Effective field theory for cosmological phase transitions

Oliver Gould University of Nottingham

Jožef Stefan Institute and Faculty of Mathematics and Physics University of Ljubljana 2 February 2023

Hot Big Bang

Figure: Blackbody spectrum of cosmic microwave background (COBE), and temperature anisotropies (Planck).

- Matter was very close to thermal in the early universe.
- Lots of interesting thermal physics.

Gravitational waves

- Gravitational waves directly observed by LIGO/Virgo \rightarrow
- Future experiments will extend sensitivity ↓

Figure: LISA Pathfinder

Figure: GW150914 1602.03837

The gravitational wave spectrum

gwplotter.com

Cosmological 1st-order phase transitions

Figure: Cutting et al. arXiv:1906.00480.

- Bubbles nucleate, expand and collide
- This creates long-lived fluid flows
- And creates gravitational waves

Gravitational waves from phase transitions: the pipeline

Figure: The Light Interferometer Space Antenna (LISA) pipeline $\mathscr{L} \to SNR(f)$, Caprini et al. 1910.13125.

Gravitational waves from phase transitions: the pipeline

Figure: The Light Interferometer Space Antenna (LISA) pipeline $\mathscr{L} \to SNR(f)$, Caprini et al. 1910.13125.

Phase transition parameters

 $\phi = 0$

Equilibrium (hom.)

- order of transition
- *T_c*, critical temperature
- $\Delta \theta_c$, latent heat
- c_s^2 , sound speed

Near-equilibrium

• Γ , bubble nucleation rate $\Rightarrow T_*, \Delta \theta_*, \alpha_*, \beta/H_*$

Nonequilibrium

• v_w, bubble wall speed

Standard approach to computing parameters

1-loop resummed approximation is based on

$$V_{\text{eff}}(\phi, T) = V_{\text{tree}}(\phi) + \underbrace{\frac{1}{2} \oint_{P} \log(P^2 + V_{\text{tree}}'')}_{1\text{-loop}}}_{-\frac{T}{12\pi} \left((V_{\text{tree}}'' + \Pi_T)^{3/2} - (V_{\text{tree}}'')^{3/2} \right)}_{\text{daisy correction}}.$$

Standard approach to computing parameters

1-loop resummed approximation is based on

$$V_{\rm eff}(\phi, T) = V_{\rm tree}(\phi) + \underbrace{\frac{1}{2} \oint_{P} \log(P^2 + V_{\rm tree}'')}_{1-\rm loop}}_{-\frac{T}{12\pi} \left((V_{\rm tree}'' + \Pi_T)^{3/2} - (V_{\rm tree}'')^{3/2} \right)}_{\rm drive correction}.$$

daisy correction

Solve:

۱

•
$$\Re V'_{\text{eff}}(\phi, T) = 0 \Rightarrow \text{phases}$$

- $-\partial_r^2 \phi 2\partial_r \phi + \Re V'_{\text{eff}}(\phi, T) = 0 \Rightarrow \text{critical bubble}$
- $\partial_t^2 \phi \partial_z^2 \phi + \Re V'_{\text{eff}}(\phi, T) + \sum_i (m_i^2)'(\phi) \int_p \delta f_i(p, z) = 0 \Rightarrow v_w$

Theoretical uncertainties

GW signals in two different 1-loop approximations for

$$\mathscr{L} = \mathscr{L}_{\mathsf{SM}} + \frac{\mathsf{a}_2}{2} (\Phi^{\dagger} \Phi) \sigma^2 + \frac{1}{2} (\partial \sigma)^2 + \frac{m_{\sigma}^2}{2} \sigma^2 + \frac{b_4}{4} \sigma^4$$

Carena, Liu & Wang 1911.10206

Theoretical uncertainties

Renormalisation scale dependence of GW spectrum at one physical parameter point for

$$\mathscr{L} = \mathscr{L}_{\mathsf{SM}} + \frac{1}{M^2} (\Phi^{\dagger} \Phi)^3.$$

Croon, OG, Schicho, Tenkanen & White 2009.10080

Theoretical uncertainties

Renormalisation scale dependence of GW spectrum at one physical parameter point for

$$\mathscr{L} = \mathscr{L}_{\mathsf{SM}} + \frac{1}{M^2} (\Phi^{\dagger} \Phi)^3.$$

Croon, OG, Schicho, Tenkanen & White 2009.10080

What has gone wrong?

Possible sources of theoretical uncertainties:

- nonperturbativity? Linde '80
- inconsistencies? E. Weinberg & Wu '87, E. Weinberg '92
- higher order perturbative corrections? Arnold & Espinosa '92
- gauge dependence or infrared divergences? Laine '94
- renormalisation scale dependence? Farakos et al. '94

• . . .

Overview

1. Motivation

- 2. Scale hierarchies in phase transitions
- 3. EFT for equilibrium physics
- 4. EFT for bubble nucleation
- 5. Conclusions

Scale hierarchies in phase transitions

A hierarchy problem

Let's assume there is some very massive particle χ , $M_{\chi} \gg m_H$, coupled to the Standard Model Higgs Φ like

$$\mathscr{L} = \mathscr{L}_{\rm SM} + \mathbf{g}^2 \Phi^{\dagger} \Phi \chi^{\dagger} \chi + \mathscr{L}_{\chi}.$$

If we integrate out $\chi_{\rm r}$ we find that the Higgs mass parameter gets a correction of the form

$$(\Delta m_H^2) \Phi^{\dagger} \Phi = \begin{pmatrix} & & \\ & & \\ & & \\ & & \\ & \sim g^2 M_{\chi}^2 \Phi^{\dagger} \Phi \end{pmatrix},$$

Relevant operators in the IR get large contributions from the UV,

$$\frac{\Delta m_H^2}{m_H^2} \sim g^2 \left(\frac{M_\chi}{m_H}\right)^2.$$

Phase transitions

For there to be a phase transition, thermal/quantum fluctuations should modify the potential at leading order,

$$V_{\rm eff} = V_{\rm tree} + \Delta V_{\rm fluct}$$

Hierarchies in phase transitions

So, for there to be a phase transition, we need

$$\frac{\Delta V_{\rm fluct}}{V_{\rm tree}} \sim g^2 N \left(\frac{\Lambda_{\rm fluct}}{\Lambda_{\rm tree}}\right)^\sigma \stackrel{!}{\sim} 1,$$

where $\sigma > 0$ for relevant operators.

Hierarchies in phase transitions

So, for there to be a phase transition, we need

$$\frac{\Delta V_{\rm fluct}}{V_{\rm tree}} \sim g^2 N \left(\frac{\Lambda_{\rm fluct}}{\Lambda_{\rm tree}}\right)^\sigma \stackrel{!}{\sim} 1,$$

where $\sigma > 0$ for relevant operators.

 \Rightarrow either:

(i) $g^2 N \gtrsim 1$, i.e. strong coupling (ii) $\Lambda_{\text{fluct}} \gg \Lambda_{\text{tree}}$, i.e. scale hierarchy

Hierarchies in phase transitions

So, for there to be a phase transition, we need

$$\frac{\Delta V_{\rm fluct}}{V_{\rm tree}} \sim g^2 N \left(\frac{\Lambda_{\rm fluct}}{\Lambda_{\rm tree}}\right)^\sigma \stackrel{!}{\sim} 1,$$

where $\sigma > 0$ for relevant operators.

 \Rightarrow either:

(i) $g^2 N \gtrsim 1$, i.e. strong coupling

(ii) $\Lambda_{\text{fluct}} \gg \Lambda_{\text{tree}}$, i.e. scale hierarchy

Perturbative phase transitions require scale hierarchies!

Imaginary time formalism

• Thermodynamics formulated in $\mathbb{R}^3 \times S^1$.

• Fields are expanded into Fourier (Matsubara) modes:

$$\Phi(\mathbf{x}, \tau) = \sum_{n \text{ even}} \phi_n(\mathbf{x}) e^{i(n\pi T)\tau} \leftarrow \text{boson}$$
$$\Psi(\mathbf{x}, \tau) = \sum_{n \text{ odd}} \psi_n(\mathbf{x}) e^{i(n\pi T)\tau} \leftarrow \text{fermion}$$

• Masses of Matsubara modes are

$$m_n^2 = m^2 + (n\pi T)^2$$

Introducing thermal scales

hard: $E \sim \pi T$ (nonzero Matsubara modes)

 ϕ_n, ψ_n , with $n \neq 0$

soft: $E \sim gT$ (Debye screened)

$$m_{\rm eff}^2 \sim \underline{()} \sim g^2 T^2$$

supersoft:
$$E \sim g^{3/2} T$$
 (symmetry breaking, $\phi \sim T$)

$$V_{
m eff} pprox rac{1}{2} m_{
m eff}^2 \phi^2 - rac{T}{16\pi} (g^2 \phi^2)^{3/2} + rac{\lambda}{4} \phi^4$$

ultrasoft: $E \sim g^2 T$ (non-Abelian gauge bosons)

Infrared strong coupling

Infrared bosons are highly occupied; the effective expansion parameter $\alpha_{\rm eff}$ grows

$$lpha_{
m eff} \sim g^2 rac{1}{1 - e^{E/T}} pprox g^2 rac{T}{E}$$

Softer modes are classically occupied and more strongly coupled:

hard :	$E \sim \pi T \Rightarrow \alpha_{\text{eff}} \sim g^2 \sim 0.03,$
soft :	$E \sim gT \Rightarrow lpha_{ m eff} \sim g \sim 0.18,$
supersoft :	$E \sim g^{3/2} T \Rightarrow lpha_{ m eff} \sim g^{1/2} \sim 0.42,$
ultrasoft :	$E \sim g^2 T \Rightarrow lpha_{ m eff} \sim g^0 \sim 1.$

UV and IR problems

There are two main difficulties

- large UV effects break loop expansion
- IR becomes more strongly coupled

$$\frac{\Delta V_{\rm fluct}}{V_{\rm tree}} \sim \alpha_{\rm eff} \left(\frac{\Lambda_{\rm fluct}}{\Lambda_{\rm tree}}\right)^{\sigma}$$

EFT for equilibrium physics

Real scalar model

Wilsonian EFT

- Split degrees of freedom $\{\phi,\chi\}$ based on energy \rightarrow
- Integrate out the UV modes:

$$\int \mathcal{D}\phi \int \mathcal{D}\chi \ e^{-S[\phi,\chi]} = \int \mathcal{D}\phi_{\mathsf{IR}} \left(\int \mathcal{D}\phi_{\mathsf{UV}} \mathcal{D}\chi \ e^{-S[\phi,\chi]} \right)$$
$$= \int \mathcal{D}\phi_{\mathsf{IR}} \ e^{-S_{\mathsf{eff}}[\phi_{\mathsf{IR}}]}$$
$$\phi_{\mathsf{IR}}$$

- Careful power-counting cancels dependence on $\Lambda.$
- $S_{\text{eff}}[\phi_{\text{IR}}]$ must be expansion in ∂^2 (but not in ϕ_{IR}).

 $\oint \phi_{\rm UV}, \chi$

Burgess '21, Hirvonen '22

Resummations with EFT

By first integrating out the UV modes

$$\begin{split} S_{\rm eff}[\phi_{\rm IR}] &= S_{\phi}[\phi_{\rm IR}] - \log \int \mathcal{D}\phi_{\rm UV} \mathcal{D}\chi \ e^{-S[\phi_{\rm IR} + \phi_{\rm UV},\chi] + S_{\phi}[\phi_{\rm IR}]}, \\ &\approx S_{\phi}[\phi_{\rm IR}] + \int_{\chi} \left[(\sigma_{\rm eff} - \sigma)\phi_{\rm IR} + \frac{1}{2}(m_{\rm eff}^2 - m^2)\phi_{\rm IR}^2 \right], \end{split}$$

the daisy resummations arise naturally.

So do all other necessary resummations, order by order.

 \Rightarrow Solves UV problems

EFT factorisation

Contributions to physical quantities factorise

One must work harder for the soft modes.

Scalar triplet extension of the Standard Model

A more complicated model with all the scales

$$egin{aligned} \mathscr{L} &= \mathscr{L}_{\mathsf{SM}} + rac{a_2}{2} \Phi^\dagger \Phi \Sigma^a \Sigma^a \ &+ rac{1}{2} D_\mu \Sigma^a D_\mu \Sigma^a + rac{m_\Sigma^2}{2} \Sigma^a \Sigma^a + rac{b_4}{4} (\Sigma^a \Sigma^a)^2 \end{aligned}$$

- large UV effects
- strongly coupled IR

UV and IR in concert

For some observable \mathcal{O} at T = 0

UV and IR in concert

For some observable \mathcal{O} at T=0 $\mathcal{O}_0 = \underbrace{\mathcal{A}}_{} + \underbrace{\mathcal{B}g^2}_{} + \underbrace{\mathcal{C}g^4}_{} + \underbrace{\mathcal{D}g^6}_{} + \underbrace{\mathcal{E}g^8}_{} + \ldots$ 0-loop At a Higgs-like first-order phase transition, instead $\mathcal{O}_{\mathcal{T}} = \underbrace{a}_{1\text{-loop}^+} + \underbrace{bg}_{2\text{-loop}^+} + \underbrace{cg^{3/2}}_{1\text{-loop}^\dagger} + \underbrace{dg^2}_{3\text{-loop}^+} + \underbrace{eg^{5/2}}_{3\text{-loop}^\dagger} + \underbrace{fg^3}_{\infty\text{-loop}} + \dots$ where $^+$ and † refer to different resummations of infinite classes of diagrams. Ekstedt, OG & Löfgren 2205.07241

Lattice versus perturbation theory

Niemi et al. 2005.11332, OG & Tenkanen forthcoming

- Phase transitions may produce observable gravitational waves
- Large theoretical uncertainties in standard computations
 - UV "hierarchy" problems
 - IR strong-coupling problems
 - Consistency problems for bubble nucleation
- EFT solves UV problems, and gives definition of nucleation rate
- Higher orders (or lattice) solves problems from IR

- Phase transitions may produce observable gravitational waves
- Large theoretical uncertainties in standard computations
 - UV "hierarchy" problems
 - IR strong-coupling problems
 - Consistency problems for bubble nucleation
- EFT solves UV problems, and gives definition of nucleation rate
- Higher orders (or lattice) solves problems from IR

Thanks for listening!

Backup slides

Lattice vs perturbation theory: real scalar model

$$\begin{split} \Delta \langle \bar{\phi}_{\text{IR}} \rangle = & \frac{1}{4\pi \alpha_{\text{eff}}} \left[2 + \sqrt{3} \; \alpha_{\text{eff}} + \frac{1}{2} \left(1 + 2\log \tilde{\mu}_3 \right) \alpha_{\text{eff}}^2 \\ & + \sqrt{3} \left(-\frac{3}{8\sqrt{2}} \xi + \frac{21}{32} \text{Li}_2 \frac{1}{4} - \frac{7\pi^2}{128} - \frac{1}{2} + \frac{21}{64} \log^2 \frac{4}{3} + \frac{5}{8} \log \frac{4}{3} \right) \alpha_{\text{eff}}^3 \\ & + O\left(\alpha_{\text{eff}}^4 \right) \right] \\ \end{split}$$

Supersoft scale EFT

Integrating out the scales πT and gT gives

$$\begin{split} \mathscr{L}_{\text{eff}} &= \frac{1}{2} \partial_i \varphi^{\dagger} \partial_i \varphi + \frac{m_3^2}{2} \varphi^{\dagger} \varphi - \frac{g_3^3}{4(4\pi)} (\varphi^{\dagger} \varphi)^{3/2} + \frac{\lambda_3}{4} (\varphi^{\dagger} \varphi)^2 \\ &- \frac{11g_3}{8(4\pi)} \frac{\partial_i \varphi^{\dagger} \partial_i \varphi}{(\varphi^{\dagger} \varphi)^{1/2}} - \frac{51}{64} \frac{g_3^4}{(4\pi)^2} \varphi^{\dagger} \varphi \log \frac{g_3^2 \varphi^{\dagger} \varphi}{\tilde{\mu}_3^2} \end{split}$$

After integrating out the scale πT , the relevant diagrams are

EFT solution: gauge independence

EFT approach provides exact order-by-order gauge invariance. Ekstedt, OG & Löfgren 2205.07241

(OG & Hirvonen 2108.04377, Löfgren et al. 2112.05472, Hirvonen et al. 2112.08912)