854 249.1535 124.1262 252.6528 53.31369

199.2839 120.2593 257.9729 158.0299
2016_2 197.77949 687.8934 302.7297 307.0862 266.9029 261.8073 280.3199 252.36691

274.6391 247.4709 310.5588 140.8925
2016_3 144.77895 302.7297 762.0102 284.1748 247.8277 175.4163 283.0150 217.00145

321.8898 244.9201 413.3578 173.4369
2016_4 131.18542 307.0862 284.1748 605.7750 169.2399 253.4410 292.7296 209.68617

283.8475 247.4226 422.2579 219.1580
2016_5 249.15355 266.9029 247.8277 169.2399 541.3642 171.9361 227.3288 194.71391

293.5147 218.3279 253.6789 219.2686
2016_6 124.12617 261.8073 175.4163 253.4410 171.9361 567.5522 232.6065 183.04757

219.4846 192.3792 272.8218 140.0295
2016_7 252.65276 280.3199 283.0150 292.7296 227.3288 232.6065 681.2422 261.19614

293.7390 211.6760 450.0655 208.6689
2016_8 53.31369 252.3669 217.0015 209.6862 194.7139 183.0476 261.1961 639.62214

260.6902 101.4208 189.6450 187.1990
2016_9 199.28392 274.6391 321.8898 283.8475 293.5147 219.4846 293.7390 260.69023

635.4909 186.6704 370.9400 294.8569
2016_10 120.25931 247.4709 244.9201 247.4226 218.3279 192.3792 211.6760 101.42076

186.6704 706.0847 296.6746 169.5678
2016_11 257.97290 310.5588 413.3578 422.2579 253.6789 272.8218 450.0655 189.64504

370.9400 296.6746 877.7393 243.8821
2016_12 158.02993 140.8925 173.4369 219.1580 219.2686 140.0295 208.6689 187.19898

294.8569 169.5678 243.8821 561.2406

Introduction to R and RHadoop 67/88

Big data management with RHadoop Big data management with RHadoop

Covariance matrix - cnt.

Some mathematics:

Σij =
∑

k (Xik−x̄i)(Xjk−x̄j)
n =

∑
k XikXjk

n − x̄i x̄j .

Σ = 1
nX

TX − x̄ x̄T

Block structure: Suppose we decompose

X =


X 1

X 2

...
X k


where X i is a block of X having ni rows.
The “tough” product rewrites as

XTX =
k∑

i=1

(X i)TX i .
Introduction to R and RHadoop 68/88

Big data management with RHadoop Big data management with RHadoop

Covariance matrix - cnt.

Similarly: if ni , si are row-sizes and column sums of blocks X i

x̄ =
∑

i si∑
i ni

. (1)

mapperSS = function (., X) {
ni=nrow(X);
si=colSums(X[,2:13]);
SSi=t(X[,2:13])%*%X[,2:13];
keyval (1:3, list(ni,si,SSi));

}

REDUCE:
reducerSS = function(k, A) {

keyval(k,list(Reduce(’+’, A)))
}

Introduction to R and RHadoop 69/88

Big data management with RHadoop Big data management with RHadoop

Covariance matrix - cnt.

MAP-REDUCE:
CovMatrixRaw <- from.dfs(

mapreduce(
input = "/tmp/CEnetBig",
map = mapperSS ,
reduce = reducerSS

)
)

Final code
meanVec <- CovMatrixRaw$val [[2]]/CovMatrixRaw$val [[1]]
CovMat <- CovMatrixRaw$val [[3]]/CovMatrixRaw$val [[1]] -outer(meanVec ,meanVec)

Introduction to R and RHadoop 70/88

Outline/next

Schedule

Introduction to R

Advanced and Big data management with R

Big data management with RHadoop

Parallelization with Rmpi

Parallelization with Rmpi

Parallelization with Rmpi Big data management with Rmpi

Rmpi

Introduction to R and RHadoop 72/88

Parallelization with Rmpi Big data management with Rmpi

What’s Rmpi?

Rmpi is an interface to MPI;
MPI is a standardized means of exchanging messages between multiple
computers running a parallel program across distributed memory;
MPI jobs consist of running copies of the same program in multiple
processes.

Introduction to R and RHadoop 73/88

Parallelization with Rmpi Big data management with Rmpi

Benefits of the message passing interface

Introduction to R and RHadoop 74/88

Parallelization with Rmpi Big data management with Rmpi

Rmpi, the library

Introduction to R and RHadoop 75/88

Parallelization with Rmpi Big data management with Rmpi

Rmpi, the library

As any other library in R, we will first install the package running:

install.packages("Rmpi")

An call out library by executing:

library(Rmpi)

Introduction to R and RHadoop 76/88

Parallelization with Rmpi Big data management with Rmpi

Spawning Slave CPUs

In MPI term, master is the main CPU that sends messages to
dependent CPUs called slaves to complete some tasks. We use
mpi.spawn.Rslaves()
You can use nslave option to define the specific number of CPUs you
want to use for MPI.
You can use higher number than actual CPUs available in your system,
but you will not get any benefit from doing it.

Introduction to R and RHadoop 77/88

Parallelization with Rmpi Big data management with Rmpi

Execute A Command Using Slaves

There are several commands to execute codes in slaves.
mpi.remote.exec() and mpi.bcast.cmd() are examples.

mpi.remote.exec(cmd, . . . , simplify = TRUE, comm =1, ret
=TRUE)
If you use mpi.bcast.cmd() command to execute the following code,
the slaves will execute the command but there will be no return values
from them.

Introduction to R and RHadoop 78/88

Parallelization with Rmpi Big data management with Rmpi

Rmpi basic functions

Two important questions that arise in a parallel program are
How many processes are participating in this computation?
Which one am I?

Introduction to R and RHadoop 79/88

Parallelization with Rmpi Big data management with Rmpi

Rmpi basic functions

Introduction to R and RHadoop 80/88

Parallelization with Rmpi Big data management with Rmpi

Rmpi basic functions

Other interesting functions are...

mpi.universe.size, returns the total number of CPUs available in a
cluster.
mpi.gather, gather each member’s message to the member specified
by the argument root. The root member receives the messages and
stores them in rank order.

For example the following line would give us for each node, his id, his
size and the host where he is running on.

Introduction to R and RHadoop 81/88

Parallelization with Rmpi Big data management with Rmpi

Rmpi basic functions

If we run the code above state we would get the following output:

Introduction to R and RHadoop 82/88

Parallelization with Rmpi Big data management with Rmpi

Rmpi basic functions

As you can see mpi.comm.rank() and mpi.comm.size() give the slave
CPU number and total size of spawned slaves. The diagram below shows
how this command is executed.

Introduction to R and RHadoop 83/88

Parallelization with Rmpi Big data management with Rmpi

Rmpi basic example

Following the philosophy of our previous example, we will now run a very
basic example.

We will use 8 nodes and spawn 24 processes per node.
Each slave will generate a 6x6 random matrix and will compute its
eigenvalues.

Our output will be similar to the one shown in the previous slide but as well
as identifying themselves, each slave will give us its eigenvalues.

But this time we will do it in a different way:

Introduction to R and RHadoop 84/88

Parallelization with Rmpi Big data management with Rmpi

Running our code

Introduction to R and RHadoop 85/88

Parallelization with Rmpi Big data management with Rmpi

The R script:

Preview of the code:

Figure 4: Test_script_parallel_Rmpi_master.R
Introduction to R and RHadoop 86/88

Parallelization with Rmpi Big data management with Rmpi

The Batch file

Batch files are often used to help load programs, run multiple processes at
a time, and perform common or repetitive tasks.

Figure 5: rmpi-test-master-slave.sbatch

8 nodes
24 tasks per node

Introduction to R and RHadoop 87/88

Parallelization with Rmpi Big data management with Rmpi

Distribution of the processes

We will have two different
scripts:

Master script: dis-
tributes the workflow
across the slaves.
Slave script: runs actual
code for the indexes given
by the master.

Introduction to R and RHadoop 88/88

