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Beyond the SM 3

?

2. Yet, many open questions:  
 
Hierarchy problem 
Flavour puzzle 
Strong CP problem 
Charge quantization 
 
Dark matter 
Baryon asymmetry    
Neutrino masses 
Inflation 
 
Dark energy 
Quantum gravity 
…. 

1. The SM: Experimental success!

Confusing situation!
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Fig. 3: Allowed region in the ⇢, ⌘ plane. Superimposed are the individual constraints from charmless semileptonic
B decays (|Vub|), mass differences in the B

0 (�md) and Bs (�ms) neutral meson systems, and CP violation in
K ! ⇡⇡ ("K), B !  K (sin 2�), B ! ⇡⇡, ⇢⇡, ⇢⇢ (↵), and B ! DK (�). Taken from [12].

– The rates of various B ! ⇡⇡, ⇢⇡, ⇢⇢ decays depend on the phase ↵ = ⇡ � � � �

– The ratio between the mass splittings in the neutral B and Bs systems is sensitive to |Vtd/Vts|2 =
�
2[(1� ⇢)2 + ⌘

2]

– The CP violation in K ! ⇡⇡ decays, ✏K , depends in a complicated way on ⇢ and ⌘ .

The resulting constraints are shown in Fig. 3.
The consistency of the various constraints is impressive. In particular, the following ranges for ⇢

and ⌘ can account for all the measurements [1]:

⇢ = +0.160± 0.007 , ⌘ = +0.350± 0.006 . (111)

One can make then the following statements [13]:
Very likely, flavor changing processes are dominated by the Cabibbo-Kobayashi-Maskawa mecha-

nism and, in particular, CP violation in flavor changing processes is dominated by the Kobayashi-

Maskawa phase.

In the following subsections, we explain how we can remove the phrase “very likely” from this
statement, and how we can quantify the KM-dominance.

6.2 S KS

As an example of how to use FCNC in probing new physics, we take S KS
. When we consider extensions

of the SM, we still do not expect any significant new contribution to the tree level decay, b ! cc̄s,
beyond the SM W -mediated diagram. Thus, the expression Ā KS

/A KS
= (VcbV

⇤
cd
)/(V ⇤

cb
Vcd) remains

102
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1. Indirect discovery 
Flavor physics can discover new states before they are directly observed 
in colliders. Historical examples are charm and top quarks.

2. CP violation 
Baryogenesis tells us there must exist new sources of CP violation. 

3. The SM flavour puzzle 
Peculiar structure of observed fermion masses and mixings. BSM 
explanation? 

4. The NP flavour puzzle 
The fine-tuning problem of the Higgs mass imply that there exists new 
physics at, or below, the TeV scale. If such new physics had a generic flavor 
structure, it would contribute to FCNC processes orders of magnitude 
above the observed rates. Why this does not happen?

Why is flavour physics interesting for BSM? 

Admir Greljo | Lectures on BSM in flavour

*Also, direct discovery possible, e.g. K → πa
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Part I

• Matter, Forces, Fields 

• Flavour

• The Standard Model

• Global Flavor Symmetries

• Parameter counting

• Interaction & mass bases

• The CKM matrix

• Quiz
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Matter, Forces, Fields



@johnmdudley 
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Fundamental forces
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The Standard Model

gγ W, Z e+ e−

FEM /FGR ≈ $(1042)

Gauge symmetry!
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ϕ(x) → eiα(x)ϕ(x)



Quantum fields

• The Basic Building Blocks of the Universe

Particles are ripples (excitations) 
of fields tied into little parcels of 
energy due to quantum mechanics.

Quantum + Fields

̂ϕ(x)
Function of spacetime

Operator on the Hilbert 
space of particle states

All electrons in the universe 
are identical copies of each 
other.  They are excitations 
of a single electron field.

=
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Quantum fields

• Local interactions:

ℒ(x) ⊃ y ϕ(x)ψ̄(x)ψ(x) ϕ
ψ̄

ψ
∝ y

Decay: The ripple of the  field excites  and  fieldsϕ ψ ψ̄
13

@martinmbauer

ϕ

ψ mϕ > 2mψ
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QFT crash course

1. Lagrangian

2. Scattering amplitudes

3. Cross sections

4. Events
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ℒ(x)

dσ ∝ |ℳ |2

dN = L × dσ

ℳ ≡ ⟨p1…pN |k1k2⟩

k1

k2

p1
p2

pN

…

S = ∫ d4x ℒ(x)
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u
d
e
νe

Quarks

Leptons

SM dynamics
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g Long-range ( ) but confining mg = 0
The charge of the strong force

Colors

SM dynamics
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g γ Long-range ( )mγ = 0
SM dynamics
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Radioactivity
(d → ueν̄)
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g γ W, Z Short-range ( )mW,Z ≠ 0

Parity violation L ≠ R

SM dynamics
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Flavour
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• Generations:
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• Flavour 
Several copies of the same gauge representation. 

• Flavour universal / blind 
Proportional to unit matrix in flavour space.

• Flavour number 
Number of particles of a certain flavour minus the number of anti-particles 
of the same flavour.

• Flavour changing / Flavour violation 
Initial and final flavour number in the process is different. 

• Flavour changing neutral currents (FCNC) 
Involves either up-type or down-type flavours but not both.

• Flavour changing charged currents 
Involves both types.

Terminology 

Flavour physics and CP violation

Y. Nir

Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot, Israel

Abstract

We explain the reasons for the interest in flavor physics. We describe flavor
physics and the related CP violation within the Standard Model, and explain
how the B-factories proved that the CKM (KM) mechanism dominates the
flavor changing (CP violating) processes that have been observed in meson
decays. We explain the implications of flavor physics for new physics, with
emphasis on the “new physics flavor puzzle”, and present the idea of min-
imal flavor violation as a possible solution. We explain the “standard model
flavor puzzle”, and present the Froggatt-Nielsen mechanism as a possible solu-
tion. We show that measurements of the Higgs boson decays may provide new
opportunities for making progress on the various flavor puzzles. We briefly
discuss two sets of measurements and their possible theoretical implications:
BR(h ! ⌧µ) and R(D(⇤)).

Keywords

Lectures; flavors; CP violation; CKM matrix; flavor changing neutral current;
lepton flavor universality

1 Introduction

1.1 What is flavor?

The term “flavors” is used, in the jargon of particle physics, to describe several copies of the same gauge
representation, namely several fields that are assigned the same quantum charges. Within the Standard
Model, when thinking of its unbroken SU(3)C ⇥ U(1)EM gauge group, there are four different types of
particles, each coming in three flavors:

– Up-type quarks in the (3)+2/3 representation: u, c, t;
– Down-type quarks in the (3)�1/3 representation: d, s, b;
– Charged leptons in the (1)�1 representation: e, µ, ⌧ ;
– Neutrinos in the (1)0 representation: ⌫1, ⌫2, ⌫3.

The term “flavor physics” refers to interactions that distinguish between flavors. By definition,
gauge interactions, namely interactions that are related to unbroken symmetries and mediated therefore
by massless gauge bosons, do not distinguish among the flavors and do not constitute part of flavor
physics. Within the Standard Model, flavor-physics refers to the weak and Yukawa interactions.

The term “flavor parameters” refers to parameters that carry flavor indices. Within the Stan-
dard Model, these are the nine masses of the charged fermions and the four “mixing parameters” (three
angles and one phase) that describe the interactions of the charged weak-force carriers (W±) with quark-
antiquark pairs. If one augments the Standard Model with Majorana mass terms for the neutrinos, one
should add to the list three neutrino masses and six mixing parameters (three angles and three phases)
for the W

± interactions with lepton-antilepton pairs.

© CERN, 2020, CC-BY-4.0 licence, doi:10.23730/CYRSP-2020-005.79, ISSN 0531-4283.

SU(3)QCD × U(1)QED :
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• Flavour 
Several copies of the same gauge representation. 

• Flavour universal / blind 
Proportional to the unit matrix in flavour space.

• Flavour number 
Number of particles of a certain flavour minus the number of anti-particles 
of the same flavour.

• Flavour changing / Flavour violation 
Initial and final flavour number in the process is different. 

• Flavour changing neutral currents (FCNC) 
Involves either up-type or down-type flavours but not both.

• Flavour changing charged currents 
Involves both types.

Terminology 

Example: 
The kinetic terms in 
the SM Lagrangian!       ̄fiδijiD/ fj
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• Flavour 
Several copies of the same gauge representation. 

• Flavour universal / blind 
Proportional to the unit matrix in flavour space.

• Flavour number 
Number of particles of a certain flavour minus the number of anti-particles 
of the same flavour.

• Flavour changing transitions 
Initial and final flavour number in the process is different. 

• Flavour changing neutral currents (FCNC) 
Involves either up-type or down-type flavours but not both.

• Flavour changing charged currents 
Involves both types.

Terminology 

B0 : db̄ B̄0 : d̄bExample: 
 
 Neutral  meson oscillations:  process      B ΔB = 2
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Flavour Physics

6

High-energy Frontier

0.1 am

0.1 fmGeV

TeV

Scale

High-Intensity Frontier

for flavour-sensitive interactions

+ NA62, Koto, MEG II, Mu3e, …

Just a fraction of present and upcoming experiments! 
Opportunities for data-driven progress!
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• Flavour changing neutral currents (FCNC) 
Involves either up-type or down-type flavours but not both. 
 
 
 

• Flavour changing charged currents 
Involves both types.

Terminology 
The term “flavor universal” refers to interactions with couplings (or to parameters) that are pro-

portional to the unit matrix in flavor space. Thus, the strong and electromagnetic interactions are flavor-
universal.1 An alternative term for “flavor-universal” is “flavor-blind”.

The term “flavor diagonal” refers to interactions with couplings (or to parameters) that are diago-
nal, but not necessarily universal, in the flavor space. Within the Standard Model, the Yukawa interactions
of the Higgs particle are flavor diagonal in the mass basis.

The term “flavor changing” refers to processes where the initial and final flavor-numbers (that
is, the number of particles of a certain flavor minus the number of anti-particles of the same flavor)
are different. In “flavor changing charged current” (FCCC) processes, both up-type and down-type
flavors, and/or both charged lepton and neutrino flavors are involved. Examples are (i) muon decay via
µ ! e⌫̄e⌫µ, (ii) K� ! µ

�
⌫̄µ (which corresponds, at the quark level, to sū ! µ

�
⌫̄µ), and (iii) B !  K

(b ! cc̄s). Within the Standard Model, these processes are mediated by the W -bosons and occur at tree
level. In “flavor changing neutral current” (FCNC) processes, either up-type or down-type flavors but
not both, and/or either charged lepton or neutrino flavors but not both, are involved. Example are (i)
muon decay via µ ! e�, (ii) KL ! µ

+
µ
� (which corresponds, at the quark level, to sd̄ ! µ

+
µ
�), and

(iii) B ! �K (b ! ss̄s). Within the Standard Model, these processes do not occur at tree level, and are
often highly suppressed.

Another useful term is “flavor violation”. We will explain it later in these lectures.

1.2 Why is flavor physics interesting?

Flavor physics is interesting, on one hand, as a tool for discovery and, on the other hand, because of
intrinsic puzzling features:

– Flavor physics can discover new physics or probe it before it is directly observed in experiments.
Here are some examples from the past:

– The smallness of �(KL!µ
+
µ
�)

�(K+!µ+⌫) led to predicting a fourth (the charm) quark;
– The size of �mK led to a successful prediction of the charm mass;
– The size of �mB led to a successful prediction of the top mass;
– The measurement of "K led to predicting the third generation;
– The measurement of neutrino flavor transitions led to the discovery of neutrino masses.

– CP violation is closely related to flavor physics. Within the Standard Model, there is a single CP
violating parameter, the Kobayashi-Maskawa phase �KM [2]. Baryogenesis tells us, however, that
there must exist new sources of CP violation. Measurements of CP violation in flavor changing
processes might provide evidence for such sources.

– The fine-tuning problem of the Higgs mass, and the puzzle of the dark matter imply that there
exists new physics at, or below, the TeV scale. If such new physics had a generic flavor structure,
it would contribute to flavor changing neutral current (FCNC) processes orders of magnitude above
the observed rates. The question of why this does not happen constitutes the new physics flavor

puzzle.
– Most of the charged fermion flavor parameters are small and hierarchical. The Standard Model

does not provide any explanation of these features. This is the Standard Model flavor puzzle. The
puzzle became even deeper after neutrino masses and mixings were measured because, so far,
neither smallness nor hierarchy in these parameters have been established.

1In the interaction basis, the weak interactions are also flavor-universal, and one can identify the source of all flavor physics
in the Yukawa interactions among the gauge-interaction eigenstates.
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– The fine-tuning problem of the Higgs mass, and the puzzle of the dark matter imply that there
exists new physics at, or below, the TeV scale. If such new physics had a generic flavor structure,
it would contribute to flavor changing neutral current (FCNC) processes orders of magnitude above
the observed rates. The question of why this does not happen constitutes the new physics flavor

puzzle.
– Most of the charged fermion flavor parameters are small and hierarchical. The Standard Model

does not provide any explanation of these features. This is the Standard Model flavor puzzle. The
puzzle became even deeper after neutrino masses and mixings were measured because, so far,
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• Flavour changing neutral currents (FCNC) 
Involves either up-type or down-type flavours but not both. 
 
 
 

• Flavour changing charged currents 
Involves both types.
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�
⌫̄µ), and (iii) B !  K

(b ! cc̄s). Within the Standard Model, these processes are mediated by the W -bosons and occur at tree
level. In “flavor changing neutral current” (FCNC) processes, either up-type or down-type flavors but
not both, and/or either charged lepton or neutrino flavors but not both, are involved. Example are (i)
muon decay via µ ! e�, (ii) KL ! µ

+
µ
� (which corresponds, at the quark level, to sd̄ ! µ

+
µ
�), and

(iii) B ! �K (b ! ss̄s). Within the Standard Model, these processes do not occur at tree level, and are
often highly suppressed.

Another useful term is “flavor violation”. We will explain it later in these lectures.

1.2 Why is flavor physics interesting?

Flavor physics is interesting, on one hand, as a tool for discovery and, on the other hand, because of
intrinsic puzzling features:

– Flavor physics can discover new physics or probe it before it is directly observed in experiments.
Here are some examples from the past:

– The smallness of �(KL!µ
+
µ
�)

�(K+!µ+⌫) led to predicting a fourth (the charm) quark;
– The size of �mK led to a successful prediction of the charm mass;
– The size of �mB led to a successful prediction of the top mass;
– The measurement of "K led to predicting the third generation;
– The measurement of neutrino flavor transitions led to the discovery of neutrino masses.

– CP violation is closely related to flavor physics. Within the Standard Model, there is a single CP
violating parameter, the Kobayashi-Maskawa phase �KM [2]. Baryogenesis tells us, however, that
there must exist new sources of CP violation. Measurements of CP violation in flavor changing
processes might provide evidence for such sources.

– The fine-tuning problem of the Higgs mass, and the puzzle of the dark matter imply that there
exists new physics at, or below, the TeV scale. If such new physics had a generic flavor structure,
it would contribute to flavor changing neutral current (FCNC) processes orders of magnitude above
the observed rates. The question of why this does not happen constitutes the new physics flavor

puzzle.
– Most of the charged fermion flavor parameters are small and hierarchical. The Standard Model

does not provide any explanation of these features. This is the Standard Model flavor puzzle. The
puzzle became even deeper after neutrino masses and mixings were measured because, so far,
neither smallness nor hierarchy in these parameters have been established.

1In the interaction basis, the weak interactions are also flavor-universal, and one can identify the source of all flavor physics
in the Yukawa interactions among the gauge-interaction eigenstates.

80

The term “flavor universal” refers to interactions with couplings (or to parameters) that are pro-
portional to the unit matrix in flavor space. Thus, the strong and electromagnetic interactions are flavor-
universal.1 An alternative term for “flavor-universal” is “flavor-blind”.

The term “flavor diagonal” refers to interactions with couplings (or to parameters) that are diago-
nal, but not necessarily universal, in the flavor space. Within the Standard Model, the Yukawa interactions
of the Higgs particle are flavor diagonal in the mass basis.

The term “flavor changing” refers to processes where the initial and final flavor-numbers (that
is, the number of particles of a certain flavor minus the number of anti-particles of the same flavor)
are different. In “flavor changing charged current” (FCCC) processes, both up-type and down-type
flavors, and/or both charged lepton and neutrino flavors are involved. Examples are (i) muon decay via
µ ! e⌫̄e⌫µ, (ii) K� ! µ

�
⌫̄µ (which corresponds, at the quark level, to sū ! µ
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processes might provide evidence for such sources.

– The fine-tuning problem of the Higgs mass, and the puzzle of the dark matter imply that there
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• Flavour changing neutral currents (FCNC) 
Involves either up-type or down-type flavours but not both. 
 
 
 

• Flavour changing charged currents 
Involves both types.
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�
⌫̄µ), and (iii) B !  K

(b ! cc̄s). Within the Standard Model, these processes are mediated by the W -bosons and occur at tree
level. In “flavor changing neutral current” (FCNC) processes, either up-type or down-type flavors but
not both, and/or either charged lepton or neutrino flavors but not both, are involved. Example are (i)
muon decay via µ ! e�, (ii) KL ! µ

+
µ
� (which corresponds, at the quark level, to sd̄ ! µ

+
µ
�), and

(iii) B ! �K (b ! ss̄s). Within the Standard Model, these processes do not occur at tree level, and are
often highly suppressed.

Another useful term is “flavor violation”. We will explain it later in these lectures.

1.2 Why is flavor physics interesting?

Flavor physics is interesting, on one hand, as a tool for discovery and, on the other hand, because of
intrinsic puzzling features:

– Flavor physics can discover new physics or probe it before it is directly observed in experiments.
Here are some examples from the past:

– The smallness of �(KL!µ
+
µ
�)

�(K+!µ+⌫) led to predicting a fourth (the charm) quark;
– The size of �mK led to a successful prediction of the charm mass;
– The size of �mB led to a successful prediction of the top mass;
– The measurement of "K led to predicting the third generation;
– The measurement of neutrino flavor transitions led to the discovery of neutrino masses.

– CP violation is closely related to flavor physics. Within the Standard Model, there is a single CP
violating parameter, the Kobayashi-Maskawa phase �KM [2]. Baryogenesis tells us, however, that
there must exist new sources of CP violation. Measurements of CP violation in flavor changing
processes might provide evidence for such sources.

– The fine-tuning problem of the Higgs mass, and the puzzle of the dark matter imply that there
exists new physics at, or below, the TeV scale. If such new physics had a generic flavor structure,
it would contribute to flavor changing neutral current (FCNC) processes orders of magnitude above
the observed rates. The question of why this does not happen constitutes the new physics flavor

puzzle.
– Most of the charged fermion flavor parameters are small and hierarchical. The Standard Model

does not provide any explanation of these features. This is the Standard Model flavor puzzle. The
puzzle became even deeper after neutrino masses and mixings were measured because, so far,
neither smallness nor hierarchy in these parameters have been established.

1In the interaction basis, the weak interactions are also flavor-universal, and one can identify the source of all flavor physics
in the Yukawa interactions among the gauge-interaction eigenstates.

80

The term “flavor universal” refers to interactions with couplings (or to parameters) that are pro-
portional to the unit matrix in flavor space. Thus, the strong and electromagnetic interactions are flavor-
universal.1 An alternative term for “flavor-universal” is “flavor-blind”.

The term “flavor diagonal” refers to interactions with couplings (or to parameters) that are diago-
nal, but not necessarily universal, in the flavor space. Within the Standard Model, the Yukawa interactions
of the Higgs particle are flavor diagonal in the mass basis.

The term “flavor changing” refers to processes where the initial and final flavor-numbers (that
is, the number of particles of a certain flavor minus the number of anti-particles of the same flavor)
are different. In “flavor changing charged current” (FCCC) processes, both up-type and down-type
flavors, and/or both charged lepton and neutrino flavors are involved. Examples are (i) muon decay via
µ ! e⌫̄e⌫µ, (ii) K� ! µ

�
⌫̄µ (which corresponds, at the quark level, to sū ! µ
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• Flavour violation 
Related to the breaking of flavour symmetries, i.e.  for quarks.U(1)6
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Basic notions: 
 
1. “A” quantum field theory 
 
2. Symmetries

The Standard Model
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     +ϕ qi, ℓi, ui, di, ei

Poincaré + SU(3)C × SU(2)L × U(1)Y

3. Field Content

Flavour i = 1,2,3

*QFT = inevitable low-energy outcome of relativity   
+ quantum mechanics + cluster decomposition

Complexity!
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4. Renormalisability

*Turns out to be the leading terms in an EFT expansiondim $ ≤ 4

Gauge

Spacetime



2 The Standard Model

A model of elementary particles and their interactions is defined by the following ingredients: (i) The
symmetries of the Lagrangian and the pattern of spontaneous symmetry breaking (SSB); (ii) The repre-
sentations of fermions and scalars. The Standard Model (SM) is defined as follows:

– The symmetry is a local

GSM = SU(3)C ⇥ SU(2)L ⇥ U(1)Y . (1)

– It is spontaneously broken by the VEV of a single Higgs scalar,

�(1, 2)+1/2, (h�0i = v/

p
2) , (2)

GSM ! SU(3)C ⇥ U(1)EM (QEM = T3 + Y ) . (3)

– There are three fermion generations, each consisting of five representations of GSM:

QLi(3, 2)+1/6, URi(3, 1)+2/3, DRi(3, 1)�1/3, LLi(1, 2)�1/2, ERi(1, 1)�1 . (4)

2.1 The Lagrangian

The most general renormalizable Lagrangian with scalar and fermion fields can be decomposed into

L = Lkin + L + LYuk + L� . (5)

Here Lkin describes free propagation in spacetime, as well as gauge interactions, L gives fermion mass
terms, LYuk describes the Yukawa interactions, and L� gives the scalar potential. We now find the
specific form of the Lagrangian made of the fermion fields QLi, URi, DRi, LLi and ERi (4), and the
scalar field (2), subject to the gauge symmetry (1) and leading to the SSB of Eq. (3).

2.1.1 Lkin

The local symmetry requires the following gauge boson degrees of freedom:

G
µ

a(8, 1)0, W
µ

a (1, 3)0, B
µ(1, 1)0 . (6)

The corresponding field strengths are given by

G
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B
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⌫ � @
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B

µ
. (7)

The covariant derivative is

D
µ = @

µ + igsG
µ

aLa + igW
µ

b
Tb + ig

0
B

µ
Y , (8)

where the La’s are SU(3)C generators (the 3 ⇥ 3 Gell-Mann matrices 1
2�a for triplets, 0 for singlets),

the Tb’s are SU(2)L generators (the 2⇥2 Pauli matrices 1
2⌧b for doublets, 0 for singlets), and the Y ’s are

the U(1)Y charges. Explicitly, the covariant derivatives acting on the various scalar and fermion fields
are given by

D
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Lkin is given by

LSM
kin = �1

4
G

µ⌫

a Gaµ⌫ �
1

4
W

µ⌫

b
Wbµ⌫ �

1

4
B

µ⌫
Bµ⌫

�iQLiD/QLi � iURiD/URi � iDRiD/DRi � iLLiD/LLi � iERiD/ERi

�(Dµ
�)†(Dµ�) . (10)

This part of the interaction Lagrangian is flavor-universal. In addition, it conserves CP.

2.1.2 L 
There are no mass terms for the fermions in the SM. We cannot write Dirac mass terms for the fermions
because they are assigned to chiral representations of the gauge symmetry. We cannot write Majorana
mass terms for the fermions because they all have Y 6= 0. Thus,

LSM
 

= 0 . (11)

2.1.3 LYuk

The Yukawa part of the Lagrangian is given by

LSM
Y = Y

d

ijQLi�DRj + Y
u

ijQLi�̃URj + Y
e

ijLLi�ERjh.c. , (12)

where �̃ = i⌧2�
†, and the Y

f are general 3 ⇥ 3 matrices of dimensionless couplings. This part of the
Lagrangian is, in general, flavor-dependent (that is, Y f 6/ 1) and CP violating.

Without loss of generality, we can use a bi-unitary transformation,

Y
e ! Ŷe = UeLY

e
U

†
eR

, (13)

to change the basis to one where Y
e is diagonal and real:

Ŷ
e = diag(ye, yµ, y⌧ ) . (14)

In the basis defined in Eq. (14), we denote the components of the lepton SU(2)-doublets, and the three
lepton SU(2)-singlets, as follows:

✓
⌫eL

eL

◆
,

✓
⌫µL

µL

◆
,

✓
⌫⌧L

⌧L

◆
; eR, µR, ⌧R, (15)

where e, µ, ⌧ are ordered by the size of ye,µ,⌧ (from smallest to largest).
Similarly, without loss of generality, we can use a bi-unitary transformation,

Y
u ! Ŷu = VuLY

u
V

†
uR

, (16)
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i = 1,2,3

SU(3) SU(2) U(1)
qLi

lLi

3 2

GA
μ Wa

μ Bμ

uRi

dRi

eRi

1 2
3 1
3 1
1 1 −1

−1/3
+2/3
−1/2
+1/6
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# parameters:

- Gauge and Higgs sector: 5
- Yukawa sector: 13*Would be 3 for a 

single generation

i, j = 1,2,3
All parameters free

H

fi

fj

∝ Yij
f

Single free parameter

qα

qβ

Ga ∝ gs

Yukawa sector

Gauge sector

Higgs sector



The Higgs field

The Higgs 
mechanism

35

• How do elementary particles get mass?

SU(3) × SU(2) × U(1)

SU(3) × U(1)em

ϕ 1 2 +1/2 1 = − μ2ϕ†ϕ + λ(ϕ†ϕ)2

SSB: ⟨ϕ⟩ ≠ 0
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Cosmological event

36

• Electroweak phase transition

T ≫ TEW T ≪ TEW

⟨ϕ⟩ ≠ 0⟨ϕ⟩ = 0

• Spacetime gets filled by a Higgs condensate

• Elementary particles get intrinsic masses

 after Big Bang10−10 sec
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• Matter : Quarks and Leptons

θfL ≠ θfR ⟹
• The left-handed and the right-handed fields have different  phases:U(1)Y

The mass  is forbidden!mf f̄L fR

37

• The Higgs field saves the day, θH + θfR = θfL

ℒ ⊃ − yf f̄L fR ϕ ⟹ mf = yf ⟨ϕ⟩

The Higgs mechanism

• The mass  the strength of the interaction with the Higgs field∝

SSB

⃗p
⃗S

⃗p
⃗S
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Table 1: The SM particles

particle spin color QEM mass [v]

W
± 1 (1) ±1 1

2g

Z
0 1 (1) 0 1

2

p
g2 + g02

A
0 1 (1) 0 0
g 1 (8) 0 0

h 0 (1) 0
p
2�

e, µ, ⌧ 1/2 (1) �1 ye,µ,⌧/
p
2

⌫e, ⌫µ, ⌫⌧ 1/2 (1) 0 0
u, c, t 1/2 (3) +2/3 yu,c,t/

p
2

d, s, b 1/2 (3) �1/3 yd,s,b/
p
2

2.2 The spectrum

The spectrum of the standard model is presented in Table 1.
All masses are proportional to the VEV of the scalar field, v. For the three massive gauge bosons,

and for the fermions, this is expected: In the absence of spontaneous symmetry breaking, the former
would be protected by the gauge symmetry and the latter by their chiral nature. For the Higgs boson, the
situation is different, as a mass-squared term does not violate any symmetry.

For the charged fermions, the spontaneous symmetry breaking allows their masses because they
are in vector-like representations of the SU(3)C ⇥ U(1)EM group: The LH and RH charged lepton
fields, e, µ and ⌧ , are in the (1)�1 representation; The LH and RH up-type quark fields, u, c and t, are
in the (3)+2/3 representation; The LH and RH down-type quark fields, d, s and b, are in the (3)�1/3

representation. On the other hand, the neutrinos remain massless in spite of the fact that they are in the
(1)0 representation of SU(3)C ⇥ U(1)EM, which allows for Majorana masses. Such masses require a
VEV carried by a scalar field in the (1, 3)+1 representation of the SU(3)C⇥SU(2)L⇥U(1)Y symmetry,
but there is no such field in the SM.

The experimental values of the charged fermion masses are [1] 2

me = 0.510998946(3) MeV , mµ = 105.6583745(24) MeV , m⌧ = 1776.86(12) MeV ,

mu = 2.2+0.5
�0.4 MeV , mc = 1.275+0.025

�0.035 GeV , mt = 173.1± 0.9 GeV ,

md = 4.7+0.5
�0.3 MeV , ms = 95+9

�3 MeV , mb = 4.18+0.04
�0.03 GeV . (26)

2.3 The interactions

Within the SM, the fermions have five types of interactions. These interactions are summarized in Ta-
ble 2. In the next few subsections, we explain the entries of this table.

2.3.1 EM and strong interactions
By construction, a local SU(3)C ⇥ U(1)EM symmetry survives the SSB. The SM has thus the photon
and gluon massless gauge fields. All charged fermions interact with the photon:

LQED, = �2e

3
uiA/ui +

e

3
diA/di + e`iA/`i , (27)

2See [1] for detailed explanations of the quoted quark masses. For q = u, d, s, c, b, mq are the running quark masses in the
MS scheme, with mu,d,s = mu,d,s(µ = 2 GeV) and mc,b = mc,b(µ = mc,b).
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The SM spectrum
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•  sans Yukawaℒ4

ψ : 3 generations of qi, Ui, Di, li, Ei

U(3)q × U(3)U × U(3)D × U(3)l × U(3)E

40

gS ∼ 1, gW ∼ 0.6, gY ∼ 0.3, λH ∼ 0.2
θ ≲ 10−10 - The strong CP problem

Accidental symmetry

4

Global flavour symmetries
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Yukawas break U(3)5

41

4
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2
g
0
B

µ

◆
LLi ,

D
µ
ERi =

�
@
µ � ig

0
B

µ
�
ERi . (9)

Lkin is given by

LSM
kin = �1

4
G

µ⌫

a Gaµ⌫ �
1

4
W

µ⌫

b
Wbµ⌫ �

1

4
B

µ⌫
Bµ⌫

�iQLiD/QLi � iURiD/URi � iDRiD/DRi � iLLiD/LLi � iERiD/ERi

�(Dµ
�)†(Dµ�) . (10)

This part of the interaction Lagrangian is flavor-universal. In addition, it conserves CP.

2.1.2 L 
There are no mass terms for the fermions in the SM. We cannot write Dirac mass terms for the fermions
because they are assigned to chiral representations of the gauge symmetry. We cannot write Majorana
mass terms for the fermions because they all have Y 6= 0. Thus,

LSM
 

= 0 . (11)

2.1.3 LYuk

The Yukawa part of the Lagrangian is given by

LSM
Y = Y

d

ijQLi�DRj + Y
u

ijQLi�̃URj + Y
e

ijLLi�ERjh.c. , (12)

where �̃ = i⌧2�
†, and the Y

f are general 3 ⇥ 3 matrices of dimensionless couplings. This part of the
Lagrangian is, in general, flavor-dependent (that is, Y f 6/ 1) and CP violating.

Without loss of generality, we can use a bi-unitary transformation,

Y
e ! Ŷe = UeLY

e
U

†
eR

, (13)

to change the basis to one where Y
e is diagonal and real:

Ŷ
e = diag(ye, yµ, y⌧ ) . (14)

In the basis defined in Eq. (14), we denote the components of the lepton SU(2)-doublets, and the three
lepton SU(2)-singlets, as follows:

✓
⌫eL

eL

◆
,

✓
⌫µL

µL

◆
,

✓
⌫⌧L

⌧L

◆
; eR, µR, ⌧R, (15)

where e, µ, ⌧ are ordered by the size of ye,µ,⌧ (from smallest to largest).
Similarly, without loss of generality, we can use a bi-unitary transformation,

Y
u ! Ŷu = VuLY

u
V

†
uR

, (16)
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• The kinetic Lagrangian (flavor and CP conserving)
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Lkin is given by

LSM
kin = �1

4
G

µ⌫

a Gaµ⌫ �
1

4
W

µ⌫

b
Wbµ⌫ �

1

4
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�iQLiD/QLi � iURiD/URi � iDRiD/DRi � iLLiD/LLi � iERiD/ERi

�(Dµ
�)†(Dµ�) . (10)

This part of the interaction Lagrangian is flavor-universal. In addition, it conserves CP.

2.1.2 L 
There are no mass terms for the fermions in the SM. We cannot write Dirac mass terms for the fermions
because they are assigned to chiral representations of the gauge symmetry. We cannot write Majorana
mass terms for the fermions because they all have Y 6= 0. Thus,

LSM
 

= 0 . (11)

2.1.3 LYuk

The Yukawa part of the Lagrangian is given by

LSM
Y = Y

d

ijQLi�DRj + Y
u

ijQLi�̃URj + Y
e

ijLLi�ERjh.c. , (12)

where �̃ = i⌧2�
†, and the Y

f are general 3 ⇥ 3 matrices of dimensionless couplings. This part of the
Lagrangian is, in general, flavor-dependent (that is, Y f 6/ 1) and CP violating.

Without loss of generality, we can use a bi-unitary transformation,

Y
e ! Ŷe = UeLY

e
U

†
eR

, (13)

to change the basis to one where Y
e is diagonal and real:

Ŷ
e = diag(ye, yµ, y⌧ ) . (14)

In the basis defined in Eq. (14), we denote the components of the lepton SU(2)-doublets, and the three
lepton SU(2)-singlets, as follows:

✓
⌫eL

eL

◆
,

✓
⌫µL

µL

◆
,

✓
⌫⌧L

⌧L

◆
; eR, µR, ⌧R, (15)

where e, µ, ⌧ are ordered by the size of ye,µ,⌧ (from smallest to largest).
Similarly, without loss of generality, we can use a bi-unitary transformation,

Y
u ! Ŷu = VuLY

u
V

†
uR

, (16)
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• The kinetic Lagrangian (flavor and CP conserving)

Table 3: Higgs decays: The SM predictions for the branching ratios, and the experimental µ values

Mode BRSM µexperiment Comments
bb̄ 0.58 0.98± 0.20

WW
⇤ 0.21 0.99± 0.15 3-body

gg 0.09 loop
⌧
+
⌧
� 0.06 1.09± 0.23

ZZ
⇤ 0.03 1.17± 0.23 3-body

cc̄ 0.03
�� 0.002 1.14± 0.14 loop

– Neutrinos are massless, m⌫ = 0.

The last prediction is, however, violated in Nature. Neutrino flavor transitions are observed, implying
that at least two of the neutrino masses are different from zero.

Accidental symmetries are broken by higher-dimensional (non-renormalizable) terms. Two exam-
ples are the following:

– At dimension five,
z
⌫

ij

⇤ LiLj�� terms break U(1)e ⇥ U(1)µ ⇥ U(1)⌧ .
– At dimension six, yijkl

⇤2 QiQjQkLl terms break U(1)B .

Thus, given that m⌫ 6= 0, we learn that the SM is, at best, a good low energy effective field theory.
In the absence of the Yukawa matrices, LYuk = 0, the SM has a large U(3)5 global symmetry:

G
SM
global(Y

u,d,e = 0) = SU(3)3q ⇥ SU(3)2
`
⇥ U(1)5 , (48)

where

SU(3)3q = SU(3)Q ⇥ SU(3)U ⇥ SU(3)D ,

SU(3)2
`

= SU(3)L ⇥ SU(3)E ,

U(1)5 = U(1)B ⇥ U(1)L ⇥ U(1)Y ⇥ U(1)PQ ⇥ U(1)E . (49)

Out of the five U(1) charges, three can be identified with baryon number (B), lepton number (L) and
hypercharge (Y ), which are respected by the Yukawa interactions. The two remaining U(1) groups can
be identified with the PQ symmetry whereby the Higgs and DR, ER fields have opposite charges, and
with a global rotation of ER only.

The point that is important for our purposes is that Lkin respects the non-Abelian flavor symmetry
SU(3)3q ⇥ SU(3)2

`
, under which

QL ! VQQL , UR ! VUUR , DR ! VDDR , LL ! VLLL , ER ! VEER , (50)

where the Vi are unitary matrices. The Yukawa interactions (12) break the global symmetry into the
subgroup of Eq. (47). (Of course, the gauged U(1)Y also remains a good symmetry.) Thus, the transfor-
mations of Eq. (50) are not a symmetry of LSM. Instead, they correspond to a change of the interaction
basis. These observations also offer an alternative way of defining flavor physics: it refers to interac-
tions that break the SU(3)5 symmetry (50). Thus, the term “flavor violation” is often used to describe
processes or parameters that break the symmetry.
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• The global symmetry
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This part of the interaction Lagrangian is flavor-universal. In addition, it conserves CP.

2.1.2 L 
There are no mass terms for the fermions in the SM. We cannot write Dirac mass terms for the fermions
because they are assigned to chiral representations of the gauge symmetry. We cannot write Majorana
mass terms for the fermions because they all have Y 6= 0. Thus,

LSM
 

= 0 . (11)

2.1.3 LYuk

The Yukawa part of the Lagrangian is given by

LSM
Y = Y

d

ijQLi�DRj + Y
u

ijQLi�̃URj + Y
e

ijLLi�ERjh.c. , (12)

where �̃ = i⌧2�
†, and the Y

f are general 3 ⇥ 3 matrices of dimensionless couplings. This part of the
Lagrangian is, in general, flavor-dependent (that is, Y f 6/ 1) and CP violating.

Without loss of generality, we can use a bi-unitary transformation,

Y
e ! Ŷe = UeLY

e
U

†
eR

, (13)

to change the basis to one where Y
e is diagonal and real:

Ŷ
e = diag(ye, yµ, y⌧ ) . (14)

In the basis defined in Eq. (14), we denote the components of the lepton SU(2)-doublets, and the three
lepton SU(2)-singlets, as follows:

✓
⌫eL

eL

◆
,

✓
⌫µL

µL

◆
,

✓
⌫⌧L

⌧L

◆
; eR, µR, ⌧R, (15)

where e, µ, ⌧ are ordered by the size of ye,µ,⌧ (from smallest to largest).
Similarly, without loss of generality, we can use a bi-unitary transformation,

Y
u ! Ŷu = VuLY

u
V

†
uR

, (16)
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Table 3: Higgs decays: The SM predictions for the branching ratios, and the experimental µ values

Mode BRSM µexperiment Comments
bb̄ 0.58 0.98± 0.20

WW
⇤ 0.21 0.99± 0.15 3-body

gg 0.09 loop
⌧
+
⌧
� 0.06 1.09± 0.23

ZZ
⇤ 0.03 1.17± 0.23 3-body

cc̄ 0.03
�� 0.002 1.14± 0.14 loop

– Neutrinos are massless, m⌫ = 0.

The last prediction is, however, violated in Nature. Neutrino flavor transitions are observed, implying
that at least two of the neutrino masses are different from zero.

Accidental symmetries are broken by higher-dimensional (non-renormalizable) terms. Two exam-
ples are the following:

– At dimension five,
z
⌫

ij

⇤ LiLj�� terms break U(1)e ⇥ U(1)µ ⇥ U(1)⌧ .
– At dimension six, yijkl

⇤2 QiQjQkLl terms break U(1)B .

Thus, given that m⌫ 6= 0, we learn that the SM is, at best, a good low energy effective field theory.
In the absence of the Yukawa matrices, LYuk = 0, the SM has a large U(3)5 global symmetry:

G
SM
global(Y

u,d,e = 0) = SU(3)3q ⇥ SU(3)2
`
⇥ U(1)5 , (48)

where

SU(3)3q = SU(3)Q ⇥ SU(3)U ⇥ SU(3)D ,

SU(3)2
`

= SU(3)L ⇥ SU(3)E ,

U(1)5 = U(1)B ⇥ U(1)L ⇥ U(1)Y ⇥ U(1)PQ ⇥ U(1)E . (49)

Out of the five U(1) charges, three can be identified with baryon number (B), lepton number (L) and
hypercharge (Y ), which are respected by the Yukawa interactions. The two remaining U(1) groups can
be identified with the PQ symmetry whereby the Higgs and DR, ER fields have opposite charges, and
with a global rotation of ER only.

The point that is important for our purposes is that Lkin respects the non-Abelian flavor symmetry
SU(3)3q ⇥ SU(3)2

`
, under which

QL ! VQQL , UR ! VUUR , DR ! VDDR , LL ! VLLL , ER ! VEER , (50)

where the Vi are unitary matrices. The Yukawa interactions (12) break the global symmetry into the
subgroup of Eq. (47). (Of course, the gauged U(1)Y also remains a good symmetry.) Thus, the transfor-
mations of Eq. (50) are not a symmetry of LSM. Instead, they correspond to a change of the interaction
basis. These observations also offer an alternative way of defining flavor physics: it refers to interac-
tions that break the SU(3)5 symmetry (50). Thus, the term “flavor violation” is often used to describe
processes or parameters that break the symmetry.
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• The global symmetry

• Reminder:
U(1) : ϕ → eiαQϕ
ϕ†ϕ → ϕ†e−iαQeiαQϕ = ϕ†ϕ

• The kinetic Lagrangian (flavor and CP conserving)
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This part of the interaction Lagrangian is flavor-universal. In addition, it conserves CP.

2.1.2 L 
There are no mass terms for the fermions in the SM. We cannot write Dirac mass terms for the fermions
because they are assigned to chiral representations of the gauge symmetry. We cannot write Majorana
mass terms for the fermions because they all have Y 6= 0. Thus,

LSM
 

= 0 . (11)

2.1.3 LYuk

The Yukawa part of the Lagrangian is given by
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Y = Y
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ijLLi�ERjh.c. , (12)

where �̃ = i⌧2�
†, and the Y

f are general 3 ⇥ 3 matrices of dimensionless couplings. This part of the
Lagrangian is, in general, flavor-dependent (that is, Y f 6/ 1) and CP violating.

Without loss of generality, we can use a bi-unitary transformation,

Y
e ! Ŷe = UeLY
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U
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eR

, (13)

to change the basis to one where Y
e is diagonal and real:

Ŷ
e = diag(ye, yµ, y⌧ ) . (14)

In the basis defined in Eq. (14), we denote the components of the lepton SU(2)-doublets, and the three
lepton SU(2)-singlets, as follows:
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where e, µ, ⌧ are ordered by the size of ye,µ,⌧ (from smallest to largest).
Similarly, without loss of generality, we can use a bi-unitary transformation,

Y
u ! Ŷu = VuLY

u
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, (16)
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Table 3: Higgs decays: The SM predictions for the branching ratios, and the experimental µ values

Mode BRSM µexperiment Comments
bb̄ 0.58 0.98± 0.20

WW
⇤ 0.21 0.99± 0.15 3-body

gg 0.09 loop
⌧
+
⌧
� 0.06 1.09± 0.23

ZZ
⇤ 0.03 1.17± 0.23 3-body

cc̄ 0.03
�� 0.002 1.14± 0.14 loop

– Neutrinos are massless, m⌫ = 0.

The last prediction is, however, violated in Nature. Neutrino flavor transitions are observed, implying
that at least two of the neutrino masses are different from zero.

Accidental symmetries are broken by higher-dimensional (non-renormalizable) terms. Two exam-
ples are the following:

– At dimension five,
z
⌫

ij

⇤ LiLj�� terms break U(1)e ⇥ U(1)µ ⇥ U(1)⌧ .
– At dimension six, yijkl

⇤2 QiQjQkLl terms break U(1)B .

Thus, given that m⌫ 6= 0, we learn that the SM is, at best, a good low energy effective field theory.
In the absence of the Yukawa matrices, LYuk = 0, the SM has a large U(3)5 global symmetry:

G
SM
global(Y

u,d,e = 0) = SU(3)3q ⇥ SU(3)2
`
⇥ U(1)5 , (48)

where

SU(3)3q = SU(3)Q ⇥ SU(3)U ⇥ SU(3)D ,

SU(3)2
`

= SU(3)L ⇥ SU(3)E ,

U(1)5 = U(1)B ⇥ U(1)L ⇥ U(1)Y ⇥ U(1)PQ ⇥ U(1)E . (49)

Out of the five U(1) charges, three can be identified with baryon number (B), lepton number (L) and
hypercharge (Y ), which are respected by the Yukawa interactions. The two remaining U(1) groups can
be identified with the PQ symmetry whereby the Higgs and DR, ER fields have opposite charges, and
with a global rotation of ER only.

The point that is important for our purposes is that Lkin respects the non-Abelian flavor symmetry
SU(3)3q ⇥ SU(3)2

`
, under which

QL ! VQQL , UR ! VUUR , DR ! VDDR , LL ! VLLL , ER ! VEER , (50)

where the Vi are unitary matrices. The Yukawa interactions (12) break the global symmetry into the
subgroup of Eq. (47). (Of course, the gauged U(1)Y also remains a good symmetry.) Thus, the transfor-
mations of Eq. (50) are not a symmetry of LSM. Instead, they correspond to a change of the interaction
basis. These observations also offer an alternative way of defining flavor physics: it refers to interac-
tions that break the SU(3)5 symmetry (50). Thus, the term “flavor violation” is often used to describe
processes or parameters that break the symmetry.
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• The global symmetry

• Reminder:
U(1) : ϕ → eiαQϕ
ϕ†ϕ → ϕ†e−iαQeiαQϕ = ϕ†ϕ

U(N ) = SU(N ) × U(1)
SU(N ) : group of N × N unitary matrices with det = 1

U†U = 1 , det U = 1

• The kinetic Lagrangian (flavor and CP conserving)
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Lkin is given by

LSM
kin = �1

4
G

µ⌫

a Gaµ⌫ �
1

4
W

µ⌫

b
Wbµ⌫ �

1

4
B

µ⌫
Bµ⌫

�iQLiD/QLi � iURiD/URi � iDRiD/DRi � iLLiD/LLi � iERiD/ERi

�(Dµ
�)†(Dµ�) . (10)

This part of the interaction Lagrangian is flavor-universal. In addition, it conserves CP.

2.1.2 L 
There are no mass terms for the fermions in the SM. We cannot write Dirac mass terms for the fermions
because they are assigned to chiral representations of the gauge symmetry. We cannot write Majorana
mass terms for the fermions because they all have Y 6= 0. Thus,

LSM
 

= 0 . (11)

2.1.3 LYuk

The Yukawa part of the Lagrangian is given by

LSM
Y = Y

d

ijQLi�DRj + Y
u

ijQLi�̃URj + Y
e

ijLLi�ERjh.c. , (12)

where �̃ = i⌧2�
†, and the Y

f are general 3 ⇥ 3 matrices of dimensionless couplings. This part of the
Lagrangian is, in general, flavor-dependent (that is, Y f 6/ 1) and CP violating.

Without loss of generality, we can use a bi-unitary transformation,

Y
e ! Ŷe = UeLY

e
U

†
eR

, (13)

to change the basis to one where Y
e is diagonal and real:

Ŷ
e = diag(ye, yµ, y⌧ ) . (14)

In the basis defined in Eq. (14), we denote the components of the lepton SU(2)-doublets, and the three
lepton SU(2)-singlets, as follows:

✓
⌫eL

eL

◆
,

✓
⌫µL

µL

◆
,

✓
⌫⌧L

⌧L

◆
; eR, µR, ⌧R, (15)

where e, µ, ⌧ are ordered by the size of ye,µ,⌧ (from smallest to largest).
Similarly, without loss of generality, we can use a bi-unitary transformation,

Y
u ! Ŷu = VuLY

u
V

†
uR

, (16)
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Table 3: Higgs decays: The SM predictions for the branching ratios, and the experimental µ values

Mode BRSM µexperiment Comments
bb̄ 0.58 0.98± 0.20

WW
⇤ 0.21 0.99± 0.15 3-body

gg 0.09 loop
⌧
+
⌧
� 0.06 1.09± 0.23

ZZ
⇤ 0.03 1.17± 0.23 3-body

cc̄ 0.03
�� 0.002 1.14± 0.14 loop

– Neutrinos are massless, m⌫ = 0.

The last prediction is, however, violated in Nature. Neutrino flavor transitions are observed, implying
that at least two of the neutrino masses are different from zero.

Accidental symmetries are broken by higher-dimensional (non-renormalizable) terms. Two exam-
ples are the following:

– At dimension five,
z
⌫

ij

⇤ LiLj�� terms break U(1)e ⇥ U(1)µ ⇥ U(1)⌧ .
– At dimension six, yijkl

⇤2 QiQjQkLl terms break U(1)B .

Thus, given that m⌫ 6= 0, we learn that the SM is, at best, a good low energy effective field theory.
In the absence of the Yukawa matrices, LYuk = 0, the SM has a large U(3)5 global symmetry:

G
SM
global(Y

u,d,e = 0) = SU(3)3q ⇥ SU(3)2
`
⇥ U(1)5 , (48)

where

SU(3)3q = SU(3)Q ⇥ SU(3)U ⇥ SU(3)D ,

SU(3)2
`

= SU(3)L ⇥ SU(3)E ,

U(1)5 = U(1)B ⇥ U(1)L ⇥ U(1)Y ⇥ U(1)PQ ⇥ U(1)E . (49)

Out of the five U(1) charges, three can be identified with baryon number (B), lepton number (L) and
hypercharge (Y ), which are respected by the Yukawa interactions. The two remaining U(1) groups can
be identified with the PQ symmetry whereby the Higgs and DR, ER fields have opposite charges, and
with a global rotation of ER only.

The point that is important for our purposes is that Lkin respects the non-Abelian flavor symmetry
SU(3)3q ⇥ SU(3)2

`
, under which

QL ! VQQL , UR ! VUUR , DR ! VDDR , LL ! VLLL , ER ! VEER , (50)

where the Vi are unitary matrices. The Yukawa interactions (12) break the global symmetry into the
subgroup of Eq. (47). (Of course, the gauged U(1)Y also remains a good symmetry.) Thus, the transfor-
mations of Eq. (50) are not a symmetry of LSM. Instead, they correspond to a change of the interaction
basis. These observations also offer an alternative way of defining flavor physics: it refers to interac-
tions that break the SU(3)5 symmetry (50). Thus, the term “flavor violation” is often used to describe
processes or parameters that break the symmetry.

89

• The global symmetry

• Reminder:
U(1) : ϕ → eiαQϕ
ϕ†ϕ → ϕ†e−iαQeiαQϕ = ϕ†ϕ

U(N ) = SU(N ) × U(1)
SU(N ) : group of N × N unitary matrices with det = 1

U†U = 1 , det U = 1

U = eiαaTa a : 1,...,N2 − 1
ϕi → Uijϕj i, j : 1,...,N
ϕ†ϕ → ϕ†U†Uϕ = ϕ†ϕ

• The kinetic Lagrangian (flavor and CP conserving)

SU(N ) :
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• Flavour and CP violation is in the Yukawa Lagrangian

−ℒYuk = Q̄Yuϕ̃U + Q̄YdϕD + L̄YeϕE
One can think of the quark Yukawa couplings as spurions that break the global SU(3)3q symmetry

(but are neutral under U(1)B),

Y
u ⇠ (3, 3̄, 1)SU(3)3q

, Y
d ⇠ (3, 1, 3̄)SU(3)3q

, (51)

and of the lepton Yukawa couplings as spurions that break the global SU(3)2
`

symmetry (but are neutral
under U(1)e ⇥ U(1)µ ⇥ U(1)⌧ ),

Y
e ⇠ (3, 3̄)

SU(3)2
`

. (52)

The spurion formalism is convenient for several purposes: parameter counting (see below), identification
of flavor suppression factors (see Section 7), and the idea of minimal flavor violation (see Section 7.2).

2.5 Counting parameters

How many independent parameters are there in Lq

Yuk? The two Yukawa matrices, Y u and Y
d, are 3⇥ 3

and complex. Consequently, there are 18 real and 18 imaginary parameters in these matrices. Not all of
them are, however, physical. The pattern of Gglobal breaking means that there is freedom to remove 9 real
and 17 imaginary parameters (the number of parameters in three 3⇥ 3 unitary matrices minus the phase
related to U(1)B). For example, we can use the unitary transformations QL ! VQQL, UR ! VUUR

and DR ! VDDR, to lead to the following interaction basis:

Y
d = �d, Y

u = V
†
�u , (53)

where �d,u are diagonal,

�d = diag(yd, ys, yb) , �u = diag(yu, yc, yt) , (54)

while V is a unitary matrix that depends on three real angles and one complex phase. We conclude that
there are 10 quark flavor parameters: 9 real ones and a single phase. In the mass basis, we identify the
nine real parameters as six quark masses and three mixing angles, while the single phase is �KM.

How many independent parameters are there in L`

Yuk? The Yukawa matrix Y
e is 3 ⇥ 3 and

complex. Consequently, there are 9 real and 9 imaginary parameters in this matrix. There is, however,
freedom to remove 6 real and 9 imaginary parameters (the number of parameters in two 3 ⇥ 3 unitary
matrices minus the phases related to U(1)3). For example, we can use the unitary transformations LL !
VLLL and ER ! VEER, to lead to the following interaction basis:

Y
e = �e = diag(ye, yµ, y⌧ ) . (55)

We conclude that there are 3 real lepton flavor parameters. In the mass basis, we identify these parameters
as the three charged lepton masses. We must, however, modify the model when we take into account the
evidence for neutrino masses.

3 The CKM matrix

Among the SM interactions, the W -mediated interactions are the only ones that are not diagonal. Conse-
quently, all flavor changing processes depend on the CKM parameters. The fact that there are only four
independent CKM parameters, while the number of measured flavor changing processes is much larger,
allows for stringent tests of the CKM mechanism for flavor changing processes.

3.1 Parametrization of the CKM matrix

The CKM matrix V is a 3⇥ 3 unitary matrix. Its form, however, is not unique:
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• Flavour breaking spurions

One can think of the quark Yukawa couplings as spurions that break the global SU(3)3q symmetry
(but are neutral under U(1)B),

Y
u ⇠ (3, 3̄, 1)SU(3)3q

, Y
d ⇠ (3, 1, 3̄)SU(3)3q

, (51)

and of the lepton Yukawa couplings as spurions that break the global SU(3)2
`

symmetry (but are neutral
under U(1)e ⇥ U(1)µ ⇥ U(1)⌧ ),

Y
e ⇠ (3, 3̄)

SU(3)2
`

. (52)

The spurion formalism is convenient for several purposes: parameter counting (see below), identification
of flavor suppression factors (see Section 7), and the idea of minimal flavor violation (see Section 7.2).

2.5 Counting parameters

How many independent parameters are there in Lq

Yuk? The two Yukawa matrices, Y u and Y
d, are 3⇥ 3

and complex. Consequently, there are 18 real and 18 imaginary parameters in these matrices. Not all of
them are, however, physical. The pattern of Gglobal breaking means that there is freedom to remove 9 real
and 17 imaginary parameters (the number of parameters in three 3⇥ 3 unitary matrices minus the phase
related to U(1)B). For example, we can use the unitary transformations QL ! VQQL, UR ! VUUR

and DR ! VDDR, to lead to the following interaction basis:

Y
d = �d, Y

u = V
†
�u , (53)

where �d,u are diagonal,

�d = diag(yd, ys, yb) , �u = diag(yu, yc, yt) , (54)

while V is a unitary matrix that depends on three real angles and one complex phase. We conclude that
there are 10 quark flavor parameters: 9 real ones and a single phase. In the mass basis, we identify the
nine real parameters as six quark masses and three mixing angles, while the single phase is �KM.

How many independent parameters are there in L`

Yuk? The Yukawa matrix Y
e is 3 ⇥ 3 and

complex. Consequently, there are 9 real and 9 imaginary parameters in this matrix. There is, however,
freedom to remove 6 real and 9 imaginary parameters (the number of parameters in two 3 ⇥ 3 unitary
matrices minus the phases related to U(1)3). For example, we can use the unitary transformations LL !
VLLL and ER ! VEER, to lead to the following interaction basis:

Y
e = �e = diag(ye, yµ, y⌧ ) . (55)

We conclude that there are 3 real lepton flavor parameters. In the mass basis, we identify these parameters
as the three charged lepton masses. We must, however, modify the model when we take into account the
evidence for neutrino masses.

3 The CKM matrix

Among the SM interactions, the W -mediated interactions are the only ones that are not diagonal. Conse-
quently, all flavor changing processes depend on the CKM parameters. The fact that there are only four
independent CKM parameters, while the number of measured flavor changing processes is much larger,
allows for stringent tests of the CKM mechanism for flavor changing processes.

3.1 Parametrization of the CKM matrix

The CKM matrix V is a 3⇥ 3 unitary matrix. Its form, however, is not unique:

90

Admir Greljo | Lectures on BSM in flavour

Global flavour symmetries



48

−ℒYuk = q̄V† ̂Yuϕ̃u + q̄ ̂Ydϕd + ℓ̄ ̂Yeϕe
*By  and SVD theoremG f

• Flavour symmetry G f = U(3)q × U(3)ℓ × U(3)u × U(3)d × U(3)e
*Fermionic kinetic terms

13 parameters
• 6 quark and 3 charged lepton masses

• The CKM: 3 angles + 1 CPV phase
Vij → ei(θi

u−θ j
d)Vij

•  equivalency classes, , etc.  physical parameters G f Yu ∼ UqYuU†
u ⟹ 54 → 13

Global flavour symmetries

Admir Greljo | Lectures on BSM in flavour

• The Yukawa sector breaks G f → U(1)B × U(1)e × U(1)μ × U(1)τ
*Exact (classical) accidental 

symmetry of the SM



Parameter counting
*It is a bit technical, sorry



Parameter 
counting: 
Leptons

50

Dirac

E en v H iaH

ii

Ls TiHYEein Titty in hi

SSB LH vz iii 2,3

if Ei Mieein Ji Mui Yi

Mu complex

pre complex

singular value decomposition

U MVt Mdiag uae diagonalwith realnonnegative entries
artbitrarytunitary

nitary complex

(If there was a 
right-handed 
neutrino)
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From kinetic terms Four unitaryrotations

L Elite e erifer T.io ke Ti 2Vrei aUqe4rV4 HerY4R

t
Ve M Ve Media

g
3 charged leptonmasses

to
UIMuU Haag 3 neutrinomasses
c R

The rotations cancel everywhere else in the SM

unitary Lagrangian except

Lai atra Wa IVI Eth e

3 real

Vpyµg VIVe Vtk 1 unitaryII s imagine

(If there was a 
right-handed 
neutrino)

Parameter 
counting: 
Leptons
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Vpyµg VI
in

ftp.ii.iq it
and the same for neutrinos

These transformations

leave all terms invariant except for Hae Only Lept
number i e Oe OrOr Oveour or is a fullsymmetry Thus five
phases can be

used to remove parameters in thepaws
Finally 3anglesgig 1 phase

(If there was a 
right-handed 
neutrino)

Parameter 
counting: 
Leptons
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Grouptheorgapproach
Lsm without Ye and Yu enjoys

3Lex Uhde XV13h global symmetry

which is broaken to Ulta when Yeand Yu are present

Ye 9kt 9I in general

Yu 9 Rt 9 I

Freedom to change basisby broken
Ul3 L x U131exUNv t U111L

9angles 17 phases

(If there was a 
right-handed 
neutrino)

Parameter 
counting: 
Leptons
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9 17

There is a basis with a 3 me

18 9 9 real params 3 MY
3 mixings in PMNS

18 17 A imaginary
parome.aphasesinPMNS.USMtrick

physical parameters

In the unbroaken phase beforeEWSB we can

start in thebasis L f i v e inthemassbasis

IHVE.hre
a HI

t II ftp.qq to upalignment
ar diagonalmatrix downalignment

IvieHer EVtp.tk

(If there was a 
right-handed 
neutrino)

Parameter 
counting: 
Leptons

• Similarly for the quark sector
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(No right-handed 
neutrino)

Parameter 
counting: 
Leptons

Majorana
E l

L H L SUID invariantE g en
p Y'ex tix thx

i ii

L Little teeth et hi

LH L YE iky
T2 charge conjugation

13 Ei Mieein Mini term field.IE
f

Mu complex symmetric MEN

pre complex
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(No right-handed 
neutrino)

Parameter 
counting: 
Leptons

Singular value decomposition

U MVt Mdiag uaediagonalwith realnonnegativeentries
artbitrarytunitary

unitary
complex

If MIM U V

MUT UMvt

From kinetic terms three unitaryrotations

LsElif e erider T.is v eiak.eu Vi U k

t
Ve M Ve Media

g
3 charged leptonmasses

UIMuU Haag 3 neutrinomasses
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(No right-handed 
neutrino)

Parameter 
counting: 
Leptons

UI
The rotations cancel everywhere else in the SM

unitary Lagrangian except

Lai atra W IVI Eth e

3 real

Vpns UIVe Vtk 1 unitary s imagine

No more phase rotations in the neutrinosector possible
L MFey

Three phases in the charged lepton sector

a
iione

eine

a Used to remove 3 phases in the PMNS
That is we are left with 3angles and BoBphases

57

Admir Greljo | Lectures on BSM in flavour



(No right-handed 
neutrino)

Parameter 
counting: 
Leptons

Grouptheoryapproach
Lsm without Ye and Yu enjoys

U131 x Uhde global symmetry

which is broaken to when Yeand Yr are preset

Ye 9 Rt 9I in general

Yu 6Rt 6 I symmetric

Freedom to change basisby broken
131L x U131e
6angles 12phases

There is a basis with a 3 me

15 6 9 real params 3 MY
3 mixings imPMNS

15 12 3 imaginary paromse3phasesir.PH

physical parameters

we can start in a basis L five
an

Ahmad

IH VKen t
LKet Hell a diagonal
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−ℒYuk = q̄V† ̂Yuϕ̃U + q̄ ̂YdϕD + l̄ ̂YeϕE
[  transformation and a singular value decomposition theorem]U(3)5

Flavour Bases
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[  transformation and a singular value decomposition theorem]U(3)5

• After EWSB, rotate from the interaction to the mass basis

As an example to experimental tests of diagonality and universality, we can take the leptonic
sector. The branching ratios of the Z-boson into charged lepton pairs [1],

BR(Z ! e
+
e
�) = (3.363± 0.004)% , (30)

BR(Z ! µ
+
µ
�) = (3.366± 0.007)% ,

BR(Z ! ⌧
+
⌧
�) = (3.367± 0.008)% .

beautifully confirms universality:

�(µ+
µ
�)/�(e+e�) = 1.0009± 0.0028 ,

�(⌧+⌧�)/�(e+e�) = 1.0019± 0.0032 .

Diagonality is also tested by the following experimental searches:

BR(Z ! e
+
µ
�) < 7.5⇥ 10�7

,

BR(Z ! e
+
⌧
�) < 9.8⇥ 10�6

,

BR(Z ! µ
+
⌧
�) < 1.2⇥ 10�5

. (31)

2.3.3 W -mediated weak interactions
We now study the couplings of the charged vector bosons, W±, to fermion pairs. For the lepton mass
eigenstates, things are simple, because there exists an interaction basis that is also a mass basis. Thus,

LW,` = � gp
2

�
⌫eL W/

+
e
�
L
+ ⌫µL W/

+
µ
�
L
+ ⌫⌧L W/

+
⌧
�
L
+ h.c.

�
. (32)

Eq. (32) reveals some important features of the model:

1. Only left-handed particles take part in charged-current interactions. Consequently, parity is vio-
lated.

2. Diagonality: the charged current interactions couple each charged lepton to a single neutrino,
and each neutrino to a single charged lepton. Note that a global SU(2) symmetry would allow
off-diagonal couplings; It is the local symmetry that leads to diagonality.

3. Universality: the couplings of the W -boson to ⌧ ⌫̄⌧ , to µ⌫̄µ and to e⌫̄e are equal. Again, a global
symmetry would have allowed an independent coupling to each lepton pair.

All of these predictions have been experimentally tested. As an example of how well universality works,
consider the decay rates of the W -bosons to the three lepton pairs [1]:

BR(W+ ! e
+
⌫e) = (10.71± 0.16)⇥ 10�2

,

BR(W+ ! µ
+
⌫µ) = (10.63± 0.15)⇥ 10�2

,

BR(W+ ! ⌧
+
⌫⌧ ) = (11.38± 0.21)⇥ 10�2

. (33)

You must be impressed by the nice agreement!
As concerns quarks, things are more complicated, since there is no interaction basis that is also a

mass basis. In the interaction basis where the down quarks are mass eigenstates (21), the W interactions
have the following form:

LW,q = � gp
2

�
udL W/

+
dL + usL W/

+
sL + ubL W/

+
bL + h.c.

�
. (34)

The Yukawa matrices in this basis have the form (23), and in particular, for the up sector, we have

Lu

Yuk = (udL usL ubL)V
†
Ŷ

u

0

@
uR

cR

tR

1

A , (35)
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which tells us straightforwardly how to transform to the mass basis:

0

@
uL

cL

tL

1

A = V

0

@
udL

usL

ubL

1

A . (36)

Using Eq. (36), we obtain the form of the W interactions (34) in the mass basis:

� gp
2

�
uL cL tL

�
V W/

+

0

@
dL

sL

bL

1

A+ h.c. . (37)

You can easily convince yourself that we would have obtained the same form starting from any arbitrary
interaction basis. We remind you that

V = VuLV
†
dL

(38)

is basis independent. The matrix V is called the CKM matrix [2, 3].
Similarly to the leptons, only left-handed quarks take part in charged-current interactions and,

consequently, parity is violated by these interactions. But then there is an important difference:

1. The W couplings to the quark mass eigenstates are neither universal nor diagonal. The universality
of gauge interactions is hidden in the unitarity of the matrix V .

Omitting common factors (particularly, a factor of g2/4) and phase space factors, we obtain the
following predictions for the W decays:

�(W+ ! `
+
⌫`) / 1 ,

�(W+ ! uidj) / 3|Vij |2 (i = 1, 2; j = 1, 2, 3) . (39)

The top quark is not included because it is heavier than the W boson. Taking this fact into account, and
the CKM unitarity relations

|Vud|2 + |Vus|2 + |Vub|2 = |Vcd|2 + |Vcs|2 + |Vcb|2 = 1 , (40)

we obtain
�(W ! hadrons)/�(W ! leptons) ⇡ 2 . (41)

Experimentally

BR((W ! leptons) = (32.40± 0.27)% BR((W ! hadrons) = (67.60± 0.27)% , (42)

which leads to
�(W ! hadrons)/�(W ! leptons) = 2.09± 0.1 , (43)

which. taking into account radiative corrections, is in beautiful agreement with the SM prediction. The
(hidden) universality within the quark sector is tested by the prediction

�(W ! uX) = �(W ! cX) =
1

2
�(W ! hadrons) . (44)

Experimentally,
�(W ! cX)/�(W ! hadrons) = 0.49± 0.04 . (45)
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[  transformation and a singular value decomposition theorem]U(3)5

As an example to experimental tests of diagonality and universality, we can take the leptonic
sector. The branching ratios of the Z-boson into charged lepton pairs [1],

BR(Z ! e
+
e
�) = (3.363± 0.004)% , (30)

BR(Z ! µ
+
µ
�) = (3.366± 0.007)% ,

BR(Z ! ⌧
+
⌧
�) = (3.367± 0.008)% .

beautifully confirms universality:

�(µ+
µ
�)/�(e+e�) = 1.0009± 0.0028 ,

�(⌧+⌧�)/�(e+e�) = 1.0019± 0.0032 .

Diagonality is also tested by the following experimental searches:

BR(Z ! e
+
µ
�) < 7.5⇥ 10�7

,

BR(Z ! e
+
⌧
�) < 9.8⇥ 10�6

,

BR(Z ! µ
+
⌧
�) < 1.2⇥ 10�5

. (31)

2.3.3 W -mediated weak interactions
We now study the couplings of the charged vector bosons, W±, to fermion pairs. For the lepton mass
eigenstates, things are simple, because there exists an interaction basis that is also a mass basis. Thus,

LW,` = � gp
2

�
⌫eL W/

+
e
�
L
+ ⌫µL W/

+
µ
�
L
+ ⌫⌧L W/

+
⌧
�
L
+ h.c.

�
. (32)

Eq. (32) reveals some important features of the model:

1. Only left-handed particles take part in charged-current interactions. Consequently, parity is vio-
lated.

2. Diagonality: the charged current interactions couple each charged lepton to a single neutrino,
and each neutrino to a single charged lepton. Note that a global SU(2) symmetry would allow
off-diagonal couplings; It is the local symmetry that leads to diagonality.

3. Universality: the couplings of the W -boson to ⌧ ⌫̄⌧ , to µ⌫̄µ and to e⌫̄e are equal. Again, a global
symmetry would have allowed an independent coupling to each lepton pair.

All of these predictions have been experimentally tested. As an example of how well universality works,
consider the decay rates of the W -bosons to the three lepton pairs [1]:

BR(W+ ! e
+
⌫e) = (10.71± 0.16)⇥ 10�2

,

BR(W+ ! µ
+
⌫µ) = (10.63± 0.15)⇥ 10�2

,

BR(W+ ! ⌧
+
⌫⌧ ) = (11.38± 0.21)⇥ 10�2

. (33)

You must be impressed by the nice agreement!
As concerns quarks, things are more complicated, since there is no interaction basis that is also a

mass basis. In the interaction basis where the down quarks are mass eigenstates (21), the W interactions
have the following form:

LW,q = � gp
2

�
udL W/

+
dL + usL W/

+
sL + ubL W/

+
bL + h.c.

�
. (34)

The Yukawa matrices in this basis have the form (23), and in particular, for the up sector, we have

Lu

Yuk = (udL usL ubL)V
†
Ŷ

u

0

@
uR

cR

tR

1

A , (35)
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which tells us straightforwardly how to transform to the mass basis:

0

@
uL

cL

tL

1

A = V

0

@
udL

usL

ubL

1

A . (36)

Using Eq. (36), we obtain the form of the W interactions (34) in the mass basis:

� gp
2

�
uL cL tL

�
V W/

+

0

@
dL

sL

bL

1

A+ h.c. . (37)

You can easily convince yourself that we would have obtained the same form starting from any arbitrary
interaction basis. We remind you that

V = VuLV
†
dL

(38)

is basis independent. The matrix V is called the CKM matrix [2, 3].
Similarly to the leptons, only left-handed quarks take part in charged-current interactions and,

consequently, parity is violated by these interactions. But then there is an important difference:

1. The W couplings to the quark mass eigenstates are neither universal nor diagonal. The universality
of gauge interactions is hidden in the unitarity of the matrix V .

Omitting common factors (particularly, a factor of g2/4) and phase space factors, we obtain the
following predictions for the W decays:

�(W+ ! `
+
⌫`) / 1 ,

�(W+ ! uidj) / 3|Vij |2 (i = 1, 2; j = 1, 2, 3) . (39)

The top quark is not included because it is heavier than the W boson. Taking this fact into account, and
the CKM unitarity relations

|Vud|2 + |Vus|2 + |Vub|2 = |Vcd|2 + |Vcs|2 + |Vcb|2 = 1 , (40)

we obtain
�(W ! hadrons)/�(W ! leptons) ⇡ 2 . (41)

Experimentally

BR((W ! leptons) = (32.40± 0.27)% BR((W ! hadrons) = (67.60± 0.27)% , (42)

which leads to
�(W ! hadrons)/�(W ! leptons) = 2.09± 0.1 , (43)

which. taking into account radiative corrections, is in beautiful agreement with the SM prediction. The
(hidden) universality within the quark sector is tested by the prediction

�(W ! uX) = �(W ! cX) =
1

2
�(W ! hadrons) . (44)

Experimentally,
�(W ! cX)/�(W ! hadrons) = 0.49± 0.04 . (45)
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Fig. 2: The Feynman diagrams for flavour conserving couplings of quarks to photon, Z boson, gluon and the
Higgs (the first three diagrams), and the flavour changing coupling to the W (the last diagram). The 3⇥ 3 matrices
are visual representations of couplings in the generation space, with couplings to �, Z, g flavour universal, the
couplings to the Higgs flavour diagonal but not universal, and the couplings to W flavour changing and hierarhical.

A conventional parametrization of the CKM matrix is [14]

VCKM =

0

@
1 0 0
0 c23 s23
0 �s23 c23

1

A

0

@
c13 0 s13e�i�

0 1 0
�s13ei� 0 c13

1

A

0

@
c12 s12 0

�s12 c12 0
0 0 1

1

A

=

0

@
c12c13 s12c13 s13e�i�

�s12c23 � c12s23s13ei� c12c23 � s12s23s13ei� s23c13
s12s23 � c12c23s13ei� �c12s23 � s12c23s13ei� c23c13

1

A ,

(21)

where cij ⌘ cos ✓ij , sij ⌘ sin ✓ij , so that the CKM matrix is a product of three rotations with one phase
inserted in the matrix describing the ✓13 rotation. Experimentally, we observe that ✓12 � ✓23 � ✓13,
while � ⇠ O(1).

As the side benefit of the counting of physical parameters we just performed, we also understand
that the flavour breaking due to the Yukawa matrices is as given in Eq. (14). In more detail, if we were
to take nonzero just a single Yukawa coupling matrix at the time, the breaking pattern is

– since Y` 6/ 1: U(3)L ⇥U(3)` ! U(1)e ⇥U(1)µ ⇥U(1)⌧ , i.e., the charged lepton family numbers,
– since Yu 6/ 1: U(3)Q ⇥ U(3)u ! U(1)u ⇥ U(1)c ⇥ U(1)t, i.e., the up-quark family numbers,
– since Yd 6/ 1: U(3)Q ⇥ U(3)d ! U(1)d ⇥ U(1)s ⇥ U(1)b, i.e., the down-quark family number,
– since [Yd, Yu] 6= 0: U(1)6q ! U(1)B , i.e., the above quark U(1)’s further break to a global baryon

number.

Note that the final U(1)’s are composed both from the U(1) factors in the original [U(3) = SU(3) ⇥
U(1)]’s, as well as from the t3 and t8 generators of the SU(3)’s. In particular, not all of the U(1) factors
in Gflavour get broken by the Yukawas. The Gflavour contains five U(1) factors, which can be chosen to
be U(1)5 = U(1)Y ⇥ U(1)B ⇥ U(1)L ⇥ U(1)PQ ⇥ U(1)`R . The U(1)Y is the hypercharge group,
which is gauged, while B and L are the global baryon and lepton numbers. These are not broken by
LYukawa. The remaining two global U(1)’s can be taken to be the Peccei-Quinn symmetry U(1)PQ (H
and di

R
, `i

R
have opposite charges, all others zero), while under U(1)`R only `i

R
is charged. The U(1)PQ

is broken by Yu 6= 0, and U(1)`R by Y` 6= 0. Had we included neutrino masses in the discussion, these
would furthermore break the separate lepton numbers to a common lepton number, U(1)L, if the neutrino
masses are Dirac, while Majorana masses also break U(1)L, see appendix A.

2.5 The flavour violation as seen in the mass basis
The main message of the discussion so far is: in the SM the flavour structure (flavour breaking) resides in
the Yukawa sector of the SM Lagrangian, Eq. (13). If the Yukawa couplings were vanishingly small, the

5

• Flavour universal  
/ blind
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non-universal

• Flavour changing  
/ violating

The SM interactions
• Universality of  interactions is guaranteed by the unbroken QCD x QED in any extension of the SM. 

• However, the  universality is an accident of the SM field content.

• Eg. add a heavy vector-like quark weak singlet 

γ, g
Z

(UL, UR)Y=2/3
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Fig. 2: The Feynman diagrams for flavour conserving couplings of quarks to photon, Z boson, gluon and the
Higgs (the first three diagrams), and the flavour changing coupling to the W (the last diagram). The 3⇥ 3 matrices
are visual representations of couplings in the generation space, with couplings to �, Z, g flavour universal, the
couplings to the Higgs flavour diagonal but not universal, and the couplings to W flavour changing and hierarhical.

A conventional parametrization of the CKM matrix is [14]

VCKM =

0

@
1 0 0
0 c23 s23
0 �s23 c23

1

A

0

@
c13 0 s13e�i�

0 1 0
�s13ei� 0 c13

1

A

0

@
c12 s12 0

�s12 c12 0
0 0 1

1

A

=

0

@
c12c13 s12c13 s13e�i�

�s12c23 � c12s23s13ei� c12c23 � s12s23s13ei� s23c13
s12s23 � c12c23s13ei� �c12s23 � s12c23s13ei� c23c13

1

A ,

(21)

where cij ⌘ cos ✓ij , sij ⌘ sin ✓ij , so that the CKM matrix is a product of three rotations with one phase
inserted in the matrix describing the ✓13 rotation. Experimentally, we observe that ✓12 � ✓23 � ✓13,
while � ⇠ O(1).

As the side benefit of the counting of physical parameters we just performed, we also understand
that the flavour breaking due to the Yukawa matrices is as given in Eq. (14). In more detail, if we were
to take nonzero just a single Yukawa coupling matrix at the time, the breaking pattern is

– since Y` 6/ 1: U(3)L ⇥U(3)` ! U(1)e ⇥U(1)µ ⇥U(1)⌧ , i.e., the charged lepton family numbers,
– since Yu 6/ 1: U(3)Q ⇥ U(3)u ! U(1)u ⇥ U(1)c ⇥ U(1)t, i.e., the up-quark family numbers,
– since Yd 6/ 1: U(3)Q ⇥ U(3)d ! U(1)d ⇥ U(1)s ⇥ U(1)b, i.e., the down-quark family number,
– since [Yd, Yu] 6= 0: U(1)6q ! U(1)B , i.e., the above quark U(1)’s further break to a global baryon

number.

Note that the final U(1)’s are composed both from the U(1) factors in the original [U(3) = SU(3) ⇥
U(1)]’s, as well as from the t3 and t8 generators of the SU(3)’s. In particular, not all of the U(1) factors
in Gflavour get broken by the Yukawas. The Gflavour contains five U(1) factors, which can be chosen to
be U(1)5 = U(1)Y ⇥ U(1)B ⇥ U(1)L ⇥ U(1)PQ ⇥ U(1)`R . The U(1)Y is the hypercharge group,
which is gauged, while B and L are the global baryon and lepton numbers. These are not broken by
LYukawa. The remaining two global U(1)’s can be taken to be the Peccei-Quinn symmetry U(1)PQ (H
and di

R
, `i

R
have opposite charges, all others zero), while under U(1)`R only `i

R
is charged. The U(1)PQ

is broken by Yu 6= 0, and U(1)`R by Y` 6= 0. Had we included neutrino masses in the discussion, these
would furthermore break the separate lepton numbers to a common lepton number, U(1)L, if the neutrino
masses are Dirac, while Majorana masses also break U(1)L, see appendix A.

2.5 The flavour violation as seen in the mass basis
The main message of the discussion so far is: in the SM the flavour structure (flavour breaking) resides in
the Yukawa sector of the SM Lagrangian, Eq. (13). If the Yukawa couplings were vanishingly small, the

5

• Flavour universal  
/ blind

• Flavour diagonal 
non-universal

• Flavour changing  
/ violating

As an example to experimental tests of diagonality and universality, we can take the leptonic
sector. The branching ratios of the Z-boson into charged lepton pairs [1],

BR(Z ! e
+
e
�) = (3.363± 0.004)% , (30)

BR(Z ! µ
+
µ
�) = (3.366± 0.007)% ,

BR(Z ! ⌧
+
⌧
�) = (3.367± 0.008)% .

beautifully confirms universality:

�(µ+
µ
�)/�(e+e�) = 1.0009± 0.0028 ,

�(⌧+⌧�)/�(e+e�) = 1.0019± 0.0032 .

Diagonality is also tested by the following experimental searches:

BR(Z ! e
+
µ
�) < 7.5⇥ 10�7

,

BR(Z ! e
+
⌧
�) < 9.8⇥ 10�6

,

BR(Z ! µ
+
⌧
�) < 1.2⇥ 10�5

. (31)

2.3.3 W -mediated weak interactions
We now study the couplings of the charged vector bosons, W±, to fermion pairs. For the lepton mass
eigenstates, things are simple, because there exists an interaction basis that is also a mass basis. Thus,

LW,` = � gp
2

�
⌫eL W/

+
e
�
L
+ ⌫µL W/

+
µ
�
L
+ ⌫⌧L W/

+
⌧
�
L
+ h.c.

�
. (32)

Eq. (32) reveals some important features of the model:

1. Only left-handed particles take part in charged-current interactions. Consequently, parity is vio-
lated.

2. Diagonality: the charged current interactions couple each charged lepton to a single neutrino,
and each neutrino to a single charged lepton. Note that a global SU(2) symmetry would allow
off-diagonal couplings; It is the local symmetry that leads to diagonality.

3. Universality: the couplings of the W -boson to ⌧ ⌫̄⌧ , to µ⌫̄µ and to e⌫̄e are equal. Again, a global
symmetry would have allowed an independent coupling to each lepton pair.

All of these predictions have been experimentally tested. As an example of how well universality works,
consider the decay rates of the W -bosons to the three lepton pairs [1]:

BR(W+ ! e
+
⌫e) = (10.71± 0.16)⇥ 10�2

,

BR(W+ ! µ
+
⌫µ) = (10.63± 0.15)⇥ 10�2

,

BR(W+ ! ⌧
+
⌫⌧ ) = (11.38± 0.21)⇥ 10�2

. (33)

You must be impressed by the nice agreement!
As concerns quarks, things are more complicated, since there is no interaction basis that is also a

mass basis. In the interaction basis where the down quarks are mass eigenstates (21), the W interactions
have the following form:

LW,q = � gp
2

�
udL W/

+
dL + usL W/

+
sL + ubL W/

+
bL + h.c.

�
. (34)

The Yukawa matrices in this basis have the form (23), and in particular, for the up sector, we have

Lu

Yuk = (udL usL ubL)V
†
Ŷ

u

0

@
uR

cR

tR

1

A , (35)
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As an example to experimental tests of diagonality and universality, we can take the leptonic
sector. The branching ratios of the Z-boson into charged lepton pairs [1],

BR(Z ! e
+
e
�) = (3.363± 0.004)% , (30)

BR(Z ! µ
+
µ
�) = (3.366± 0.007)% ,

BR(Z ! ⌧
+
⌧
�) = (3.367± 0.008)% .

beautifully confirms universality:

�(µ+
µ
�)/�(e+e�) = 1.0009± 0.0028 ,

�(⌧+⌧�)/�(e+e�) = 1.0019± 0.0032 .

Diagonality is also tested by the following experimental searches:

BR(Z ! e
+
µ
�) < 7.5⇥ 10�7

,

BR(Z ! e
+
⌧
�) < 9.8⇥ 10�6

,

BR(Z ! µ
+
⌧
�) < 1.2⇥ 10�5

. (31)

2.3.3 W -mediated weak interactions
We now study the couplings of the charged vector bosons, W±, to fermion pairs. For the lepton mass
eigenstates, things are simple, because there exists an interaction basis that is also a mass basis. Thus,

LW,` = � gp
2

�
⌫eL W/

+
e
�
L
+ ⌫µL W/

+
µ
�
L
+ ⌫⌧L W/

+
⌧
�
L
+ h.c.

�
. (32)

Eq. (32) reveals some important features of the model:

1. Only left-handed particles take part in charged-current interactions. Consequently, parity is vio-
lated.

2. Diagonality: the charged current interactions couple each charged lepton to a single neutrino,
and each neutrino to a single charged lepton. Note that a global SU(2) symmetry would allow
off-diagonal couplings; It is the local symmetry that leads to diagonality.

3. Universality: the couplings of the W -boson to ⌧ ⌫̄⌧ , to µ⌫̄µ and to e⌫̄e are equal. Again, a global
symmetry would have allowed an independent coupling to each lepton pair.

All of these predictions have been experimentally tested. As an example of how well universality works,
consider the decay rates of the W -bosons to the three lepton pairs [1]:

BR(W+ ! e
+
⌫e) = (10.71± 0.16)⇥ 10�2

,

BR(W+ ! µ
+
⌫µ) = (10.63± 0.15)⇥ 10�2

,

BR(W+ ! ⌧
+
⌫⌧ ) = (11.38± 0.21)⇥ 10�2

. (33)

You must be impressed by the nice agreement!
As concerns quarks, things are more complicated, since there is no interaction basis that is also a

mass basis. In the interaction basis where the down quarks are mass eigenstates (21), the W interactions
have the following form:

LW,q = � gp
2

�
udL W/

+
dL + usL W/

+
sL + ubL W/

+
bL + h.c.

�
. (34)

The Yukawa matrices in this basis have the form (23), and in particular, for the up sector, we have

Lu

Yuk = (udL usL ubL)V
†
Ŷ

u

0

@
uR

cR

tR

1

A , (35)
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The SM interactions
• Universality of  interactions is guaranteed by the unbroken QCD x QED in any extension of the SM. 

• However, the  universality is an accident of the SM field content.

• Eg. add a heavy vector-like quark weak singlet 

γ, g
Z

(UL, UR)Y=2/3
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Fig. 2: The Feynman diagrams for flavour conserving couplings of quarks to photon, Z boson, gluon and the
Higgs (the first three diagrams), and the flavour changing coupling to the W (the last diagram). The 3⇥ 3 matrices
are visual representations of couplings in the generation space, with couplings to �, Z, g flavour universal, the
couplings to the Higgs flavour diagonal but not universal, and the couplings to W flavour changing and hierarhical.

A conventional parametrization of the CKM matrix is [14]

VCKM =

0

@
1 0 0
0 c23 s23
0 �s23 c23

1

A

0

@
c13 0 s13e�i�

0 1 0
�s13ei� 0 c13

1

A

0

@
c12 s12 0

�s12 c12 0
0 0 1

1

A

=

0

@
c12c13 s12c13 s13e�i�

�s12c23 � c12s23s13ei� c12c23 � s12s23s13ei� s23c13
s12s23 � c12c23s13ei� �c12s23 � s12c23s13ei� c23c13

1

A ,

(21)

where cij ⌘ cos ✓ij , sij ⌘ sin ✓ij , so that the CKM matrix is a product of three rotations with one phase
inserted in the matrix describing the ✓13 rotation. Experimentally, we observe that ✓12 � ✓23 � ✓13,
while � ⇠ O(1).

As the side benefit of the counting of physical parameters we just performed, we also understand
that the flavour breaking due to the Yukawa matrices is as given in Eq. (14). In more detail, if we were
to take nonzero just a single Yukawa coupling matrix at the time, the breaking pattern is

– since Y` 6/ 1: U(3)L ⇥U(3)` ! U(1)e ⇥U(1)µ ⇥U(1)⌧ , i.e., the charged lepton family numbers,
– since Yu 6/ 1: U(3)Q ⇥ U(3)u ! U(1)u ⇥ U(1)c ⇥ U(1)t, i.e., the up-quark family numbers,
– since Yd 6/ 1: U(3)Q ⇥ U(3)d ! U(1)d ⇥ U(1)s ⇥ U(1)b, i.e., the down-quark family number,
– since [Yd, Yu] 6= 0: U(1)6q ! U(1)B , i.e., the above quark U(1)’s further break to a global baryon

number.

Note that the final U(1)’s are composed both from the U(1) factors in the original [U(3) = SU(3) ⇥
U(1)]’s, as well as from the t3 and t8 generators of the SU(3)’s. In particular, not all of the U(1) factors
in Gflavour get broken by the Yukawas. The Gflavour contains five U(1) factors, which can be chosen to
be U(1)5 = U(1)Y ⇥ U(1)B ⇥ U(1)L ⇥ U(1)PQ ⇥ U(1)`R . The U(1)Y is the hypercharge group,
which is gauged, while B and L are the global baryon and lepton numbers. These are not broken by
LYukawa. The remaining two global U(1)’s can be taken to be the Peccei-Quinn symmetry U(1)PQ (H
and di

R
, `i

R
have opposite charges, all others zero), while under U(1)`R only `i

R
is charged. The U(1)PQ

is broken by Yu 6= 0, and U(1)`R by Y` 6= 0. Had we included neutrino masses in the discussion, these
would furthermore break the separate lepton numbers to a common lepton number, U(1)L, if the neutrino
masses are Dirac, while Majorana masses also break U(1)L, see appendix A.

2.5 The flavour violation as seen in the mass basis
The main message of the discussion so far is: in the SM the flavour structure (flavour breaking) resides in
the Yukawa sector of the SM Lagrangian, Eq. (13). If the Yukawa couplings were vanishingly small, the
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The SM interactions
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Fig. 2: The Feynman diagrams for flavour conserving couplings of quarks to photon, Z boson, gluon and the
Higgs (the first three diagrams), and the flavour changing coupling to the W (the last diagram). The 3⇥ 3 matrices
are visual representations of couplings in the generation space, with couplings to �, Z, g flavour universal, the
couplings to the Higgs flavour diagonal but not universal, and the couplings to W flavour changing and hierarhical.

A conventional parametrization of the CKM matrix is [14]

VCKM =

0

@
1 0 0
0 c23 s23
0 �s23 c23

1

A

0

@
c13 0 s13e�i�

0 1 0
�s13ei� 0 c13

1

A

0

@
c12 s12 0

�s12 c12 0
0 0 1

1

A

=

0

@
c12c13 s12c13 s13e�i�

�s12c23 � c12s23s13ei� c12c23 � s12s23s13ei� s23c13
s12s23 � c12c23s13ei� �c12s23 � s12c23s13ei� c23c13

1

A ,

(21)

where cij ⌘ cos ✓ij , sij ⌘ sin ✓ij , so that the CKM matrix is a product of three rotations with one phase
inserted in the matrix describing the ✓13 rotation. Experimentally, we observe that ✓12 � ✓23 � ✓13,
while � ⇠ O(1).

As the side benefit of the counting of physical parameters we just performed, we also understand
that the flavour breaking due to the Yukawa matrices is as given in Eq. (14). In more detail, if we were
to take nonzero just a single Yukawa coupling matrix at the time, the breaking pattern is

– since Y` 6/ 1: U(3)L ⇥U(3)` ! U(1)e ⇥U(1)µ ⇥U(1)⌧ , i.e., the charged lepton family numbers,
– since Yu 6/ 1: U(3)Q ⇥ U(3)u ! U(1)u ⇥ U(1)c ⇥ U(1)t, i.e., the up-quark family numbers,
– since Yd 6/ 1: U(3)Q ⇥ U(3)d ! U(1)d ⇥ U(1)s ⇥ U(1)b, i.e., the down-quark family number,
– since [Yd, Yu] 6= 0: U(1)6q ! U(1)B , i.e., the above quark U(1)’s further break to a global baryon

number.

Note that the final U(1)’s are composed both from the U(1) factors in the original [U(3) = SU(3) ⇥
U(1)]’s, as well as from the t3 and t8 generators of the SU(3)’s. In particular, not all of the U(1) factors
in Gflavour get broken by the Yukawas. The Gflavour contains five U(1) factors, which can be chosen to
be U(1)5 = U(1)Y ⇥ U(1)B ⇥ U(1)L ⇥ U(1)PQ ⇥ U(1)`R . The U(1)Y is the hypercharge group,
which is gauged, while B and L are the global baryon and lepton numbers. These are not broken by
LYukawa. The remaining two global U(1)’s can be taken to be the Peccei-Quinn symmetry U(1)PQ (H
and di

R
, `i

R
have opposite charges, all others zero), while under U(1)`R only `i

R
is charged. The U(1)PQ

is broken by Yu 6= 0, and U(1)`R by Y` 6= 0. Had we included neutrino masses in the discussion, these
would furthermore break the separate lepton numbers to a common lepton number, U(1)L, if the neutrino
masses are Dirac, while Majorana masses also break U(1)L, see appendix A.

2.5 The flavour violation as seen in the mass basis
The main message of the discussion so far is: in the SM the flavour structure (flavour breaking) resides in
the Yukawa sector of the SM Lagrangian, Eq. (13). If the Yukawa couplings were vanishingly small, the
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•Permutations: fixed by ordering the up and the down quarks by their masses

(i) There is freedom in defining V in that we can permute between the various generations. This
freedom is fixed by ordering the up quarks and the down quarks by their masses, i.e. (u1, u2, u3) !
(u, c, t) and (d1, d2, d3) ! (d, s, b). The elements of V are written as follows:

V =

0

@
Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

1

A . (56)

(ii) There is further freedom in the phase structure of V . This means that the number of physical
parameters in V is smaller than the number of parameters in a general unitary 3⇥ 3 matrix which is nine
(three real angles and six phases). Let us define Pq (q = u, d) to be diagonal unitary (phase) matrices.
Then, if instead of using VqL and VqR for the rotations (16) and (19) to the mass basis we use ṼqL and
ṼqR, defined by ṼqL = PqVqL and ṼqR = PqVqR, we still maintain a legitimate mass basis since M

diag
q

remains unchanged by such transformations. However, V does change:

V ! PuV P
⇤
d

. (57)

This freedom is fixed by demanding that V has the minimal number of phases. In the three generation
case V has a single phase. (There are five phase differences between the elements of Pu and Pd and,
therefore, five of the six phases in the CKM matrix can be removed.) This is the Kobayashi-Maskawa
phase �KM which is the single source of CP violation in the quark sector of the Standard Model [2].

The fact that V is unitary and depends on only four independent physical parameters can be made
manifest by choosing a specific parametrization. The standard choice is [78]

V =

0

@
c12c13 s12c13 s13e

�i�

�s12c23 � c12s23s13e
i�

c12c23 � s12s23s13e
i�

s23c13

s12s23 � c12c23s13e
i� �c12s23 � s12c23s13e

i�
c23c13

1

A , (58)

where cij ⌘ cos ✓ij and sij ⌘ sin ✓ij . The ✓ij’s are the three real mixing parameters while � is the
Kobayashi-Maskawa phase. The experimental central values of the four parameters are given by

s12 = 0.225, s23 = 0.042, s13 = 0.0037, � = 74o . (59)

Since s13 ⌧ s23 ⌧ s12 ⌧ 1, it is convenient to choose an approximate expression where this hierarchy
is manifest. This is the Wolfenstein parametrization, where the four mixing parameters are (�, A, ⇢, ⌘)
with � = |Vus| ⇡ 0.23 playing the role of an expansion parameter and ⌘ representing the CP violating
phase [79, 80]:

V =

0

@
1� 1

2�
2 � 1

8�
4

� A�
3(⇢� i⌘)

��+ 1
2A

2
�
5[1� 2(⇢+ i⌘)] 1� 1

2�
2 � 1

8�
4(1 + 4A2) A�

2

A�
3[1� (1� 1

2�
2)(⇢+ i⌘)] �A�

2 + 1
2A�

4[1� 2(⇢+ i⌘)] 1� 1
2A

2
�
4

1

A . (60)

The experimental ranges for the four parameters are given by

� = 0.2251± 0.0005 , (61)
A = 0.81± 0.03 ,

⇢ = +0.160± 0.007 ,

⌘ = +0.350± 0.006 .

3.2 Unitarity triangles

A very useful concept is that of the unitarity triangles. The unitarity of the CKM matrix leads to various
relations among the matrix elements, e.g.

VudV
⇤
us + VcdV

⇤
cs + VtdV

⇤
ts = 0 , (62)
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•There is a single physical phase δ

(i) There is freedom in defining V in that we can permute between the various generations. This
freedom is fixed by ordering the up quarks and the down quarks by their masses, i.e. (u1, u2, u3) !
(u, c, t) and (d1, d2, d3) ! (d, s, b). The elements of V are written as follows:

V =

0

@
Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

1

A . (56)

(ii) There is further freedom in the phase structure of V . This means that the number of physical
parameters in V is smaller than the number of parameters in a general unitary 3⇥ 3 matrix which is nine
(three real angles and six phases). Let us define Pq (q = u, d) to be diagonal unitary (phase) matrices.
Then, if instead of using VqL and VqR for the rotations (16) and (19) to the mass basis we use ṼqL and
ṼqR, defined by ṼqL = PqVqL and ṼqR = PqVqR, we still maintain a legitimate mass basis since M

diag
q

remains unchanged by such transformations. However, V does change:

V ! PuV P
⇤
d

. (57)

This freedom is fixed by demanding that V has the minimal number of phases. In the three generation
case V has a single phase. (There are five phase differences between the elements of Pu and Pd and,
therefore, five of the six phases in the CKM matrix can be removed.) This is the Kobayashi-Maskawa
phase �KM which is the single source of CP violation in the quark sector of the Standard Model [2].

The fact that V is unitary and depends on only four independent physical parameters can be made
manifest by choosing a specific parametrization. The standard choice is [78]

V =

0

@
c12c13 s12c13 s13e

�i�
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c23c13
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A , (58)

where cij ⌘ cos ✓ij and sij ⌘ sin ✓ij . The ✓ij’s are the three real mixing parameters while � is the
Kobayashi-Maskawa phase. The experimental central values of the four parameters are given by

s12 = 0.225, s23 = 0.042, s13 = 0.0037, � = 74o . (59)

Since s13 ⌧ s23 ⌧ s12 ⌧ 1, it is convenient to choose an approximate expression where this hierarchy
is manifest. This is the Wolfenstein parametrization, where the four mixing parameters are (�, A, ⇢, ⌘)
with � = |Vus| ⇡ 0.23 playing the role of an expansion parameter and ⌘ representing the CP violating
phase [79, 80]:

V =

0
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The experimental ranges for the four parameters are given by

� = 0.2251± 0.0005 , (61)
A = 0.81± 0.03 ,

⇢ = +0.160± 0.007 ,

⌘ = +0.350± 0.006 .

3.2 Unitarity triangles

A very useful concept is that of the unitarity triangles. The unitarity of the CKM matrix leads to various
relations among the matrix elements, e.g.

VudV
⇤
us + VcdV

⇤
cs + VtdV

⇤
ts = 0 , (62)
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•Permutations: fixed by ordering the up and the down quarks by their masses

(i) There is freedom in defining V in that we can permute between the various generations. This
freedom is fixed by ordering the up quarks and the down quarks by their masses, i.e. (u1, u2, u3) !
(u, c, t) and (d1, d2, d3) ! (d, s, b). The elements of V are written as follows:

V =

0

@
Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

1

A . (56)

(ii) There is further freedom in the phase structure of V . This means that the number of physical
parameters in V is smaller than the number of parameters in a general unitary 3⇥ 3 matrix which is nine
(three real angles and six phases). Let us define Pq (q = u, d) to be diagonal unitary (phase) matrices.
Then, if instead of using VqL and VqR for the rotations (16) and (19) to the mass basis we use ṼqL and
ṼqR, defined by ṼqL = PqVqL and ṼqR = PqVqR, we still maintain a legitimate mass basis since M

diag
q

remains unchanged by such transformations. However, V does change:

V ! PuV P
⇤
d

. (57)

This freedom is fixed by demanding that V has the minimal number of phases. In the three generation
case V has a single phase. (There are five phase differences between the elements of Pu and Pd and,
therefore, five of the six phases in the CKM matrix can be removed.) This is the Kobayashi-Maskawa
phase �KM which is the single source of CP violation in the quark sector of the Standard Model [2].

The fact that V is unitary and depends on only four independent physical parameters can be made
manifest by choosing a specific parametrization. The standard choice is [78]

V =

0

@
c12c13 s12c13 s13e

�i�

�s12c23 � c12s23s13e
i�

c12c23 � s12s23s13e
i�

s23c13

s12s23 � c12c23s13e
i� �c12s23 � s12c23s13e

i�
c23c13

1

A , (58)

where cij ⌘ cos ✓ij and sij ⌘ sin ✓ij . The ✓ij’s are the three real mixing parameters while � is the
Kobayashi-Maskawa phase. The experimental central values of the four parameters are given by

s12 = 0.225, s23 = 0.042, s13 = 0.0037, � = 74o . (59)

Since s13 ⌧ s23 ⌧ s12 ⌧ 1, it is convenient to choose an approximate expression where this hierarchy
is manifest. This is the Wolfenstein parametrization, where the four mixing parameters are (�, A, ⇢, ⌘)
with � = |Vus| ⇡ 0.23 playing the role of an expansion parameter and ⌘ representing the CP violating
phase [79, 80]:

V =

0

@
1� 1

2�
2 � 1

8�
4

� A�
3(⇢� i⌘)

��+ 1
2A

2
�
5[1� 2(⇢+ i⌘)] 1� 1

2�
2 � 1

8�
4(1 + 4A2) A�

2

A�
3[1� (1� 1

2�
2)(⇢+ i⌘)] �A�

2 + 1
2A�

4[1� 2(⇢+ i⌘)] 1� 1
2A

2
�
4

1

A . (60)

The experimental ranges for the four parameters are given by

� = 0.2251± 0.0005 , (61)
A = 0.81± 0.03 ,

⇢ = +0.160± 0.007 ,

⌘ = +0.350± 0.006 .

3.2 Unitarity triangles

A very useful concept is that of the unitarity triangles. The unitarity of the CKM matrix leads to various
relations among the matrix elements, e.g.

VudV
⇤
us + VcdV

⇤
cs + VtdV

⇤
ts = 0 , (62)
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•There is a single physical phase δ

(i) There is freedom in defining V in that we can permute between the various generations. This
freedom is fixed by ordering the up quarks and the down quarks by their masses, i.e. (u1, u2, u3) !
(u, c, t) and (d1, d2, d3) ! (d, s, b). The elements of V are written as follows:

V =

0

@
Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

1

A . (56)

(ii) There is further freedom in the phase structure of V . This means that the number of physical
parameters in V is smaller than the number of parameters in a general unitary 3⇥ 3 matrix which is nine
(three real angles and six phases). Let us define Pq (q = u, d) to be diagonal unitary (phase) matrices.
Then, if instead of using VqL and VqR for the rotations (16) and (19) to the mass basis we use ṼqL and
ṼqR, defined by ṼqL = PqVqL and ṼqR = PqVqR, we still maintain a legitimate mass basis since M

diag
q

remains unchanged by such transformations. However, V does change:

V ! PuV P
⇤
d

. (57)

This freedom is fixed by demanding that V has the minimal number of phases. In the three generation
case V has a single phase. (There are five phase differences between the elements of Pu and Pd and,
therefore, five of the six phases in the CKM matrix can be removed.) This is the Kobayashi-Maskawa
phase �KM which is the single source of CP violation in the quark sector of the Standard Model [2].

The fact that V is unitary and depends on only four independent physical parameters can be made
manifest by choosing a specific parametrization. The standard choice is [78]

V =

0

@
c12c13 s12c13 s13e

�i�

�s12c23 � c12s23s13e
i�

c12c23 � s12s23s13e
i�

s23c13

s12s23 � c12c23s13e
i� �c12s23 � s12c23s13e

i�
c23c13

1

A , (58)

where cij ⌘ cos ✓ij and sij ⌘ sin ✓ij . The ✓ij’s are the three real mixing parameters while � is the
Kobayashi-Maskawa phase. The experimental central values of the four parameters are given by

s12 = 0.225, s23 = 0.042, s13 = 0.0037, � = 74o . (59)

Since s13 ⌧ s23 ⌧ s12 ⌧ 1, it is convenient to choose an approximate expression where this hierarchy
is manifest. This is the Wolfenstein parametrization, where the four mixing parameters are (�, A, ⇢, ⌘)
with � = |Vus| ⇡ 0.23 playing the role of an expansion parameter and ⌘ representing the CP violating
phase [79, 80]:

V =

0

@
1� 1

2�
2 � 1

8�
4

� A�
3(⇢� i⌘)

��+ 1
2A

2
�
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The experimental ranges for the four parameters are given by

� = 0.2251± 0.0005 , (61)
A = 0.81± 0.03 ,

⇢ = +0.160± 0.007 ,

⌘ = +0.350± 0.006 .

3.2 Unitarity triangles

A very useful concept is that of the unitarity triangles. The unitarity of the CKM matrix leads to various
relations among the matrix elements, e.g.

VudV
⇤
us + VcdV

⇤
cs + VtdV

⇤
ts = 0 , (62)
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•Permutations: fixed by ordering the up and the down quarks by their masses

(i) There is freedom in defining V in that we can permute between the various generations. This
freedom is fixed by ordering the up quarks and the down quarks by their masses, i.e. (u1, u2, u3) !
(u, c, t) and (d1, d2, d3) ! (d, s, b). The elements of V are written as follows:

V =

0

@
Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

1

A . (56)

(ii) There is further freedom in the phase structure of V . This means that the number of physical
parameters in V is smaller than the number of parameters in a general unitary 3⇥ 3 matrix which is nine
(three real angles and six phases). Let us define Pq (q = u, d) to be diagonal unitary (phase) matrices.
Then, if instead of using VqL and VqR for the rotations (16) and (19) to the mass basis we use ṼqL and
ṼqR, defined by ṼqL = PqVqL and ṼqR = PqVqR, we still maintain a legitimate mass basis since M

diag
q

remains unchanged by such transformations. However, V does change:

V ! PuV P
⇤
d

. (57)

This freedom is fixed by demanding that V has the minimal number of phases. In the three generation
case V has a single phase. (There are five phase differences between the elements of Pu and Pd and,
therefore, five of the six phases in the CKM matrix can be removed.) This is the Kobayashi-Maskawa
phase �KM which is the single source of CP violation in the quark sector of the Standard Model [2].

The fact that V is unitary and depends on only four independent physical parameters can be made
manifest by choosing a specific parametrization. The standard choice is [78]

V =
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where cij ⌘ cos ✓ij and sij ⌘ sin ✓ij . The ✓ij’s are the three real mixing parameters while � is the
Kobayashi-Maskawa phase. The experimental central values of the four parameters are given by

s12 = 0.225, s23 = 0.042, s13 = 0.0037, � = 74o . (59)

Since s13 ⌧ s23 ⌧ s12 ⌧ 1, it is convenient to choose an approximate expression where this hierarchy
is manifest. This is the Wolfenstein parametrization, where the four mixing parameters are (�, A, ⇢, ⌘)
with � = |Vus| ⇡ 0.23 playing the role of an expansion parameter and ⌘ representing the CP violating
phase [79, 80]:
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The experimental ranges for the four parameters are given by

� = 0.2251± 0.0005 , (61)
A = 0.81± 0.03 ,

⇢ = +0.160± 0.007 ,

⌘ = +0.350± 0.006 .

3.2 Unitarity triangles

A very useful concept is that of the unitarity triangles. The unitarity of the CKM matrix leads to various
relations among the matrix elements, e.g.

VudV
⇤
us + VcdV

⇤
cs + VtdV

⇤
ts = 0 , (62)
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•Permutations: fixed by ordering the up and the down quarks by their masses

(i) There is freedom in defining V in that we can permute between the various generations. This
freedom is fixed by ordering the up quarks and the down quarks by their masses, i.e. (u1, u2, u3) !
(u, c, t) and (d1, d2, d3) ! (d, s, b). The elements of V are written as follows:

V =

0

@
Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

1

A . (56)

(ii) There is further freedom in the phase structure of V . This means that the number of physical
parameters in V is smaller than the number of parameters in a general unitary 3⇥ 3 matrix which is nine
(three real angles and six phases). Let us define Pq (q = u, d) to be diagonal unitary (phase) matrices.
Then, if instead of using VqL and VqR for the rotations (16) and (19) to the mass basis we use ṼqL and
ṼqR, defined by ṼqL = PqVqL and ṼqR = PqVqR, we still maintain a legitimate mass basis since M

diag
q

remains unchanged by such transformations. However, V does change:

V ! PuV P
⇤
d

. (57)

This freedom is fixed by demanding that V has the minimal number of phases. In the three generation
case V has a single phase. (There are five phase differences between the elements of Pu and Pd and,
therefore, five of the six phases in the CKM matrix can be removed.) This is the Kobayashi-Maskawa
phase �KM which is the single source of CP violation in the quark sector of the Standard Model [2].

The fact that V is unitary and depends on only four independent physical parameters can be made
manifest by choosing a specific parametrization. The standard choice is [78]

V =
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where cij ⌘ cos ✓ij and sij ⌘ sin ✓ij . The ✓ij’s are the three real mixing parameters while � is the
Kobayashi-Maskawa phase. The experimental central values of the four parameters are given by

s12 = 0.225, s23 = 0.042, s13 = 0.0037, � = 74o . (59)

Since s13 ⌧ s23 ⌧ s12 ⌧ 1, it is convenient to choose an approximate expression where this hierarchy
is manifest. This is the Wolfenstein parametrization, where the four mixing parameters are (�, A, ⇢, ⌘)
with � = |Vus| ⇡ 0.23 playing the role of an expansion parameter and ⌘ representing the CP violating
phase [79, 80]:
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The experimental ranges for the four parameters are given by

� = 0.2251± 0.0005 , (61)
A = 0.81± 0.03 ,

⇢ = +0.160± 0.007 ,

⌘ = +0.350± 0.006 .

3.2 Unitarity triangles

A very useful concept is that of the unitarity triangles. The unitarity of the CKM matrix leads to various
relations among the matrix elements, e.g.

VudV
⇤
us + VcdV

⇤
cs + VtdV

⇤
ts = 0 , (62)
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Fig. 3: Representative tree level charged current diagram (left) and a loop induced FCNC diagram (right).

In fact, for processes at colliders in many cases the CKM matrix can even be approximated as

VCKM ⇠

0

@
1 0 0
0 1 0
0 0 1

1

A , [collider physicist] (26)

i.e., for many processes at high pT to a good enough precision the generation number is conserved.
We, on the other hand, are interested precisely in the off-diagonal entries in VCKM. These entries

roughly obey a power scaling in � ⌘ |Vus| ' 0.22, giving the Wolfenstein parametrization of the CKM
matrix [17],

VCKM =

0

@
1 � �2/2 � A�3(⇢� i⌘)

�� 1 � �2/2 A�2
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�
. (27)

This parametrization also encodes that the CKM matrix is unitary, V †
CKM

VCKM = VCKMV †
CKM

= 1.
The CKM matrix depends on 3 real parameters and 1 phase. In parametrization of Eq. (21) these were
the three mixing angles and the phase �. In the Wolfenstein parametrization, Eq. (27), these are the three
real parameters �, A, ⇢, and one imaginary parameter, ⌘, all counted as being O(1). A global fit to the
flavour observables gives [18]

A = 0.825(9), � = 0.2251(3), ⇢̄ = 0.160(7), ⌘̄ = 0.350(6), (28)

where the modified ⇢, ⌘ parameters were introduced as ⇢̄ + i⌘̄ = �VudV ⇤
ub

/(VcdV ⇤
cb

), valid to all orders
in �. To O(�4) we have ⇢̄ = ⇢(1 � �2/2) and ⌘̄ = ⌘(1 � �2/2). Note that numerically ⇢̄, ⌘̄ are maybe
closer to ⇢̄, ⌘̄ ⇠ O(�) than ⇢̄, ⌘̄ ⇠ O(1), while at the time when Wolfenstein parametrization was written
down this was not known. This can be incorporated in modified expansions [19], though the change in
counting only matters at higher orders, not for the leading order expressions in Eq. (27).

2.8 Origin of CP violation in the SM
The SM Lagrangian is invariant under the discrete CP symmetry, apart from the Yukawa terms.1 These
transform as (writing explicitly also the hermitian conjugate terms)
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+ Y ⇤
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CP�! Yij ̄
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L + Y ⇤
ij ̄

i

LH j

R
. (29)

The CP is conserved, if Yukawa couplings are real,

Y ⇤
ij = Yij . (30)

Since there is only one physical phase in the CKM, in the SM the CP violation (CPV) is controlled by
one parameter, the “CKM phase”, which in the Wolfenstein parametrization is the parameter ⌘. CP is

1There is another CP violating parameter, the strong CP phase multiplying the QCD anomaly term, g2/(32⇡2)✓Gaµ⌫G̃a
µ⌫ .

It is bounded experimentally to be small, ✓ . 10�10 and, even if eventually found to be nonzero, is negligible for all the
processes discussed in these lectures.
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counting only matters at higher orders, not for the leading order expressions in Eq. (27).
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i.e., for many processes at high pT to a good enough precision the generation number is conserved.
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= 1.
The CKM matrix depends on 3 real parameters and 1 phase. In parametrization of Eq. (21) these were
the three mixing angles and the phase �. In the Wolfenstein parametrization, Eq. (27), these are the three
real parameters �, A, ⇢, and one imaginary parameter, ⌘, all counted as being O(1). A global fit to the
flavour observables gives [18]

A = 0.825(9), � = 0.2251(3), ⇢̄ = 0.160(7), ⌘̄ = 0.350(6), (28)

where the modified ⇢, ⌘ parameters were introduced as ⇢̄ + i⌘̄ = �VudV ⇤
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), valid to all orders
in �. To O(�4) we have ⇢̄ = ⇢(1 � �2/2) and ⌘̄ = ⌘(1 � �2/2). Note that numerically ⇢̄, ⌘̄ are maybe
closer to ⇢̄, ⌘̄ ⇠ O(�) than ⇢̄, ⌘̄ ⇠ O(1), while at the time when Wolfenstein parametrization was written
down this was not known. This can be incorporated in modified expansions [19], though the change in
counting only matters at higher orders, not for the leading order expressions in Eq. (27).
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Since there is only one physical phase in the CKM, in the SM the CP violation (CPV) is controlled by
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•Permutations: fixed by ordering the up and the down quarks by their masses

(i) There is freedom in defining V in that we can permute between the various generations. This
freedom is fixed by ordering the up quarks and the down quarks by their masses, i.e. (u1, u2, u3) !
(u, c, t) and (d1, d2, d3) ! (d, s, b). The elements of V are written as follows:

V =

0

@
Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

1

A . (56)

(ii) There is further freedom in the phase structure of V . This means that the number of physical
parameters in V is smaller than the number of parameters in a general unitary 3⇥ 3 matrix which is nine
(three real angles and six phases). Let us define Pq (q = u, d) to be diagonal unitary (phase) matrices.
Then, if instead of using VqL and VqR for the rotations (16) and (19) to the mass basis we use ṼqL and
ṼqR, defined by ṼqL = PqVqL and ṼqR = PqVqR, we still maintain a legitimate mass basis since M

diag
q

remains unchanged by such transformations. However, V does change:

V ! PuV P
⇤
d

. (57)

This freedom is fixed by demanding that V has the minimal number of phases. In the three generation
case V has a single phase. (There are five phase differences between the elements of Pu and Pd and,
therefore, five of the six phases in the CKM matrix can be removed.) This is the Kobayashi-Maskawa
phase �KM which is the single source of CP violation in the quark sector of the Standard Model [2].

The fact that V is unitary and depends on only four independent physical parameters can be made
manifest by choosing a specific parametrization. The standard choice is [78]

V =

0

@
c12c13 s12c13 s13e

�i�

�s12c23 � c12s23s13e
i�

c12c23 � s12s23s13e
i�

s23c13

s12s23 � c12c23s13e
i� �c12s23 � s12c23s13e

i�
c23c13

1

A , (58)

where cij ⌘ cos ✓ij and sij ⌘ sin ✓ij . The ✓ij’s are the three real mixing parameters while � is the
Kobayashi-Maskawa phase. The experimental central values of the four parameters are given by

s12 = 0.225, s23 = 0.042, s13 = 0.0037, � = 74o . (59)

Since s13 ⌧ s23 ⌧ s12 ⌧ 1, it is convenient to choose an approximate expression where this hierarchy
is manifest. This is the Wolfenstein parametrization, where the four mixing parameters are (�, A, ⇢, ⌘)
with � = |Vus| ⇡ 0.23 playing the role of an expansion parameter and ⌘ representing the CP violating
phase [79, 80]:

V =

0

@
1� 1

2�
2 � 1

8�
4

� A�
3(⇢� i⌘)

��+ 1
2A

2
�
5[1� 2(⇢+ i⌘)] 1� 1

2�
2 � 1

8�
4(1 + 4A2) A�

2

A�
3[1� (1� 1

2�
2)(⇢+ i⌘)] �A�

2 + 1
2A�

4[1� 2(⇢+ i⌘)] 1� 1
2A

2
�
4

1

A . (60)

The experimental ranges for the four parameters are given by

� = 0.2251± 0.0005 , (61)
A = 0.81± 0.03 ,

⇢ = +0.160± 0.007 ,

⌘ = +0.350± 0.006 .

3.2 Unitarity triangles

A very useful concept is that of the unitarity triangles. The unitarity of the CKM matrix leads to various
relations among the matrix elements, e.g.

VudV
⇤
us + VcdV

⇤
cs + VtdV

⇤
ts = 0 , (62)
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Fig. 3: Representative tree level charged current diagram (left) and a loop induced FCNC diagram (right).

In fact, for processes at colliders in many cases the CKM matrix can even be approximated as

VCKM ⇠

0

@
1 0 0
0 1 0
0 0 1

1

A , [collider physicist] (26)

i.e., for many processes at high pT to a good enough precision the generation number is conserved.
We, on the other hand, are interested precisely in the off-diagonal entries in VCKM. These entries

roughly obey a power scaling in � ⌘ |Vus| ' 0.22, giving the Wolfenstein parametrization of the CKM
matrix [17],

VCKM =

0

@
1 � �2/2 � A�3(⇢� i⌘)

�� 1 � �2/2 A�2

A�3(1 � ⇢� i⌘) �A�2 1

1

A + O
�
�4

�
. (27)

This parametrization also encodes that the CKM matrix is unitary, V †
CKM

VCKM = VCKMV †
CKM

= 1.
The CKM matrix depends on 3 real parameters and 1 phase. In parametrization of Eq. (21) these were
the three mixing angles and the phase �. In the Wolfenstein parametrization, Eq. (27), these are the three
real parameters �, A, ⇢, and one imaginary parameter, ⌘, all counted as being O(1). A global fit to the
flavour observables gives [18]

A = 0.825(9), � = 0.2251(3), ⇢̄ = 0.160(7), ⌘̄ = 0.350(6), (28)

where the modified ⇢, ⌘ parameters were introduced as ⇢̄ + i⌘̄ = �VudV ⇤
ub

/(VcdV ⇤
cb

), valid to all orders
in �. To O(�4) we have ⇢̄ = ⇢(1 � �2/2) and ⌘̄ = ⌘(1 � �2/2). Note that numerically ⇢̄, ⌘̄ are maybe
closer to ⇢̄, ⌘̄ ⇠ O(�) than ⇢̄, ⌘̄ ⇠ O(1), while at the time when Wolfenstein parametrization was written
down this was not known. This can be incorporated in modified expansions [19], though the change in
counting only matters at higher orders, not for the leading order expressions in Eq. (27).

2.8 Origin of CP violation in the SM
The SM Lagrangian is invariant under the discrete CP symmetry, apart from the Yukawa terms.1 These
transform as (writing explicitly also the hermitian conjugate terms)

Yij ̄
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H† i
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CP�! Yij ̄
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. (29)

The CP is conserved, if Yukawa couplings are real,

Y ⇤
ij = Yij . (30)

Since there is only one physical phase in the CKM, in the SM the CP violation (CPV) is controlled by
one parameter, the “CKM phase”, which in the Wolfenstein parametrization is the parameter ⌘. CP is

1There is another CP violating parameter, the strong CP phase multiplying the QCD anomaly term, g2/(32⇡2)✓Gaµ⌫G̃a
µ⌫ .

It is bounded experimentally to be small, ✓ . 10�10 and, even if eventually found to be nonzero, is negligible for all the
processes discussed in these lectures.
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i.e., for many processes at high pT to a good enough precision the generation number is conserved.
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= 1.
The CKM matrix depends on 3 real parameters and 1 phase. In parametrization of Eq. (21) these were
the three mixing angles and the phase �. In the Wolfenstein parametrization, Eq. (27), these are the three
real parameters �, A, ⇢, and one imaginary parameter, ⌘, all counted as being O(1). A global fit to the
flavour observables gives [18]

A = 0.825(9), � = 0.2251(3), ⇢̄ = 0.160(7), ⌘̄ = 0.350(6), (28)

where the modified ⇢, ⌘ parameters were introduced as ⇢̄ + i⌘̄ = �VudV ⇤
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), valid to all orders
in �. To O(�4) we have ⇢̄ = ⇢(1 � �2/2) and ⌘̄ = ⌘(1 � �2/2). Note that numerically ⇢̄, ⌘̄ are maybe
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down this was not known. This can be incorporated in modified expansions [19], though the change in
counting only matters at higher orders, not for the leading order expressions in Eq. (27).
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In fact, for processes at colliders in many cases the CKM matrix can even be approximated as
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0 0 1

1

A , [collider physicist] (26)

i.e., for many processes at high pT to a good enough precision the generation number is conserved.
We, on the other hand, are interested precisely in the off-diagonal entries in VCKM. These entries

roughly obey a power scaling in � ⌘ |Vus| ' 0.22, giving the Wolfenstein parametrization of the CKM
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This parametrization also encodes that the CKM matrix is unitary, V †
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VCKM = VCKMV †
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= 1.
The CKM matrix depends on 3 real parameters and 1 phase. In parametrization of Eq. (21) these were
the three mixing angles and the phase �. In the Wolfenstein parametrization, Eq. (27), these are the three
real parameters �, A, ⇢, and one imaginary parameter, ⌘, all counted as being O(1). A global fit to the
flavour observables gives [18]

A = 0.825(9), � = 0.2251(3), ⇢̄ = 0.160(7), ⌘̄ = 0.350(6), (28)

where the modified ⇢, ⌘ parameters were introduced as ⇢̄ + i⌘̄ = �VudV ⇤
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), valid to all orders
in �. To O(�4) we have ⇢̄ = ⇢(1 � �2/2) and ⌘̄ = ⌘(1 � �2/2). Note that numerically ⇢̄, ⌘̄ are maybe
closer to ⇢̄, ⌘̄ ⇠ O(�) than ⇢̄, ⌘̄ ⇠ O(1), while at the time when Wolfenstein parametrization was written
down this was not known. This can be incorporated in modified expansions [19], though the change in
counting only matters at higher orders, not for the leading order expressions in Eq. (27).

2.8 Origin of CP violation in the SM
The SM Lagrangian is invariant under the discrete CP symmetry, apart from the Yukawa terms.1 These
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The CP is conserved, if Yukawa couplings are real,
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one parameter, the “CKM phase”, which in the Wolfenstein parametrization is the parameter ⌘. CP is
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(i) There is freedom in defining V in that we can permute between the various generations. This
freedom is fixed by ordering the up quarks and the down quarks by their masses, i.e. (u1, u2, u3) !
(u, c, t) and (d1, d2, d3) ! (d, s, b). The elements of V are written as follows:

V =

0

@
Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

1

A . (56)

(ii) There is further freedom in the phase structure of V . This means that the number of physical
parameters in V is smaller than the number of parameters in a general unitary 3⇥ 3 matrix which is nine
(three real angles and six phases). Let us define Pq (q = u, d) to be diagonal unitary (phase) matrices.
Then, if instead of using VqL and VqR for the rotations (16) and (19) to the mass basis we use ṼqL and
ṼqR, defined by ṼqL = PqVqL and ṼqR = PqVqR, we still maintain a legitimate mass basis since M

diag
q

remains unchanged by such transformations. However, V does change:

V ! PuV P
⇤
d

. (57)

This freedom is fixed by demanding that V has the minimal number of phases. In the three generation
case V has a single phase. (There are five phase differences between the elements of Pu and Pd and,
therefore, five of the six phases in the CKM matrix can be removed.) This is the Kobayashi-Maskawa
phase �KM which is the single source of CP violation in the quark sector of the Standard Model [2].

The fact that V is unitary and depends on only four independent physical parameters can be made
manifest by choosing a specific parametrization. The standard choice is [78]

V =

0

@
c12c13 s12c13 s13e

�i�

�s12c23 � c12s23s13e
i�

c12c23 � s12s23s13e
i�

s23c13

s12s23 � c12c23s13e
i� �c12s23 � s12c23s13e

i�
c23c13

1

A , (58)

where cij ⌘ cos ✓ij and sij ⌘ sin ✓ij . The ✓ij’s are the three real mixing parameters while � is the
Kobayashi-Maskawa phase. The experimental central values of the four parameters are given by

s12 = 0.225, s23 = 0.042, s13 = 0.0037, � = 74o . (59)

Since s13 ⌧ s23 ⌧ s12 ⌧ 1, it is convenient to choose an approximate expression where this hierarchy
is manifest. This is the Wolfenstein parametrization, where the four mixing parameters are (�, A, ⇢, ⌘)
with � = |Vus| ⇡ 0.23 playing the role of an expansion parameter and ⌘ representing the CP violating
phase [79, 80]:
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The experimental ranges for the four parameters are given by

� = 0.2251± 0.0005 , (61)
A = 0.81± 0.03 ,

⇢ = +0.160± 0.007 ,

⌘ = +0.350± 0.006 .

3.2 Unitarity triangles

A very useful concept is that of the unitarity triangles. The unitarity of the CKM matrix leads to various
relations among the matrix elements, e.g.

VudV
⇤
us + VcdV

⇤
cs + VtdV

⇤
ts = 0 , (62)
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(i) There is freedom in defining V in that we can permute between the various generations. This
freedom is fixed by ordering the up quarks and the down quarks by their masses, i.e. (u1, u2, u3) !
(u, c, t) and (d1, d2, d3) ! (d, s, b). The elements of V are written as follows:

V =

0

@
Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

1

A . (56)

(ii) There is further freedom in the phase structure of V . This means that the number of physical
parameters in V is smaller than the number of parameters in a general unitary 3⇥ 3 matrix which is nine
(three real angles and six phases). Let us define Pq (q = u, d) to be diagonal unitary (phase) matrices.
Then, if instead of using VqL and VqR for the rotations (16) and (19) to the mass basis we use ṼqL and
ṼqR, defined by ṼqL = PqVqL and ṼqR = PqVqR, we still maintain a legitimate mass basis since M

diag
q

remains unchanged by such transformations. However, V does change:

V ! PuV P
⇤
d

. (57)

This freedom is fixed by demanding that V has the minimal number of phases. In the three generation
case V has a single phase. (There are five phase differences between the elements of Pu and Pd and,
therefore, five of the six phases in the CKM matrix can be removed.) This is the Kobayashi-Maskawa
phase �KM which is the single source of CP violation in the quark sector of the Standard Model [2].

The fact that V is unitary and depends on only four independent physical parameters can be made
manifest by choosing a specific parametrization. The standard choice is [78]
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with � = |Vus| ⇡ 0.23 playing the role of an expansion parameter and ⌘ representing the CP violating
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The experimental ranges for the four parameters are given by
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A = 0.81± 0.03 ,

⇢ = +0.160± 0.007 ,

⌘ = +0.350± 0.006 .

3.2 Unitarity triangles

A very useful concept is that of the unitarity triangles. The unitarity of the CKM matrix leads to various
relations among the matrix elements, e.g.
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•The Wolfenstein parametrization:
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Fig. 1: Graphical representation of the unitarity constraint VudV
⇤
ub + VcdV

⇤
cb + VtdV

⇤
tb = 0 as a triangle in the

complex plane.

VusV
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ub

+ VcsV
⇤
cb
+ VtsV

⇤
tb
= 0 , (63)

VudV
⇤
ub

+ VcdV
⇤
cb
+ VtdV

⇤
tb
= 0 . (64)

Each of these three relations requires the sum of three complex quantities to vanish and so can be geo-
metrically represented in the complex plane as a triangle. These are “the unitarity triangles”, though the
term “unitarity triangle” is usually reserved for the relation (64) only. The unitarity triangle related to
Eq. (64) is depicted in Fig. 1.

The rescaled unitarity triangle is derived from (64) by (a) choosing a phase convention such that
(VcdV

⇤
cb
) is real, and (b) dividing the lengths of all sides by |VcdV

⇤
cb
|. Step (a) aligns one side of the triangle

with the real axis, and step (b) makes the length of this side 1. The form of the triangle is unchanged.
Two vertices of the rescaled unitarity triangle are thus fixed at (0,0) and (1,0). The coordinates of the
remaining vertex correspond to the Wolfenstein parameters (⇢, ⌘). The area of the rescaled unitarity
triangle is |⌘|/2.

Depicting the rescaled unitarity triangle in the (⇢, ⌘) plane, the lengths of the two complex sides
are
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The three angles of the unitarity triangle are defined as follows [81, 82]:
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They are physical quantities and can be independently measured by CP asymmetries in B decays. It is
also useful to define the two small angles of the unitarity triangles (63,62):
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. (67)

3.3 The CKM matrix from tree level processes

The absolute values of seven entries, and in addition one phase, of the CKM matrix are extracted from
tree level processes, see Table 4.

These eight measurements already over-constrain the four Wolfenstein parameters, but the CKM
mechanism passes this test successfully. The ranges that are consistent with all tree level measurements
are the following:

� = 0.2245± 0.0005 , A = 0.84± 0.02 , ⇢ = 0.14± 0.04 , ⌘ = 0.37± 0.03 . (68)
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•The Wolfenstein parametrization:

(i) There is freedom in defining V in that we can permute between the various generations. This
freedom is fixed by ordering the up quarks and the down quarks by their masses, i.e. (u1, u2, u3) !
(u, c, t) and (d1, d2, d3) ! (d, s, b). The elements of V are written as follows:

V =
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Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

1

A . (56)

(ii) There is further freedom in the phase structure of V . This means that the number of physical
parameters in V is smaller than the number of parameters in a general unitary 3⇥ 3 matrix which is nine
(three real angles and six phases). Let us define Pq (q = u, d) to be diagonal unitary (phase) matrices.
Then, if instead of using VqL and VqR for the rotations (16) and (19) to the mass basis we use ṼqL and
ṼqR, defined by ṼqL = PqVqL and ṼqR = PqVqR, we still maintain a legitimate mass basis since M

diag
q

remains unchanged by such transformations. However, V does change:

V ! PuV P
⇤
d

. (57)

This freedom is fixed by demanding that V has the minimal number of phases. In the three generation
case V has a single phase. (There are five phase differences between the elements of Pu and Pd and,
therefore, five of the six phases in the CKM matrix can be removed.) This is the Kobayashi-Maskawa
phase �KM which is the single source of CP violation in the quark sector of the Standard Model [2].

The fact that V is unitary and depends on only four independent physical parameters can be made
manifest by choosing a specific parametrization. The standard choice is [78]

V =

0

@
c12c13 s12c13 s13e

�i�
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i�
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i�
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i�
c23c13

1

A , (58)

where cij ⌘ cos ✓ij and sij ⌘ sin ✓ij . The ✓ij’s are the three real mixing parameters while � is the
Kobayashi-Maskawa phase. The experimental central values of the four parameters are given by

s12 = 0.225, s23 = 0.042, s13 = 0.0037, � = 74o . (59)

Since s13 ⌧ s23 ⌧ s12 ⌧ 1, it is convenient to choose an approximate expression where this hierarchy
is manifest. This is the Wolfenstein parametrization, where the four mixing parameters are (�, A, ⇢, ⌘)
with � = |Vus| ⇡ 0.23 playing the role of an expansion parameter and ⌘ representing the CP violating
phase [79, 80]:
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The experimental ranges for the four parameters are given by

� = 0.2251± 0.0005 , (61)
A = 0.81± 0.03 ,

⇢ = +0.160± 0.007 ,

⌘ = +0.350± 0.006 .

3.2 Unitarity triangles

A very useful concept is that of the unitarity triangles. The unitarity of the CKM matrix leads to various
relations among the matrix elements, e.g.

VudV
⇤
us + VcdV

⇤
cs + VtdV

⇤
ts = 0 , (62)
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•The unitarity triangles
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Fig. 1: Graphical representation of the unitarity constraint VudV
⇤
ub + VcdV

⇤
cb + VtdV

⇤
tb = 0 as a triangle in the

complex plane.

VusV
⇤
ub

+ VcsV
⇤
cb
+ VtsV

⇤
tb
= 0 , (63)

VudV
⇤
ub

+ VcdV
⇤
cb
+ VtdV

⇤
tb
= 0 . (64)

Each of these three relations requires the sum of three complex quantities to vanish and so can be geo-
metrically represented in the complex plane as a triangle. These are “the unitarity triangles”, though the
term “unitarity triangle” is usually reserved for the relation (64) only. The unitarity triangle related to
Eq. (64) is depicted in Fig. 1.

The rescaled unitarity triangle is derived from (64) by (a) choosing a phase convention such that
(VcdV

⇤
cb
) is real, and (b) dividing the lengths of all sides by |VcdV

⇤
cb
|. Step (a) aligns one side of the triangle

with the real axis, and step (b) makes the length of this side 1. The form of the triangle is unchanged.
Two vertices of the rescaled unitarity triangle are thus fixed at (0,0) and (1,0). The coordinates of the
remaining vertex correspond to the Wolfenstein parameters (⇢, ⌘). The area of the rescaled unitarity
triangle is |⌘|/2.

Depicting the rescaled unitarity triangle in the (⇢, ⌘) plane, the lengths of the two complex sides
are
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����
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���� =
p
⇢2 + ⌘2 , Rt ⌘

����
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���� =
p
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The three angles of the unitarity triangle are defined as follows [81, 82]:
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They are physical quantities and can be independently measured by CP asymmetries in B decays. It is
also useful to define the two small angles of the unitarity triangles (63,62):

�s ⌘ arg


�
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VcsV
⇤
cb

�
, �K ⌘ arg


�

VcsV
⇤
cd

VusV
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ud

�
. (67)

3.3 The CKM matrix from tree level processes

The absolute values of seven entries, and in addition one phase, of the CKM matrix are extracted from
tree level processes, see Table 4.

These eight measurements already over-constrain the four Wolfenstein parameters, but the CKM
mechanism passes this test successfully. The ranges that are consistent with all tree level measurements
are the following:

� = 0.2245± 0.0005 , A = 0.84± 0.02 , ⇢ = 0.14± 0.04 , ⌘ = 0.37± 0.03 . (68)
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•The Wolfenstein parametrization:

(i) There is freedom in defining V in that we can permute between the various generations. This
freedom is fixed by ordering the up quarks and the down quarks by their masses, i.e. (u1, u2, u3) !
(u, c, t) and (d1, d2, d3) ! (d, s, b). The elements of V are written as follows:

V =

0

@
Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

1

A . (56)

(ii) There is further freedom in the phase structure of V . This means that the number of physical
parameters in V is smaller than the number of parameters in a general unitary 3⇥ 3 matrix which is nine
(three real angles and six phases). Let us define Pq (q = u, d) to be diagonal unitary (phase) matrices.
Then, if instead of using VqL and VqR for the rotations (16) and (19) to the mass basis we use ṼqL and
ṼqR, defined by ṼqL = PqVqL and ṼqR = PqVqR, we still maintain a legitimate mass basis since M

diag
q

remains unchanged by such transformations. However, V does change:

V ! PuV P
⇤
d

. (57)

This freedom is fixed by demanding that V has the minimal number of phases. In the three generation
case V has a single phase. (There are five phase differences between the elements of Pu and Pd and,
therefore, five of the six phases in the CKM matrix can be removed.) This is the Kobayashi-Maskawa
phase �KM which is the single source of CP violation in the quark sector of the Standard Model [2].

The fact that V is unitary and depends on only four independent physical parameters can be made
manifest by choosing a specific parametrization. The standard choice is [78]
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where cij ⌘ cos ✓ij and sij ⌘ sin ✓ij . The ✓ij’s are the three real mixing parameters while � is the
Kobayashi-Maskawa phase. The experimental central values of the four parameters are given by

s12 = 0.225, s23 = 0.042, s13 = 0.0037, � = 74o . (59)

Since s13 ⌧ s23 ⌧ s12 ⌧ 1, it is convenient to choose an approximate expression where this hierarchy
is manifest. This is the Wolfenstein parametrization, where the four mixing parameters are (�, A, ⇢, ⌘)
with � = |Vus| ⇡ 0.23 playing the role of an expansion parameter and ⌘ representing the CP violating
phase [79, 80]:
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The experimental ranges for the four parameters are given by

� = 0.2251± 0.0005 , (61)
A = 0.81± 0.03 ,

⇢ = +0.160± 0.007 ,

⌘ = +0.350± 0.006 .

3.2 Unitarity triangles

A very useful concept is that of the unitarity triangles. The unitarity of the CKM matrix leads to various
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is manifest. This is the Wolfenstein parametrization, where the four mixing parameters are (�, A, ⇢, ⌘)
with � = |Vus| ⇡ 0.23 playing the role of an expansion parameter and ⌘ representing the CP violating
phase [79, 80]:
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The experimental ranges for the four parameters are given by

� = 0.2251± 0.0005 , (61)
A = 0.81± 0.03 ,

⇢ = +0.160± 0.007 ,

⌘ = +0.350± 0.006 .

3.2 Unitarity triangles

A very useful concept is that of the unitarity triangles. The unitarity of the CKM matrix leads to various
relations among the matrix elements, e.g.

VudV
⇤
us + VcdV

⇤
cs + VtdV

⇤
ts = 0 , (62)
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(i) There is freedom in defining V in that we can permute between the various generations. This
freedom is fixed by ordering the up quarks and the down quarks by their masses, i.e. (u1, u2, u3) !
(u, c, t) and (d1, d2, d3) ! (d, s, b). The elements of V are written as follows:

V =

0

@
Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

1

A . (56)

(ii) There is further freedom in the phase structure of V . This means that the number of physical
parameters in V is smaller than the number of parameters in a general unitary 3⇥ 3 matrix which is nine
(three real angles and six phases). Let us define Pq (q = u, d) to be diagonal unitary (phase) matrices.
Then, if instead of using VqL and VqR for the rotations (16) and (19) to the mass basis we use ṼqL and
ṼqR, defined by ṼqL = PqVqL and ṼqR = PqVqR, we still maintain a legitimate mass basis since M

diag
q

remains unchanged by such transformations. However, V does change:

V ! PuV P
⇤
d

. (57)

This freedom is fixed by demanding that V has the minimal number of phases. In the three generation
case V has a single phase. (There are five phase differences between the elements of Pu and Pd and,
therefore, five of the six phases in the CKM matrix can be removed.) This is the Kobayashi-Maskawa
phase �KM which is the single source of CP violation in the quark sector of the Standard Model [2].

The fact that V is unitary and depends on only four independent physical parameters can be made
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= 0 , (63)

VudV
⇤
ub

+ VcdV
⇤
cb
+ VtdV

⇤
tb
= 0 . (64)

Each of these three relations requires the sum of three complex quantities to vanish and so can be geo-
metrically represented in the complex plane as a triangle. These are “the unitarity triangles”, though the
term “unitarity triangle” is usually reserved for the relation (64) only. The unitarity triangle related to
Eq. (64) is depicted in Fig. 1.

The rescaled unitarity triangle is derived from (64) by (a) choosing a phase convention such that
(VcdV

⇤
cb
) is real, and (b) dividing the lengths of all sides by |VcdV

⇤
cb
|. Step (a) aligns one side of the triangle

with the real axis, and step (b) makes the length of this side 1. The form of the triangle is unchanged.
Two vertices of the rescaled unitarity triangle are thus fixed at (0,0) and (1,0). The coordinates of the
remaining vertex correspond to the Wolfenstein parameters (⇢, ⌘). The area of the rescaled unitarity
triangle is |⌘|/2.

Depicting the rescaled unitarity triangle in the (⇢, ⌘) plane, the lengths of the two complex sides
are

Ru ⌘
����
VudVub

VcdVcb

���� =
p
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The three angles of the unitarity triangle are defined as follows [81, 82]:
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They are physical quantities and can be independently measured by CP asymmetries in B decays. It is
also useful to define the two small angles of the unitarity triangles (63,62):

�s ⌘ arg


�
VtsV

⇤
tb

VcsV
⇤
cb

�
, �K ⌘ arg


�

VcsV
⇤
cd

VusV
⇤
ud

�
. (67)

3.3 The CKM matrix from tree level processes

The absolute values of seven entries, and in addition one phase, of the CKM matrix are extracted from
tree level processes, see Table 4.

These eight measurements already over-constrain the four Wolfenstein parameters, but the CKM
mechanism passes this test successfully. The ranges that are consistent with all tree level measurements
are the following:

� = 0.2245± 0.0005 , A = 0.84± 0.02 , ⇢ = 0.14± 0.04 , ⌘ = 0.37± 0.03 . (68)
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Fig. 4: The standard CKM unitarity triangle (from [15]).

thus violated only, if ⌘ 6= 0. This origin of the observed CPV is called the Kobayashi-Maskawa (KM)
mechanism [13]. Furthermore, CPT is conserved in any Lorentz invariant Quantum Field Theory, and
therefore also in the SM. This means that CPV is equivalent to having T violation – the time reversal is
also violated in the SM.

For the existence of CPV in the SM it is crucial that there are at least 3 generations of quarks.
Repeating the counting of physical parameters from Sec. 2.4 we can easily convince ourselves that it
is possible in the case of 2 generations to make CKM real through field redefinitions. Furthermore, if
Yu and Yd are “aligned”, meaning that they are diagonalized with the same left-handed rotation, then
VCKM = 1. This means that in the SM, if there is no flavour violation, there is also no CP violation
(ignoring the flavour universal, but numerically negligible ✓ term).

The above insights can be encoded in a measure of CP violation, the Jarlskog invariant [20]

JY ⌘ Im
�
det

⇥
YdY

†
d
, YuY †

u

⇤�
. (31)

The JY is invariant under flavour transformations, GF , Eq. (10), and is thus basis independent. The CP
is conserved, if JY = 0. We can also write JY as

JY = JCP

Y

i>j

m2

i
� m2

j

v2/2
' O(10�22), (32)

where the invariant measure of CP violation is

JCP = Im
⇥
VusVcbV

⇤
ub

V ⇤
cs

⇤
= c12c23c

2

13s12s23s13 sin �KM ' �6A2⌘ ' O(10�5). (33)

The product of masses is

Y

i>j

m2

i
� m2

j

v2/2
=

(m2
t � m2

c)

v2/2

(m2
t � m2

u)

v2/2

(m2
c � m2

u)

v2/2

(m2

b
� m2

s)

v2/2

(m2

b
� m2

d
)

v2/2

(m2
s � m2

d
)

v2/2
. (34)

It would vanish, if any of the two pairs of masses were equal, in which case CP would have been con-
served.

3 Tests of the CKM structure
3.1 The standard CKM unitarity triangle
All flavour transitions in the SM depend on only 4 fundamental parameters, �, A, ⇢, and ⌘. We can test
the Kobayashi-Maskawa mechanism by making many measurements, over-constraining the system. One
way to visualize a subset of experimental constraints is through the standard CKM unitarity triangle,
which tests one out of nine unitarity equations, VCKMV †

CKM
= 1. The standard CKM unitarity triangle

is obtained from a product of the first and the third column of the CKM matrix

VudV
⇤
ub

+ VcdV
⇤
cb

+ VtdV
⇤
tb

= 0, (35)
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Table 4: FCCC processes and CKM entries

Process CKM
u ! d`

+
⌫ |Vud| = 0.97417± 0.00021

s ! u`
�
⌫̄ |Vus| = 0.2248± 0.0006

c ! d`
+
⌫ or ⌫µ + d ! c+ µ

� |Vcd| = 0.220± 0.005
c ! s`

+
⌫ or cs̄ ! `

+
⌫ |Vcs| = 0.995± 0.016

b ! c`
�
⌫̄ |Vcb| = 0.0405± 0.0015

b ! u`
�
⌫̄ |Vub| = 0.0041± 0.0004

pp ! tX |Vtb| = 1.01± 0.03
b ! scū and b ! suc̄ � = 73± 5o

Table 5: Measurements related to neutral meson mixing

Sector CP-conserving CP-violating
sd �mK/mK = 7.0⇥ 10�15

✏K = 2.3⇥ 10�3

cu �mD/mD = 8.7⇥ 10�15
A�/yCP ⇠< 0.2

bd �mB/mB = 6.3⇥ 10�14
S K = +0.70± 0.02

bs �mBs
/mBs

= 2.1⇥ 10�12
S � = �0.04± 0.06

The � and A parameters are very well determined. The main effort in CKM measurements is thus aimed
at further improving our knowledge of ⇢ and ⌘. The present status of our knowledge is best seen in a plot
of the various constraints and the final allowed region in the ⇢ � ⌘ plane. This is shown in Fig. 3. The
present status of our knowledge of the absolute values of the various entries in the CKM matrix can be
summarized as follows:

|V | =

0

@
0.97417± 0.00021 0.2248± 0.0006 (4.1± 0.4)⇥ 10�3

0.2249± 0.0005 0.9735± 0.0001 (4.05± 0.15)⇥ 10�2

(8.7± 0.3)⇥ 10�3 (4.03± 0.13)⇥ 10�2 0.99915± 0.00005

1

A . (69)

4 Flavor changing neutral current (FCNC) processes

A very useful class of FCNC is that of neutral meson mixing. Nature provides us with four pairs of
neutral mesons: K0�K

0, B0�B
0, B0

s �B
0
s , and D

0�D
0. Mixing in this context refers to a transition

such as K0 ! K
0 (s̄d ! d̄s).3 The experimental results for CP conserving and CP violating observables

related to neutral meson mixing (mass splittings and CP asymmetries in tree level decays, respectively)
are given in Table 5.

4.1 The SM suppression factors

Our aim in this section is to explain the suppression factors that affect FCNC within the SM.
(a) Loop suppression. The W -boson cannot mediate FCNC processes at tree level, since it cou-

ples to up-down pairs, or to neutrino-charged lepton pairs. Obviously, only neutral bosons can mediate
FCNC at tree level. The SM has four neutral bosons: the gluon, the photon, the Z-boson and the

3These transitions involve four-quark operators. When calculating the matrix elements of these operators between meson-
antimeson states, approximate symmetries of QCD are of no help. Instead, one uses lattice calculations to relate, for example,
the B0 ! B0 transition to the corresponding quark process, b̄d ! d̄b.
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Fig. 3: Allowed region in the ⇢, ⌘ plane. Superimposed are the individual constraints from charmless semileptonic
B decays (|Vub|), mass differences in the B

0 (�md) and Bs (�ms) neutral meson systems, and CP violation in
K ! ⇡⇡ ("K), B !  K (sin 2�), B ! ⇡⇡, ⇢⇡, ⇢⇢ (↵), and B ! DK (�). Taken from [12].

– The rates of various B ! ⇡⇡, ⇢⇡, ⇢⇢ decays depend on the phase ↵ = ⇡ � � � �

– The ratio between the mass splittings in the neutral B and Bs systems is sensitive to |Vtd/Vts|2 =
�
2[(1� ⇢)2 + ⌘

2]

– The CP violation in K ! ⇡⇡ decays, ✏K , depends in a complicated way on ⇢ and ⌘ .

The resulting constraints are shown in Fig. 3.
The consistency of the various constraints is impressive. In particular, the following ranges for ⇢

and ⌘ can account for all the measurements [1]:

⇢ = +0.160± 0.007 , ⌘ = +0.350± 0.006 . (111)

One can make then the following statements [13]:
Very likely, flavor changing processes are dominated by the Cabibbo-Kobayashi-Maskawa mecha-

nism and, in particular, CP violation in flavor changing processes is dominated by the Kobayashi-

Maskawa phase.

In the following subsections, we explain how we can remove the phrase “very likely” from this
statement, and how we can quantify the KM-dominance.

6.2 S KS

As an example of how to use FCNC in probing new physics, we take S KS
. When we consider extensions

of the SM, we still do not expect any significant new contribution to the tree level decay, b ! cc̄s,
beyond the SM W -mediated diagram. Thus, the expression Ā KS

/A KS
= (VcbV

⇤
cd
)/(V ⇤

cb
Vcd) remains
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Fig. 5: The evolution of the constraints in the standard CKM unitarity triangle plane from 1995 (left), to just after
the start of B factories (middle), to the present (right). Taken from the ckmfitter website [18].
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which we can rewrite as
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In terms of the Wolfenstein parameters this sum rule is
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The relation (36) can be interpreted as a sum of three complex numbers that are the sides of a triangle,
shown in Fig. 4. There are two common notations for the angles of the standard CKM unitarity triangle:
either ↵, �, � or �1, �2, �3, used by the two B-factories, BaBar and Belle, respectively. The Belle
experiment (1999-2010) at KEK, Japan produced about ⇠ 1.5⇥109 B mesons, while BaBar experiment
1999-2008) at SLAC, USA collected about ⇠ 0.9 ⇥ 109 B mesons. The two experiments established
that the KM mechanism is the main source of CP violation in the SM. The progression of constraints in
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d
, B+ mesons from measurements at Belle, BaBar and LHCb, the Bs meson and ⇤b
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1 Introduction

In this set of lectures, we introduce basics of flavor physics, that is, the part of Nature where
the di↵erences between the quarks plays a role. While this writeup includes more material than
presented at the lectures, this write up is still just a taste of the entire field; for more in-depth
reading we refer to other recent tasi lectures [1–3], reviews [3–19] and books [20,21] on the subject.

To start o↵, here’s a list of branching ratios collected from the pdg.1

Br(B ! Xµ⌫) = 0.1086(16) (1.1)

Br(B ! Xe⌫) = 0.1086(16) (1.2)

Br(B ! Xs�) = 3.49(19)⇥ 10�4 (1.3)

Br(Bs ! µ+µ�) = 2.4(8)⇥ 10�9 (1.4)

Br(B+
! D̄0`+⌫) = 2.27(11)⇥ 10�2 (1.5)

Br(B�
! ⇡0`�⌫̄) = 7.80(27)⇥ 10�5 (1.6)

Br(KL ! µ+µ�) = 6.84(11)⇥ 10�9 (1.7)

Br(K+
! µ+⌫) = 0.6356(11) (1.8)

Br( ! µ+µ�) = 5.961(33)⇥ 10�2 (1.9)

Br(D ! µ+µ�) < 6.2⇥ 10�9 . (1.10)

Stare at these for a moment—do you see a pattern? If you were trapped on a desert island without
your smart phone and only the pdg, some of the observations from these branching ratios that
you may come up with are:

1. Lepton universality. Swapping one generation of leptons with another does not appear to
a↵ect the branching ratios of these transitions.

2. Flavor-changing neutral currents are small. On the other hand, processes that change
flavor are suppressed for charge-neutral transitions compared to transitions between hadrons
of di↵erent charge.

3. Generation hierarchy. Decays between third and first generation are suppressed compared
to that of third to second generation.

In these lectures we uncover why these properties and others exist in the Standard Model (sm)
of particle physics. We elucidate that these features are, in fact, predicted once we specify the
particle content and electroweak charges of the sm. In contrast, other features of the theory are
particular to specific parameters of this e↵ective theory. In the second part of these lectures, we
tackle the question of how these parameters are actually measured in low-energy systems where
qcd confines the quarks into hadrons.

Problem 1.1. Using the PDG. Use the pdg to answer the following questions:

1The Review of Particle Physics is prepared by the Particle Data Group and is often referred to as ’the pdg’ [22].
It just about contains everything you ever wanted to know about particle physics.
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the di↵erences between the quarks plays a role. While this writeup includes more material than
presented at the lectures, this write up is still just a taste of the entire field; for more in-depth
reading we refer to other recent tasi lectures [1–3], reviews [3–19] and books [20,21] on the subject.

To start o↵, here’s a list of branching ratios collected from the pdg.1

Br(B ! Xµ⌫) = 0.1086(16) (1.1)

Br(B ! Xe⌫) = 0.1086(16) (1.2)

Br(B ! Xs�) = 3.49(19)⇥ 10�4 (1.3)

Br(Bs ! µ+µ�) = 2.4(8)⇥ 10�9 (1.4)

Br(B+
! D̄0`+⌫) = 2.27(11)⇥ 10�2 (1.5)

Br(B�
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Stare at these for a moment—do you see a pattern? If you were trapped on a desert island without
your smart phone and only the pdg, some of the observations from these branching ratios that
you may come up with are:

1. Lepton universality. Swapping one generation of leptons with another does not appear to
a↵ect the branching ratios of these transitions.

2. Flavor-changing neutral currents are small. On the other hand, processes that change
flavor are suppressed for charge-neutral transitions compared to transitions between hadrons
of di↵erent charge.

3. Generation hierarchy. Decays between third and first generation are suppressed compared
to that of third to second generation.

In these lectures we uncover why these properties and others exist in the Standard Model (sm)
of particle physics. We elucidate that these features are, in fact, predicted once we specify the
particle content and electroweak charges of the sm. In contrast, other features of the theory are
particular to specific parameters of this e↵ective theory. In the second part of these lectures, we
tackle the question of how these parameters are actually measured in low-energy systems where
qcd confines the quarks into hadrons.

Problem 1.1. Using the PDG. Use the pdg to answer the following questions:

1The Review of Particle Physics is prepared by the Particle Data Group and is often referred to as ’the pdg’ [22].
It just about contains everything you ever wanted to know about particle physics.
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In this set of lectures, we introduce basics of flavor physics, that is, the part of Nature where
the di↵erences between the quarks plays a role. While this writeup includes more material than
presented at the lectures, this write up is still just a taste of the entire field; for more in-depth
reading we refer to other recent tasi lectures [1–3], reviews [3–19] and books [20,21] on the subject.

To start o↵, here’s a list of branching ratios collected from the pdg.1

Br(B ! Xµ⌫) = 0.1086(16) (1.1)
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Br(B ! Xs�) = 3.49(19)⇥ 10�4 (1.3)

Br(Bs ! µ+µ�) = 2.4(8)⇥ 10�9 (1.4)

Br(B+
! D̄0`+⌫) = 2.27(11)⇥ 10�2 (1.5)

Br(B�
! ⇡0`�⌫̄) = 7.80(27)⇥ 10�5 (1.6)

Br(KL ! µ+µ�) = 6.84(11)⇥ 10�9 (1.7)

Br(K+
! µ+⌫) = 0.6356(11) (1.8)

Br( ! µ+µ�) = 5.961(33)⇥ 10�2 (1.9)

Br(D ! µ+µ�) < 6.2⇥ 10�9 . (1.10)

Stare at these for a moment—do you see a pattern? If you were trapped on a desert island without
your smart phone and only the pdg, some of the observations from these branching ratios that
you may come up with are:

1. Lepton universality. Swapping one generation of leptons with another does not appear to
a↵ect the branching ratios of these transitions.

2. Flavor-changing neutral currents are small. On the other hand, processes that change
flavor are suppressed for charge-neutral transitions compared to transitions between hadrons
of di↵erent charge.

3. Generation hierarchy. Decays between third and first generation are suppressed compared
to that of third to second generation.

In these lectures we uncover why these properties and others exist in the Standard Model (sm)
of particle physics. We elucidate that these features are, in fact, predicted once we specify the
particle content and electroweak charges of the sm. In contrast, other features of the theory are
particular to specific parameters of this e↵ective theory. In the second part of these lectures, we
tackle the question of how these parameters are actually measured in low-energy systems where
qcd confines the quarks into hadrons.

Problem 1.1. Using the PDG. Use the pdg to answer the following questions:

1The Review of Particle Physics is prepared by the Particle Data Group and is often referred to as ’the pdg’ [22].
It just about contains everything you ever wanted to know about particle physics.
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In this set of lectures, we introduce basics of flavor physics, that is, the part of Nature where
the di↵erences between the quarks plays a role. While this writeup includes more material than
presented at the lectures, this write up is still just a taste of the entire field; for more in-depth
reading we refer to other recent tasi lectures [1–3], reviews [3–19] and books [20,21] on the subject.

To start o↵, here’s a list of branching ratios collected from the pdg.1
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Stare at these for a moment—do you see a pattern? If you were trapped on a desert island without
your smart phone and only the pdg, some of the observations from these branching ratios that
you may come up with are:

1. Lepton universality. Swapping one generation of leptons with another does not appear to
a↵ect the branching ratios of these transitions.

2. Flavor-changing neutral currents are small. On the other hand, processes that change
flavor are suppressed for charge-neutral transitions compared to transitions between hadrons
of di↵erent charge.

3. Generation hierarchy. Decays between third and first generation are suppressed compared
to that of third to second generation.

In these lectures we uncover why these properties and others exist in the Standard Model (sm)
of particle physics. We elucidate that these features are, in fact, predicted once we specify the
particle content and electroweak charges of the sm. In contrast, other features of the theory are
particular to specific parameters of this e↵ective theory. In the second part of these lectures, we
tackle the question of how these parameters are actually measured in low-energy systems where
qcd confines the quarks into hadrons.

Problem 1.1. Using the PDG. Use the pdg to answer the following questions:

1The Review of Particle Physics is prepared by the Particle Data Group and is often referred to as ’the pdg’ [22].
It just about contains everything you ever wanted to know about particle physics.
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The flavor puzzle

Quark sector:

yu,d ⇠

� �
VCKM ⇠

� �

Lepton sector:

ye ⇠

� �
VPMNS ⇠

� �Not visible in colliders

Is the structure in the flavor sector

meaningful?

How does potential new physics

couple to flavor?

What is (if any) the flavor symmetry

of the SM?

yt is the leading (only non-perturbative) breaking of GF in the SM:

yu ⇠

� �
: GF ! U(2)q ⇥ U(2)u ⇥ U(3)d ⇥ U(3)` ⇥ U(3)e ⇥ U(1)B

Anders Eller Thomsen (U. Bern) EFT Flavor WG1-GLOB 3

where ⌦c.m. is the solid angle of particle 1 and Ec.m. = EA +EB in this frame. Since the
cross section does not depend on the azimuthal angle, we can write d⌦c.m. = 2⇡ sin ✓c.m. d✓c.m. ,
where ✓c.m. is the scattering angle in the center of mass frame.

• Compute the total cross section for 2 ! 2 scattering in �
4 theory in the center-of-mass

frame at a given center-of-mass energy.

As a final exercise, evaluate the cross section for e+e� ! µ
+
µ
� following from

1

4

X

sA,sB ,r1,r2

|M |2 = 2e4
t
2 + u

2

s2
, (11)

derived last time. Work in the center-of-mass frame in the high-energy limit, where one can
neglect the electron and muon masses. We choose to parameterize the momenta as

qA = E(1, 0, 0, 1), qB = E(1, 0, 0,�1)
p1 = E(1, sin ✓, 0, cos ✓), p2 = E(1,� sin ✓, 0,� cos ✓)

. (12)

• Show that the di↵erential muon production cross section is

d�

d⌦
=

↵
2
em

4s

�
1 + cos2 ✓

�
, ↵em ⌘ e

2

4⇡
, (13)

and sketch the physical meaning of this result.

• Show that the total cross section reads

� =
4⇡↵2

em

3s
. (14)

�LSM � q̄iY
ij
u ujH̃ + q̄iY

ij
d djH + ¯̀

iY
ij
e ejH (15)

�LSMEFT � 1

⇤⌫
`iY

ij
⌫ `jHH (16)

3

*sample uniformly in [0,1] interval ≈ $(1)

where ⌦c.m. is the solid angle of particle 1 and Ec.m. = EA +EB in this frame. Since the
cross section does not depend on the azimuthal angle, we can write d⌦c.m. = 2⇡ sin ✓c.m. d✓c.m. ,
where ✓c.m. is the scattering angle in the center of mass frame.

• Compute the total cross section for 2 ! 2 scattering in �
4 theory in the center-of-mass

frame at a given center-of-mass energy.

As a final exercise, evaluate the cross section for e+e� ! µ
+
µ
� following from

1

4

X

sA,sB ,r1,r2

|M |
2 = 2e4

t
2 + u

2

s2
, (11)

derived last time. Work in the center-of-mass frame in the high-energy limit, where one can
neglect the electron and muon masses. We choose to parameterize the momenta as

qA = E(1, 0, 0, 1), qB = E(1, 0, 0,�1)
p1 = E(1, sin ✓, 0, cos ✓), p2 = E(1,� sin ✓, 0,� cos ✓)

. (12)

• Show that the di↵erential muon production cross section is

d�

d⌦
=

↵
2
em

4s

�
1 + cos2 ✓

�
, ↵em ⌘

e
2

4⇡
, (13)

and sketch the physical meaning of this result.

• Show that the total cross section reads

� =
4⇡↵2

em

3s
. (14)

�LSM � q̄iY
ij
u ujH̃ + q̄iY

ij
d djH + ¯̀

iY
ij
e ejH (15)

�LSMEFT �
1

⇤⌫
`iY

ij
⌫ `jHH (16)

= det[YdY
†
d , YuY

†
u ] ⇡ O(10�22) (17)

3
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The flavor puzzle

Quark sector:
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VCKM ⇠
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Lepton sector:
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VPMNS ⇠

� �Not visible in colliders

Is the structure in the flavor sector

meaningful?

How does potential new physics

couple to flavor?

What is (if any) the flavor symmetry

of the SM?

yt is the leading (only non-perturbative) breaking of GF in the SM:
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where ⌦c.m. is the solid angle of particle 1 and Ec.m. = EA +EB in this frame. Since the
cross section does not depend on the azimuthal angle, we can write d⌦c.m. = 2⇡ sin ✓c.m. d✓c.m. ,
where ✓c.m. is the scattering angle in the center of mass frame.

• Compute the total cross section for 2 ! 2 scattering in �
4 theory in the center-of-mass

frame at a given center-of-mass energy.

As a final exercise, evaluate the cross section for e+e� ! µ
+
µ
� following from

1

4

X

sA,sB ,r1,r2

|M |2 = 2e4
t
2 + u

2

s2
, (11)

derived last time. Work in the center-of-mass frame in the high-energy limit, where one can
neglect the electron and muon masses. We choose to parameterize the momenta as

qA = E(1, 0, 0, 1), qB = E(1, 0, 0,�1)
p1 = E(1, sin ✓, 0, cos ✓), p2 = E(1,� sin ✓, 0,� cos ✓)

. (12)

• Show that the di↵erential muon production cross section is
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=
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em
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1 + cos2 ✓
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, (13)

and sketch the physical meaning of this result.

• Show that the total cross section reads

� =
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. (14)
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ij
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where ⌦c.m. is the solid angle of particle 1 and Ec.m. = EA +EB in this frame. Since the
cross section does not depend on the azimuthal angle, we can write d⌦c.m. = 2⇡ sin ✓c.m. d✓c.m. ,
where ✓c.m. is the scattering angle in the center of mass frame.

• Compute the total cross section for 2 ! 2 scattering in �
4 theory in the center-of-mass

frame at a given center-of-mass energy.

As a final exercise, evaluate the cross section for e+e� ! µ
+
µ
� following from

1

4

X

sA,sB ,r1,r2

|M |2 = 2e4
t
2 + u

2

s2
, (11)

derived last time. Work in the center-of-mass frame in the high-energy limit, where one can
neglect the electron and muon masses. We choose to parameterize the momenta as

qA = E(1, 0, 0, 1), qB = E(1, 0, 0,�1)
p1 = E(1, sin ✓, 0, cos ✓), p2 = E(1,� sin ✓, 0,� cos ✓)

. (12)

• Show that the di↵erential muon production cross section is
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, (13)

and sketch the physical meaning of this result.

• Show that the total cross section reads

� =
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. (14)

�LSM � q̄iY
ij
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Analogy:   
The periodic table of elements
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Is the structure in the flavor sector

meaningful?

How does potential new physics

couple to flavor?

What is (if any) the flavor symmetry

of the SM?
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•…

Flavour Model Building

• Explain (fully or partially) the peculiar flavour patterns

•Warped compactification •Froggatt-Nielsen

•(Gauged) flavour symmetries
•Multi-scale flavour

•Partial compositeness
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1609.05902, 1611.02703, 1807.03285, 1805.07341, 2201.07245, …

hep-ph/9905221, hep-ph/9903417, hep-ph/0003129, hep-ph/
9912408, hep-ph/0408134, 0903.2415, 1004.2037, 1509.02539, 
2203.01952, …

•Clockwork flavour
1610.07962, 1711.05393, 1807.09792, 2106.09869, …

•Radiative masses
Weinberg:1972ws, hep-ph/9601262, 1409.2522, 
2001.06582, 2012.10458, …
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• Important to understand the SM 
phenomenology:  
 
- isospin, SU(3), heavy-quark symmetries, GIM, … 

Alhambra of Granada

• Flavour patterns observed in the Yukawa sector 
 Approximate flavour symmetries in the SM⟹

Bottom-up:  
The largest parameter  breaks 

, etc…
yt = Yu

33 ∼ 1
U(3)q × U(3)u → U(2)2 × U(1)

• Stringent tests of the SM  
— a window to new physics.

1

2

Patterns <> Symmetries
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Effective theories: Electrostatics

97

• Scale separation d ≪ R

R

d

V(R) = C1
d
R

+ C2
d2

R2 + C3
d3

R3 + . . .
Charge  
distribution

Multipole expansion

• Precision/Distance interplay
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EFT imprints of a UV Model

98

• Constructing a theoretical model within the framework of 
quantum field theory to solve (some) of the SM shortcomings

=

Symmetries = selection rules! V(R) = C1
d
R

+ C2
d2

R2 + . . .

SO(3) ⊃ SO(2) ⊃ …
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Effective Field Theory

99

Ultraviolet, 
Short-distance,  
Hard

Infrared,  
Long-distance,  
Soft

10 Chapter 1. Introduction to E↵ective Field Theories

At high energies, this expansion is no longer valid and the e↵ective description breaks
down. This breakdown is particularly obvious when computing matrix elements at
loop-order, where the EFT will produce matrix elements that are more divergent
in the UV than their corresponding counterparts from the UV theory. This can be
seen at the example in eq. (1.6). In the e↵ective theory, this graph becomes:

'' =
� C6
⇤2

Z
ddl

(2⇡)d

✓
1

l2 �m2

◆2

=
i� C6

16⇡2⇤2

⇢
1

✏
+ log

µ2

m2

�
, (1.18)

where we worked in dimensional regularization with d = 4 � 2✏. The quantity C6
is the Wilson coe�cient of the e↵ective �6 interaction. The ultraviolet divergence
present in this graph was absent in eq. (1.6). It originates from regions in the
integration over l where the virtual modes becomes hard enough to probe the non-
locality in the e↵ective vertex. In this region, the EFT breaks down and produces
UV divergences. We can actually make use of that fact later to solve the problems
of the aforementioned large logarithms.

We have yet to determine the Wilson coe�cients of the EFT. To this end, let us
return to the statement from which we started and focus on the part of it we have
not discussed: The UV theory and the EFT must agree in the IR.

At the cuto↵ scale ⇤ at which we integrated out the hard modes, LUV and Le↵ must
produce consistent matrix elements. Given that the full theory LUV is known, this
fixed the couplings of Le↵ order by order in power-counting and in perturbation
theory. This producedure is called matching and the cuto↵ scale, ⇤ is often also
called matching scale.

Matching can be done through several methods. By far the most common one is
diagrammatic. One computes matrix elements in both the e↵ective and UV theories
and equates them to detmermine the coupling constants of the e↵ective Lagrangian.
Note that this does not only apply to the Wilson coe�cients of the “new” e↵ective
operators but also to the coupling constants of operators that both Le↵ and LUV

share. For example, the coupling � in our Lagrangian (1.4) will not be the same as
the � in the UV Lagrangian (1.2). Instead, it will receive corrections from virtual
hard modes.

Another way of performing the matching is the background field method. In
this method, fields are separated into the classical fields and quantum fluctuations.
One can then integrate out the hard modes by solving the path integral for them
explicitely. See section 1.6 for an introduction.

1.4.1 Matching at tree-level: Muon decay

A classic example of an e↵ective theory is the Fermi theory of muon decay. The
decay of the muon µ ! e⌫̄e⌫µ proceeds through a virtual W boson in the SM.
The momentum transfer is however much lower than the mass of the W boson,

cutoff

E
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ℒUV ⊃ ψ̄ (iD − m) ψ
+∂μΦ ∂μΦ − M2Φ†Φ
−y ψ̄ψ Φ

Consider  where  is the collider’s energyM ≫ E ≳ m E

Effective Field Theory
Toy example

100

Degrees of freedom (in/out states): only ψ
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Consider  where  is the collider’s energyM ≫ E ≳ m E

Effective Field Theory
Toy example

Degrees of freedom (in/out states): only ψ
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Φψ

ψ̄

ψ

ψ̄y y

4 Chapter 1. Introduction to E↵ective Field Theories

theory of gravity (which in turn, can be thought of as an e↵ective theory for General
Relativity).

E↵ective Field Theories (EFTs) are quantum field theories (QFTs) that are less
general by construction. They focus on an isolated region compared to a more
complete QFT (for example the SM), for which they are designed and treat e↵ects
from other regions as perturbations in a well-defined and systematic way. As an
example, consider a theory of two real scalars, � and ' with the Lagrangian:

L =
1

2
(@µ�)(@

µ�)� 1

2
M2�2 +

1

2
(@µ')(@

µ')� 1

2
m2'2 +

�

4!
'4 +

g

3!
'3� . (1.2)

Let � be much heavier than ', meaning M � m and let us consider a process
at very low energy E ⌧ M . Processes with intermediate � particles will then be
suppressed by the propagator

h0|T{�(0)�(x)}|0i =
Z

d4k

(2⇡)4
e�ikx

i

k2 �M2
, (1.3)

where k2 ⇠ O(E2) ⌧ M2. We can see immediately, that neglecting k2 makes
the expressions we are dealing with structurally simpler while still being a good
approximation up to corrections of order O(k2/M2).

The next important point is that at low energies the heavy scalar � cannot be
produced as a real particle. We should therefore be able to describe physics with a
Lagrangian that contains only ':

Le↵ =
1

2
(@µ')(@

µ')� 1

2
m2'2 +

�

4!
'4 +�L . (1.4)

Here �L is a new ingredient with interactions of ' that were previously not part of
the Lagrangian (1.2). While in the full theory we had processes of the form '3 ! '3

through virtual � particles, the interaction terms generating these amplitudes are
missing from the e↵ective Lagrangian since it does not contain �. Therefore, we
must include an interaction of the form

�L � C6
M2

'6 , (1.5)

to describe this process. Note how this operator needs to have a prefactor with two
inverse powers of mass. We have chosen the heavy mass as a prefactor 1/M2 with
no further explanation other than the propagator of � being of this form in the
low-energy limit, but we will justify this later on in more detail.

You might now ask, why we need an e↵ective Lagrangian when we can simply
compute amplitudes in the full theory and expand them in the relevant limits we
are interested in. And in fact, most of the times we need to do just that anyway to
determine the coupling coe�cients in what we called �L above. The answer seems
technical at first, but it is an important one. The issue hides at the loop-level, when
we are computing radiative corrections. As an example, take the Lagrangian (1.2)
again. At one loop, the interactions in this theory generate a contribution to the

ℒUV ⊃ ψ̄ (iD − m) ψ
+∂μΦ ∂μΦ − M2Φ†Φ
−y ψ̄ψ Φ
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Consider  where  is the collider’s energyM ≫ E ≳ m E

Effective Field Theory
Toy example

Degrees of freedom (in/out states): only ψ
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EFT

ℒeft ⊃ ψ̄ (iD − m) ψ
−C ψ̄ ψ ψ̄ ψ + …

Φψ

ψ̄

ψ

ψ̄y y
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the Lagrangian (1.2). While in the full theory we had processes of the form '3 ! '3

through virtual � particles, the interaction terms generating these amplitudes are
missing from the e↵ective Lagrangian since it does not contain �. Therefore, we
must include an interaction of the form
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to describe this process. Note how this operator needs to have a prefactor with two
inverse powers of mass. We have chosen the heavy mass as a prefactor 1/M2 with
no further explanation other than the propagator of � being of this form in the
low-energy limit, but we will justify this later on in more detail.

You might now ask, why we need an e↵ective Lagrangian when we can simply
compute amplitudes in the full theory and expand them in the relevant limits we
are interested in. And in fact, most of the times we need to do just that anyway to
determine the coupling coe�cients in what we called �L above. The answer seems
technical at first, but it is an important one. The issue hides at the loop-level, when
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again. At one loop, the interactions in this theory generate a contribution to the
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M2 δ(4)(x) + …
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+…
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to describe this process. Note how this operator needs to have a prefactor with two
inverse powers of mass. We have chosen the heavy mass as a prefactor 1/M2 with
no further explanation other than the propagator of � being of this form in the
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You might now ask, why we need an e↵ective Lagrangian when we can simply
compute amplitudes in the full theory and expand them in the relevant limits we
are interested in. And in fact, most of the times we need to do just that anyway to
determine the coupling coe�cients in what we called �L above. The answer seems
technical at first, but it is an important one. The issue hides at the loop-level, when
we are computing radiative corrections. As an example, take the Lagrangian (1.2)
again. At one loop, the interactions in this theory generate a contribution to the

Local interaction: 
The Compton wavelength  is very small.M−1

ℒUV ⊃ ψ̄ (iD − m) ψ
+∂μΦ ∂μΦ − M2Φ†Φ
−y ψ̄ψ Φ

Admir Greljo | Lectures on BSM in flavour



• Degrees of freedom 
Drop heavy fields and keep only the light ones. 
Heavy and light are defined by the cutoff.

• Symmetries 
Space-time, gauge symmetries. They shape the 
infinite series of local operators of the EFT.

• Power-counting 
The expansion parameter gives meaning to the 
EFT series.

103

Effective Field Theory
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Fermi theory
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q2 ≪ m2
W

Admir Greljo | Lectures on BSM in flavour



Fermi theory

105

4-fermion 
scattering at 
energy E

ℳ ∼ GF E2   ⟹ MW ≲ 1 TeV
u

d

e

ν

•Violation of perturbative unitary 

•Important lesson!

GF ∼ (100 GeV)−2
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Theory of weak decays

⟨ℋeff⟩ ∝ ⟨Q(μ)⟩ C(μ)

Effective Field Theory 
Factorisation

Hadronic matrix elements Wilson coefficients

106

short-distance contributions E > μlong-distance contributions E < μ

Lattice QCD,  
Heavy quark effective theory,  
Heavy quark expansion, 
QCD factorisation,  
SCET, 
ChPT,  
QCD sum rules, 
Light-cone sum rules, 
…

1308.2627, 
1310.4838, 
1312.2014, 
1709.04486, 
1711.05270, 
1711.10391, 
1710.06445, 
1804.05033, 
1908.05295, 
2010.16341,
2012.08506, 
2012.07851, 
…

http://flag.unibe.ch/2021/2205.15373, 
2205.13952, 
2204.09091, 
2108.05589, 
1904.08731, 
1902.09553, 
1908.09398, 
1912.09335, 
1908.07011, 
2002.00020, 
2006.07287, 
2101.12028, 
2105.09330, 
2106.12168, 
2112.07685, 
2206.11281, 

…

EFT-workflow

E

Matching

Matching

NP

SMEFT

LEFT

R
G

R
G

R
G

Jenkins, Manohar, Trott [1308.2627]

Jenkins, Manohar, Trott [1310.4838]

Alonso et al. [1312.2014]

Jenkins, Manohar, Sto↵er [1709.04486]

Dekens, Sto↵er [1908.05295]

Jenkins, Manohar, Sto↵er [1711.05270]

Obs
erva

bles

New
mode

l

Anders Eller Thomsen (U. Bern) Functional Matching HEFT 2022 2

WET
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Standard Model Effective Field Theory



SMEFT
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• SM fields & symmetries
• Scale separation 
• Higher-dimensional operators encode short-distance physics:

ΛQ ≫ vEW

ℒ = ∑
Q

CQ

Λ[Q]−4
Q

Q
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SMEFT

109

NP mass gap?Linear EWSB?

• Constrain 
HEL model  
parameters ci

• related to Wilson coefficient fi, 

where new physics manifest in 
non-zero value 

• Determination of coupling modifier  

• Generic, effective, fundamental vector boson and 
fermion,…


• SMEFT Wilson coefficients


Higgs couplings interpretation

11

CMS-PAS-HIG-19-005

ATLAS-CONF-2021-053
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SMEFT

110

BSM1
BSM2

BSM3

……

UV

IRSM EFT

Renormalisation 
flow

[ultraviolet]

[infrared]
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1. No clear preferred BSM: Short-distance direction still the most compelling
2. SMEFT explains why SM works well: limited luminosity and energy so far
3. Experiments headed towards the precision era

BSM1
BSM2

BSM3

……

UV

IRSM EFT

Renormalisation 
flow

SMEFT

111

[ultraviolet]

[infrared]

Reinforced by the current state of affairs
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SMEFT: Systematic BSM

New Physics

112

EFT-workflow

E

Matching

Matching

NP

SMEFT

LEFT

R
G

R
G

R
G

Jenkins, Manohar, Trott [1308.2627]

Jenkins, Manohar, Trott [1310.4838]

Alonso et al. [1312.2014]

Jenkins, Manohar, Sto↵er [1709.04486]

Dekens, Sto↵er [1908.05295]

Jenkins, Manohar, Sto↵er [1711.05270]

Obs
erva

bles

New
mode

l

Anders Eller Thomsen (U. Bern) Functional Matching HEFT 2022 2

WET

• Strongly coupled
Yet, SMEFT works provided the mass gap

• Perturbative

1. Tree-level
Finite number of topologies, classified at dim-6. 

2. Loop-level

To get a large effect in 
weak decays:

• a large coupling • a small mass
Perturbativity Direct searches

Infinite but countable.

Admir Greljo | Lectures on BSM in flavour



113

The mass gap is explained if Λν ≫ vEW

u

c
d
s

t
b

10−8

102

10−6

10−4

10−2

1

ν1 ν2 ν3

e
μ
τ

10−10

10−12

10−14

 - The first SMEFT’s success?dim 5

where ⌦c.m. is the solid angle of particle 1 and Ec.m. = EA +EB in this frame. Since the
cross section does not depend on the azimuthal angle, we can write d⌦c.m. = 2⇡ sin ✓c.m. d✓c.m. ,
where ✓c.m. is the scattering angle in the center of mass frame.

• Compute the total cross section for 2 ! 2 scattering in �
4 theory in the center-of-mass

frame at a given center-of-mass energy.

As a final exercise, evaluate the cross section for e+e� ! µ
+
µ
� following from

1

4

X

sA,sB ,r1,r2

|M |2 = 2e4
t
2 + u

2

s2
, (11)

derived last time. Work in the center-of-mass frame in the high-energy limit, where one can
neglect the electron and muon masses. We choose to parameterize the momenta as

qA = E(1, 0, 0, 1), qB = E(1, 0, 0,�1)
p1 = E(1, sin ✓, 0, cos ✓), p2 = E(1,� sin ✓, 0,� cos ✓)

. (12)

• Show that the di↵erential muon production cross section is

d�

d⌦
=

↵
2
em

4s

�
1 + cos2 ✓

�
, ↵em ⌘ e

2

4⇡
, (13)

and sketch the physical meaning of this result.

• Show that the total cross section reads

� =
4⇡↵2

em

3s
. (14)

�LSM � q̄iY
ij
u ujH̃ + q̄iY

ij
d djH + ¯̀

iY
ij
e ejH (15)

�LSMEFT � 1

⇤⌫
`iY

ij
⌫ `jHH (16)

3

*Picture to be confirmed experimentally 

( )ΔL = 2
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New physics flavour puzzle
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 - Fermionic operatorsdim 6
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Grzadkowski et al, 1008.4884

Proton decay

ℒ6 ⊃ 1
Λ2 qqqℓ Λ > 1012 TeV
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 - Fermionic operatorsdim 6
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Grzadkowski et al, 1008.4884

• Challenge: A large number of independent parameters!

• 2499   independent operators

• Why? 3 flavours

• For a single generation, this would be 59

dim[$] = 6 ΔB = ΔL = 0

Impose B symmetry
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Fig. 5.1: Reach in new physics scale of present and future facilities, from generic dimension
six operators. Colour coding of observables is: green for mesons, blue for leptons, yellow for
EDMs, red for Higgs flavoured couplings and purple for the top quark. The grey columns illus-
trate the reach of direct flavour-blind searches and EW precision measurements. The operator
coefficients are taken to be either ⇠ 1 (plain coloured columns) or suppressed by MFV factors
(hatch filled surfaces). Light (dark) colours correspond to present data (mid-term prospects,
including HL-LHC, Belle II, MEG II, Mu3e, Mu2e, COMET, ACME, PIK and SNS).

compared with the reach of direct high-energy searches and EW precision tests (in grey), il-
lustrated by using flavour-blind operators that have the optimal reach [258]: the gluon-Higgs
operator and the oblique parameters for EW precision tests, respectively. The shown effective
energy reach of flavour experiments do have several caveats. First of all, in many realistic the-
ories either the coupling constants are smaller than unity and/or the symmetries suppress the
sizes of the coefficients. This effect is illustrated by including in the quark sector the present
bounds in tree level NP with Minimal Flavour Violation (MFV) pattern of couplings (hatch filled
areas) [259–262]. Furthermore, there could be cancellations among several higher-dimension
operators. In addition, for theories in which the new physics contributes as an insertion inside a
one-loop diagram mediated by SM particles, all the shown scales should be further reduced by
extra GIM-mass suppressions and/or a factor a/4p ⇠ 10�3 (where a denotes the generic gauge
structure constants).

Finally and importantly, the new physics scale behind the flavour paradigm may differ
from the electroweak new physics scale. Despite these caveats, Fig. 5.1 does illustrate the
unique power of flavour physics to probe NP. The next generation of precision particle physics
experiments will probe significantly higher effective NP scales, as discussed in more detail
below.

High-pTLow-pT

117

dim[$] = 6

ΔF = 2 cLFV EDMsMinimal Flavour Violation
D’Ambrosio, Giudice, Isidori, Strumia; hep-ph/0207036 

Flavour Anarchy

Physics Briefing Book, 
1910.11775

• SMEFT at  - new sources of flavour violation
• Strong constraints from flavour experiments

dim[$] = 6

The importance of flavour violation!
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FCNCNP scale

•A viable BSM at the TeV-scale should have accidental 
symmetries similar to the SM.

•Key ingredients:  
Flavour symmetry and symmetry breaking patterns.

Higgs 
Naturalness

118
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* just like with the B number
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• The flavour breaking in the NP sector is also 
from the Yukawa matrices
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compared with the reach of direct high-energy searches and EW precision tests (in grey), il-
lustrated by using flavour-blind operators that have the optimal reach [258]: the gluon-Higgs
operator and the oblique parameters for EW precision tests, respectively. The shown effective
energy reach of flavour experiments do have several caveats. First of all, in many realistic the-
ories either the coupling constants are smaller than unity and/or the symmetries suppress the
sizes of the coefficients. This effect is illustrated by including in the quark sector the present
bounds in tree level NP with Minimal Flavour Violation (MFV) pattern of couplings (hatch filled
areas) [259–262]. Furthermore, there could be cancellations among several higher-dimension
operators. In addition, for theories in which the new physics contributes as an insertion inside a
one-loop diagram mediated by SM particles, all the shown scales should be further reduced by
extra GIM-mass suppressions and/or a factor a/4p ⇠ 10�3 (where a denotes the generic gauge
structure constants).

Finally and importantly, the new physics scale behind the flavour paradigm may differ
from the electroweak new physics scale. Despite these caveats, Fig. 5.1 does illustrate the
unique power of flavour physics to probe NP. The next generation of precision particle physics
experiments will probe significantly higher effective NP scales, as discussed in more detail
below.

MFV
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2.4 MFVQ symmetry

Minimal flavor violation assumes that the only spurions of the GQ = U(3)q ⇥U(3)u ⇥U(3)d
symmetry in the quark sector are the SM Yukawa couplings. The quarks transform as

q ⇠ (3,1,1), u ⇠ (1,3,1), d ⇠ (1,1,3) (2.57)

under GQ. As the Yukawa couplings are the sources of the symmetry breaking, they are
promoted into spurions with the transformations assigned as

Yu ⇠ (3, 3̄,1), Yd ⇠ (3,1, 3̄). (2.58)

Fixing the parameters of the SM, i.e., the values of the Yu,d,e spurions, breaks GQ.
With no degenerate or vanishing eigenvalues nor any accidental alignment of Yu and Yd, Yu
can be parametrized exclusively with the diagonal matrix of its singular values, Ŷu:

Yu �! Ŷu : U(3)q ⇥U(3)u �! U(1)3q+u. (2.59)

The remaining quark sector symmetry can then be used to partially diagonalize Yd, writing

Yd �! V Ŷd : U(1)3q+u ⇥U(3)d �! U(1)B. (2.60)

Here V is a special unitary matrix with 3 rotation angles but only 1 phase, as the others
have been successfully factored out: V is nothing but the illustrious CKM matrix. Only the
vectorial baryon number symmetry U(1)B remains unbroken after the inclusion of the quark
Yukawa couplings. Only 9 real parameters and 1 phase are physical; a total of 26 unphysical
parameters have been removed. The remnant flavor symmetry of the quark sector is U(1)B ,
which is consistent with 26 broken generators. No additional phases can be removed from
the baryon number–conserving SMEFT operators with the remnant symmetry.

The spurion counting of the pure quark operators is presented in Table 6, while the
decompositions of the bilinear and quartic structures are listed in Eqs. (2.61–2.66) and
Eqs. (2.67–2.72).
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• The MFV allows for the NP cutoff as low as 
the TeV scale!
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MFV
• The flavour breaking in the NP sector is also 

from the Yukawa matrices

5.1. INTRODUCTION/THEORY OF FLAVOUR 67

� K

A
�

�
m
B

�
m
B
s

�
�
e�

�
�
ee
e

�
N
�
eN

�
�
�
�

d
e

d
n

�
m
K

100
101
102
103
104
105
106
107

Observable

Sc
al
e
[T
eV

]

Fig. 5.1: Reach in new physics scale of present and future facilities, from generic dimension
six operators. Colour coding of observables is: green for mesons, blue for leptons, yellow for
EDMs, red for Higgs flavoured couplings and purple for the top quark. The grey columns illus-
trate the reach of direct flavour-blind searches and EW precision measurements. The operator
coefficients are taken to be either ⇠ 1 (plain coloured columns) or suppressed by MFV factors
(hatch filled surfaces). Light (dark) colours correspond to present data (mid-term prospects,
including HL-LHC, Belle II, MEG II, Mu3e, Mu2e, COMET, ACME, PIK and SNS).

compared with the reach of direct high-energy searches and EW precision tests (in grey), il-
lustrated by using flavour-blind operators that have the optimal reach [258]: the gluon-Higgs
operator and the oblique parameters for EW precision tests, respectively. The shown effective
energy reach of flavour experiments do have several caveats. First of all, in many realistic the-
ories either the coupling constants are smaller than unity and/or the symmetries suppress the
sizes of the coefficients. This effect is illustrated by including in the quark sector the present
bounds in tree level NP with Minimal Flavour Violation (MFV) pattern of couplings (hatch filled
areas) [259–262]. Furthermore, there could be cancellations among several higher-dimension
operators. In addition, for theories in which the new physics contributes as an insertion inside a
one-loop diagram mediated by SM particles, all the shown scales should be further reduced by
extra GIM-mass suppressions and/or a factor a/4p ⇠ 10�3 (where a denotes the generic gauge
structure constants).

Finally and importantly, the new physics scale behind the flavour paradigm may differ
from the electroweak new physics scale. Despite these caveats, Fig. 5.1 does illustrate the
unique power of flavour physics to probe NP. The next generation of precision particle physics
experiments will probe significantly higher effective NP scales, as discussed in more detail
below.
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V† ∝ (Vtd, Vts)Δ ≪ V ≪ 1
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2.4 MFVQ symmetry

Minimal flavor violation assumes that the only spurions of the GQ = U(3)q ⇥U(3)u ⇥U(3)d
symmetry in the quark sector are the SM Yukawa couplings. The quarks transform as

q ⇠ (3,1,1), u ⇠ (1,3,1), d ⇠ (1,1,3) (2.57)

under GQ. As the Yukawa couplings are the sources of the symmetry breaking, they are
promoted into spurions with the transformations assigned as

Yu ⇠ (3, 3̄,1), Yd ⇠ (3,1, 3̄). (2.58)

Fixing the parameters of the SM, i.e., the values of the Yu,d,e spurions, breaks GQ.
With no degenerate or vanishing eigenvalues nor any accidental alignment of Yu and Yd, Yu
can be parametrized exclusively with the diagonal matrix of its singular values, Ŷu:

Yu �! Ŷu : U(3)q ⇥U(3)u �! U(1)3q+u. (2.59)

The remaining quark sector symmetry can then be used to partially diagonalize Yd, writing

Yd �! V Ŷd : U(1)3q+u ⇥U(3)d �! U(1)B. (2.60)

Here V is a special unitary matrix with 3 rotation angles but only 1 phase, as the others
have been successfully factored out: V is nothing but the illustrious CKM matrix. Only the
vectorial baryon number symmetry U(1)B remains unbroken after the inclusion of the quark
Yukawa couplings. Only 9 real parameters and 1 phase are physical; a total of 26 unphysical
parameters have been removed. The remnant flavor symmetry of the quark sector is U(1)B ,
which is consistent with 26 broken generators. No additional phases can be removed from
the baryon number–conserving SMEFT operators with the remnant symmetry.

The spurion counting of the pure quark operators is presented in Table 6, while the
decompositions of the bilinear and quartic structures are listed in Eqs. (2.61–2.66) and
Eqs. (2.67–2.72).

– 18 –

(q̄q)(ūu)
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• The MFV allows for the NP cutoff as low as 
the TeV scale!

• Approximate symmetry of the SM
• Small breaking spurions (well-defined 

power counting)
• Also protects against dangerous FCNC but 

less restrictive than the MFV

similar manner, thus operators can always be dressed with higher powers of Y †
uYu. However,

not all of these are independent. In fact three of these are enough to span the space, and
higher powers can be absorbed into the coe�cients of the operators with lower powers: a
finite set is su�cient to capture all physics. A proper organizing principle exists when the
spurions are small (e.g., if Yu always comes with a small parameter ✏u ⌧ 1), and the MFV
operators can be organized by powers of the spurions. This naive expansion in powers of
Yu,d is not necessarily possible, since yt ⇠ 1, and in 2HDM type models even yb can be
order 1. The authors of Ref. [121] were able to show that non-linearly realized MFV, where
a power expansion is impossible, can be e↵ectively captured as a special case of the later,
much acclaimed U(2)3 flavor symmetry [120].

Here we consider a spectrum of viable flavor symmetries:

i) G = U(2)3 decouples the third generation quarks entirely, yet it gives a decent
protection against FCNCs.

ii) G = U(2)3 ⇥U(1)b decouples only the third generation of down-quarks and keeps yb,
a spurion of U(1)b, perturbatively small.

iii) G = U(2)2 ⇥U(3) for when there is no suppression of yt ' 1 in the SMEFT operators.
The enhanced symmetry allows for a spurion expansion of all but the top quark.

iv) G = U(3)3 linearly realized MFV, provides strong constraints on NP, and e↵ectively
protects against NP contributions to rare SM processes.

In this section, we explore these 4 di↵erent flavor structures for the quark sector. In
each case, we will assume that a perturbative expansion in spurion insertions is possible.
For each symmetry, we provide a parametrization of the spurions, list all flavor contractions
that can occur up to dimension 6 in the SMEFT, and finally provide a counting of the
quark operators at dimension 6.

2.1 U(2)3 symmetry

We assume that the NP posses a symmetry G = U(2)q ⇥U(2)u ⇥U(2)d ⇢ GQ, under which
the SM quarks decompose as

q =

"
q
a
⇠ (2,1,1)

q3 ⇠ (1,1,1)

#
, u =

"
u
a
⇠ (1,2,1)

u3 ⇠ (1,1,1)

#
, d =

"
d
a
⇠ (1,1,2)

d3 ⇠ (1,1,1)

#
. (2.2)

The minimal set of spurions needed to reproduce the SM masses and CKM matrix is

Vq ⇠ (2,1,1) , �u ⇠ (2,2,1) , �d ⇠ (2,1,2) . (2.3)

These spurions generally allow for a slew of Yukawa operators, which contributes to the
Yukawa coupling matrices as

Yu,d =

"
a
u,d

1 �u,d + a
u,d

2 �u�
†
u�u,d + . . . b

u,d

1 Vq + b
u,d

2 �u�
†
uVq + . . .

c
u,d

1 V
†
q �u,d + . . . d

u,d

1 + d
u,d

2 V
†
q Vq + . . .

#
(2.4)

for O(1) parameters au,dn , . . . d
u,d
n , parametrizing all covariant combinations of the spurions

at each entry in the coupling matrix.
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SMEFT flavour

• We constructed explicit operator bases for several flavour hypotheses

• Systematic approach from MFV towards anarchy: 

• Non-trivial interplay of  Top/Higgs/EW with Flavour

U(3) ⊃ U(2) ⊃ U(1)

AG, Thomsen, Palavric; 2203.09561

Admir Greljo | Lectures on BSM in flavour

https://arxiv.org/abs/2203.09561


Flavour blind directions in the SMEFT
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•Classification of generic tree-
level mediators with  
flavour-symmetric interactions 
which match to  SMEFT

U(3)5

dim 6

AG, Palavric; 2203.09561

0.1 1 10 30 0.1 1 10 30

0.1 1 10 30 0.1 1 10 30

0.1 1 10 30 0.1 1 10 30

•Spin 0, 1/2, 1

•Protection against FCNC

•Flavor symmetry restrictions: 
leading directions

•Compilation of experimental 
EFT limits =>

Admir Greljo | Lectures on BSM in flavour
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Status:  
Discrepancy with the SM

0.1 am

0.1 fmGeV

TeV

B-hadron Decays to Leptons

Lepton Production
Status:  
Consistent with the SM

Complementarity 
Flavor vs Collider 

Example
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b
su u

μ
μ

B → K μ+μ−

Effective Field Theory
New Contact Interaction 0.1 am

0.1 fmGeV

TeV

JID:PLB AID:32415 /SCO Doctopic: Phenomenology [m5Gv1.3; v1.190; Prn:11/11/2016; 9:25] P.2 (1-9)

2 D.A. Faroughy et al. / Physics Letters B ••• (••••) •••–•••
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anomaly in Sec. 3. The resulting constraints coming from existing 
τ+τ− searches by ATLAS and CMS are presented in Sec. 4. Future 
experimental prospects as well as possible directions for model 
building in order to alleviate τ+τ− constraints are discussed in 
Sec. 5.

2. Effective field theory

At sufficiently low energies, the exchange of new massive parti-
cles induces effects which can be fully captured by the appearance 
of local higher dimensional operators within an effective field the-
ory description where the SM contains all the relevant degrees 
of freedom. The leading contributions appear at operator dimen-
sion six. While the effects in semileptonic B decays can without 
loss of generality be described in terms of effective operators re-
specting the QCD and QED gauge symmetries relevant below the 
electroweak breaking scale vEW " 246 GeV, this is certainly not 
suitable for processes occurring at LHC energies. To fully explore 
the possible high-pT signatures associated with effects in R(D(∗)), 
a set of semileptonic dimension six operators invariant under the 
full SM gauge symmetry is required. In the following we adopt the 
following complete basis [25,26]

Leff ⊃ ci jkl
Q Q LL(Q̄ iγµσ a Q j)(L̄kγ

µσa Ll)

+ ci jkl
Q uLe(Q̄ iu

j
R)iσ 2(L̄k$

l
R) + ci jkl

dQ Le(d̄
i
R Q j)(L̄k$

l
R)

+ ci jkl
Q uLe′(Q̄ σµνu j

R)iσ 2(L̄σµν$l
R) + h.c. , (3)

where Q i = (V ∗
jiu

j
L, d

i
L)

T and Li = (U∗
jiν

j, $i
L)

T are the SM quark 
and lepton weak doublets in a basis which coincides with the 
mass-ordered mass-eigenbasis of down-like quarks (di ) and charged 
leptons ($i ), V (U ) is the CKM (PMNS) flavor mixing matrix 
and σ a are the Pauli matrices acting on SU (2)L indices (sup-
pressed). Note that we have omitted a fifth possible operator 
(d̄i

Rσµν Q j)(L̄kσ
µν$l

R), which can be shown to be redundant.
First observation that can be made at this point is that in addi-

tion to charged current (ui → d j$kνl) transitions, all operators pre-
dict the appearance of neutral quark and lepton currents (ui ū j →
$k$̄l and/or did̄ j → $k$̄l). We note however that this would no 
longer be true in presence of additional light neutral fermions (νR ) 
which could mimic the missing energy signature of SM neutrinos 
in B → D(∗)τν decays. Additional operators can namely be con-
structed by the simultaneous substitution $R ↔ νR and uR ↔ dR

in Eq. (3), plus the operator (d̄i
Rγµu j

R)(ν̄Rγ µ$k
R) which can affect 

R(D(∗)) [15] but do not contribute to neutral currents involving 
charged leptons. In the EFT approach such contributions thus seem 
to be transparent to the tauonic high-pT probes discussed in the 
following. Consequently we do not include operators involving νR
in our EFT discussion. In Sec. 3 however, we use an explicit dy-
namical model to show that specific UV solutions of the R(D(∗))
puzzle involving νR can still be susceptible to our constraints.

To proceed further, we need to specify the flavor structure of 
the operators. We work with a particular choice of flavor alignment 
(consistent with an U (2) flavor symmetry acting on the first two 
generations of SM fermions), namely ci jkl

Q Q LL " cQ Q LLδi3δ j3δk3δl3, 
ci jkl

dQ Le " cdQ Leδi3δ j3δk3δl3, which is motivated by (1) the require-
ment that the dominant effects appear in charged currents cou-
pling to b-quarks and tau-leptons, and (2) stringent constraints on 
flavor changing neutral currents (FCNCs) (see Refs. [15,19,26] for 
more detailed discussion on this point). Small deviations from this 
limit, consistent with existing flavor constraints, would however 
not affect our conclusions. A common and crucial consequence of 
these flavor structures is that b → c quark currents always carry 
additional flavor suppression of the order ∼ |V cb| " 0.04 compared 

to the dominant b → t (charged current) and b → b, t → t (neutral 
current) transitions.

The flavor structure of cQ uLe and cQ uLe′ requires a separate dis-
cussion. In the down-quark mass basis used in Eq. (3), the simplest 
choice ensuring dominant effects appear in b → cτν would be 
ci jkl

Q uLe(′) " cQ uLe(′)δi3δ j2δk3δl3. However this flavor structure leads to 
potentially dangerous c → u FCNCs, suppressed only by order of 
∼ |V ub| " 0.004 compared to the leading charged current effects. 
A safer choice with respect to flavor constraints would be to im-
pose flavor alignment in the mass basis of up-like quarks. In both 
cases the dominant induced neutral current is in the t → c sec-
tor, while c → c is suppressed or completely absent. However, it 
has been shown previously [26], that non-zero cQ uLe alone can-
not accommodate both R(D(∗)) and be consistent with the mea-
surements of the corresponding decay spectra. While cQ uLe′ can 
provide a good fit in the EFT [27], it cannot be matched alone 
onto single-mediator models in the UV. In the next section we 
provide the matching relations for suitable combinations of EFT 
operators within explicit NP models. It turns out that models ad-
dressing R(D(∗)) through cQ uLe(′) contributions generically induce 
additional operators at low energies which do lead to sizeable 
b → b and/or c → c neutral current transitions.

We are now in a position to identify the relevant LHC sig-
natures at high pT . The main focus of this work is on τ+τ−

production from heavy flavor annihilation in the colliding protons 
(bb̄ → τ+τ− and cc̄ → τ+τ−). Even though it is suppressed by 
small heavy quark PDFs, this signature has been demonstrated pre-
viously to be extremely constraining for a particular explicit NP 
model addressing the R(D(∗)) anomaly [19], owing in particular 
to the ∼ 1/|V cb| enhancement of the relevant bb̄ → τ+τ− neutral 
current process over the charged b → cτν transition, as dictated by 
flavor constraints. As discussed above, in the EW preserving limit 
and in absence of cancellations (to be discussed later) a similar 
conclusion can be reached individually for terms in Eq. (3) propor-
tional to cQ Q LL and cdQ Le but not the ones proportional to cQ uLe
and cQ uLe′ . Obviously, no such flavor enhancement is there for the 
related charged current mediated process of τ+ν production from 
b̄c annihilation. The resulting constraints thus turn out not to be 
competitive. All other signatures involve at least three particles in 
the final state of the high energy collision and are thus expected 
to be phase-space suppressed.1 As we demonstrate in the next sec-
tion using explicit models, these conclusions hold generally even in 
presence of on-shell production of heavy NP mediators. A notable 
exception are top quark decays, which do present an orthogo-
nal sensitive high-pT probe, relevant especially for light mediator 
masses below the top quark mass [28]. In the following we thus 
restrict our analysis to mediator masses above ∼ 200 GeV.

3. Models

The different chiral structures being probed by R(D(∗)) single 
out a handful of simplified single mediator models [26]. In the fol-
lowing we consider the representative cases, where we extend the 
SM by a single field transforming non-trivially under the SM gauge 
group.

First categorization of single mediators is by color. While col-
orless intermediate states can only contribute to b → cτν tran-
sitions in the s ≡ (pb − pc)

2-channel, colored ones can be ex-
changed in the t ≡ (pb − pτ )2- or u ≡ (pb − pν)2-channels. The 
colorless fields thus need to appear in non-trivial SU (2)L mul-

1 Exceptions arise in case of on-shell QCD or EW pair production of new parti-
cles, which is not captured by the EFT in Eq. (3) and which we discuss on explicit 
simplified model examples in Sec. 3.
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anomaly in Sec. 3. The resulting constraints coming from existing 
τ+τ− searches by ATLAS and CMS are presented in Sec. 4. Future 
experimental prospects as well as possible directions for model 
building in order to alleviate τ+τ− constraints are discussed in 
Sec. 5.

2. Effective field theory

At sufficiently low energies, the exchange of new massive parti-
cles induces effects which can be fully captured by the appearance 
of local higher dimensional operators within an effective field the-
ory description where the SM contains all the relevant degrees 
of freedom. The leading contributions appear at operator dimen-
sion six. While the effects in semileptonic B decays can without 
loss of generality be described in terms of effective operators re-
specting the QCD and QED gauge symmetries relevant below the 
electroweak breaking scale vEW " 246 GeV, this is certainly not 
suitable for processes occurring at LHC energies. To fully explore 
the possible high-pT signatures associated with effects in R(D(∗)), 
a set of semileptonic dimension six operators invariant under the 
full SM gauge symmetry is required. In the following we adopt the 
following complete basis [25,26]

Leff ⊃ ci jkl
Q Q LL(Q̄ iγµσ a Q j)(L̄kγ

µσa Ll)

+ ci jkl
Q uLe(Q̄ iu

j
R)iσ 2(L̄k$

l
R) + ci jkl

dQ Le(d̄
i
R Q j)(L̄k$

l
R)

+ ci jkl
Q uLe′(Q̄ σµνu j

R)iσ 2(L̄σµν$l
R) + h.c. , (3)

where Q i = (V ∗
jiu

j
L, d

i
L)

T and Li = (U∗
jiν

j, $i
L)

T are the SM quark 
and lepton weak doublets in a basis which coincides with the 
mass-ordered mass-eigenbasis of down-like quarks (di ) and charged 
leptons ($i ), V (U ) is the CKM (PMNS) flavor mixing matrix 
and σ a are the Pauli matrices acting on SU (2)L indices (sup-
pressed). Note that we have omitted a fifth possible operator 
(d̄i

Rσµν Q j)(L̄kσ
µν$l

R), which can be shown to be redundant.
First observation that can be made at this point is that in addi-

tion to charged current (ui → d j$kνl) transitions, all operators pre-
dict the appearance of neutral quark and lepton currents (ui ū j →
$k$̄l and/or did̄ j → $k$̄l). We note however that this would no 
longer be true in presence of additional light neutral fermions (νR ) 
which could mimic the missing energy signature of SM neutrinos 
in B → D(∗)τν decays. Additional operators can namely be con-
structed by the simultaneous substitution $R ↔ νR and uR ↔ dR

in Eq. (3), plus the operator (d̄i
Rγµu j

R)(ν̄Rγ µ$k
R) which can affect 

R(D(∗)) [15] but do not contribute to neutral currents involving 
charged leptons. In the EFT approach such contributions thus seem 
to be transparent to the tauonic high-pT probes discussed in the 
following. Consequently we do not include operators involving νR
in our EFT discussion. In Sec. 3 however, we use an explicit dy-
namical model to show that specific UV solutions of the R(D(∗))
puzzle involving νR can still be susceptible to our constraints.

To proceed further, we need to specify the flavor structure of 
the operators. We work with a particular choice of flavor alignment 
(consistent with an U (2) flavor symmetry acting on the first two 
generations of SM fermions), namely ci jkl

Q Q LL " cQ Q LLδi3δ j3δk3δl3, 
ci jkl

dQ Le " cdQ Leδi3δ j3δk3δl3, which is motivated by (1) the require-
ment that the dominant effects appear in charged currents cou-
pling to b-quarks and tau-leptons, and (2) stringent constraints on 
flavor changing neutral currents (FCNCs) (see Refs. [15,19,26] for 
more detailed discussion on this point). Small deviations from this 
limit, consistent with existing flavor constraints, would however 
not affect our conclusions. A common and crucial consequence of 
these flavor structures is that b → c quark currents always carry 
additional flavor suppression of the order ∼ |V cb| " 0.04 compared 

to the dominant b → t (charged current) and b → b, t → t (neutral 
current) transitions.

The flavor structure of cQ uLe and cQ uLe′ requires a separate dis-
cussion. In the down-quark mass basis used in Eq. (3), the simplest 
choice ensuring dominant effects appear in b → cτν would be 
ci jkl

Q uLe(′) " cQ uLe(′)δi3δ j2δk3δl3. However this flavor structure leads to 
potentially dangerous c → u FCNCs, suppressed only by order of 
∼ |V ub| " 0.004 compared to the leading charged current effects. 
A safer choice with respect to flavor constraints would be to im-
pose flavor alignment in the mass basis of up-like quarks. In both 
cases the dominant induced neutral current is in the t → c sec-
tor, while c → c is suppressed or completely absent. However, it 
has been shown previously [26], that non-zero cQ uLe alone can-
not accommodate both R(D(∗)) and be consistent with the mea-
surements of the corresponding decay spectra. While cQ uLe′ can 
provide a good fit in the EFT [27], it cannot be matched alone 
onto single-mediator models in the UV. In the next section we 
provide the matching relations for suitable combinations of EFT 
operators within explicit NP models. It turns out that models ad-
dressing R(D(∗)) through cQ uLe(′) contributions generically induce 
additional operators at low energies which do lead to sizeable 
b → b and/or c → c neutral current transitions.

We are now in a position to identify the relevant LHC sig-
natures at high pT . The main focus of this work is on τ+τ−

production from heavy flavor annihilation in the colliding protons 
(bb̄ → τ+τ− and cc̄ → τ+τ−). Even though it is suppressed by 
small heavy quark PDFs, this signature has been demonstrated pre-
viously to be extremely constraining for a particular explicit NP 
model addressing the R(D(∗)) anomaly [19], owing in particular 
to the ∼ 1/|V cb| enhancement of the relevant bb̄ → τ+τ− neutral 
current process over the charged b → cτν transition, as dictated by 
flavor constraints. As discussed above, in the EW preserving limit 
and in absence of cancellations (to be discussed later) a similar 
conclusion can be reached individually for terms in Eq. (3) propor-
tional to cQ Q LL and cdQ Le but not the ones proportional to cQ uLe
and cQ uLe′ . Obviously, no such flavor enhancement is there for the 
related charged current mediated process of τ+ν production from 
b̄c annihilation. The resulting constraints thus turn out not to be 
competitive. All other signatures involve at least three particles in 
the final state of the high energy collision and are thus expected 
to be phase-space suppressed.1 As we demonstrate in the next sec-
tion using explicit models, these conclusions hold generally even in 
presence of on-shell production of heavy NP mediators. A notable 
exception are top quark decays, which do present an orthogo-
nal sensitive high-pT probe, relevant especially for light mediator 
masses below the top quark mass [28]. In the following we thus 
restrict our analysis to mediator masses above ∼ 200 GeV.

3. Models

The different chiral structures being probed by R(D(∗)) single 
out a handful of simplified single mediator models [26]. In the fol-
lowing we consider the representative cases, where we extend the 
SM by a single field transforming non-trivially under the SM gauge 
group.

First categorization of single mediators is by color. While col-
orless intermediate states can only contribute to b → cτν tran-
sitions in the s ≡ (pb − pc)

2-channel, colored ones can be ex-
changed in the t ≡ (pb − pτ )2- or u ≡ (pb − pν)2-channels. The 
colorless fields thus need to appear in non-trivial SU (2)L mul-

1 Exceptions arise in case of on-shell QCD or EW pair production of new parti-
cles, which is not captured by the EFT in Eq. (3) and which we discuss on explicit 
simplified model examples in Sec. 3.
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anomaly in Sec. 3. The resulting constraints coming from existing 
τ+τ− searches by ATLAS and CMS are presented in Sec. 4. Future 
experimental prospects as well as possible directions for model 
building in order to alleviate τ+τ− constraints are discussed in 
Sec. 5.

2. Effective field theory

At sufficiently low energies, the exchange of new massive parti-
cles induces effects which can be fully captured by the appearance 
of local higher dimensional operators within an effective field the-
ory description where the SM contains all the relevant degrees 
of freedom. The leading contributions appear at operator dimen-
sion six. While the effects in semileptonic B decays can without 
loss of generality be described in terms of effective operators re-
specting the QCD and QED gauge symmetries relevant below the 
electroweak breaking scale vEW " 246 GeV, this is certainly not 
suitable for processes occurring at LHC energies. To fully explore 
the possible high-pT signatures associated with effects in R(D(∗)), 
a set of semileptonic dimension six operators invariant under the 
full SM gauge symmetry is required. In the following we adopt the 
following complete basis [25,26]

Leff ⊃ ci jkl
Q Q LL(Q̄ iγµσ a Q j)(L̄kγ

µσa Ll)

+ ci jkl
Q uLe(Q̄ iu

j
R)iσ 2(L̄k$

l
R) + ci jkl

dQ Le(d̄
i
R Q j)(L̄k$

l
R)

+ ci jkl
Q uLe′(Q̄ σµνu j

R)iσ 2(L̄σµν$l
R) + h.c. , (3)

where Q i = (V ∗
jiu

j
L, d

i
L)

T and Li = (U∗
jiν

j, $i
L)

T are the SM quark 
and lepton weak doublets in a basis which coincides with the 
mass-ordered mass-eigenbasis of down-like quarks (di ) and charged 
leptons ($i ), V (U ) is the CKM (PMNS) flavor mixing matrix 
and σ a are the Pauli matrices acting on SU (2)L indices (sup-
pressed). Note that we have omitted a fifth possible operator 
(d̄i

Rσµν Q j)(L̄kσ
µν$l

R), which can be shown to be redundant.
First observation that can be made at this point is that in addi-

tion to charged current (ui → d j$kνl) transitions, all operators pre-
dict the appearance of neutral quark and lepton currents (ui ū j →
$k$̄l and/or did̄ j → $k$̄l). We note however that this would no 
longer be true in presence of additional light neutral fermions (νR ) 
which could mimic the missing energy signature of SM neutrinos 
in B → D(∗)τν decays. Additional operators can namely be con-
structed by the simultaneous substitution $R ↔ νR and uR ↔ dR

in Eq. (3), plus the operator (d̄i
Rγµu j

R)(ν̄Rγ µ$k
R) which can affect 

R(D(∗)) [15] but do not contribute to neutral currents involving 
charged leptons. In the EFT approach such contributions thus seem 
to be transparent to the tauonic high-pT probes discussed in the 
following. Consequently we do not include operators involving νR
in our EFT discussion. In Sec. 3 however, we use an explicit dy-
namical model to show that specific UV solutions of the R(D(∗))
puzzle involving νR can still be susceptible to our constraints.

To proceed further, we need to specify the flavor structure of 
the operators. We work with a particular choice of flavor alignment 
(consistent with an U (2) flavor symmetry acting on the first two 
generations of SM fermions), namely ci jkl

Q Q LL " cQ Q LLδi3δ j3δk3δl3, 
ci jkl

dQ Le " cdQ Leδi3δ j3δk3δl3, which is motivated by (1) the require-
ment that the dominant effects appear in charged currents cou-
pling to b-quarks and tau-leptons, and (2) stringent constraints on 
flavor changing neutral currents (FCNCs) (see Refs. [15,19,26] for 
more detailed discussion on this point). Small deviations from this 
limit, consistent with existing flavor constraints, would however 
not affect our conclusions. A common and crucial consequence of 
these flavor structures is that b → c quark currents always carry 
additional flavor suppression of the order ∼ |V cb| " 0.04 compared 

to the dominant b → t (charged current) and b → b, t → t (neutral 
current) transitions.

The flavor structure of cQ uLe and cQ uLe′ requires a separate dis-
cussion. In the down-quark mass basis used in Eq. (3), the simplest 
choice ensuring dominant effects appear in b → cτν would be 
ci jkl

Q uLe(′) " cQ uLe(′)δi3δ j2δk3δl3. However this flavor structure leads to 
potentially dangerous c → u FCNCs, suppressed only by order of 
∼ |V ub| " 0.004 compared to the leading charged current effects. 
A safer choice with respect to flavor constraints would be to im-
pose flavor alignment in the mass basis of up-like quarks. In both 
cases the dominant induced neutral current is in the t → c sec-
tor, while c → c is suppressed or completely absent. However, it 
has been shown previously [26], that non-zero cQ uLe alone can-
not accommodate both R(D(∗)) and be consistent with the mea-
surements of the corresponding decay spectra. While cQ uLe′ can 
provide a good fit in the EFT [27], it cannot be matched alone 
onto single-mediator models in the UV. In the next section we 
provide the matching relations for suitable combinations of EFT 
operators within explicit NP models. It turns out that models ad-
dressing R(D(∗)) through cQ uLe(′) contributions generically induce 
additional operators at low energies which do lead to sizeable 
b → b and/or c → c neutral current transitions.

We are now in a position to identify the relevant LHC sig-
natures at high pT . The main focus of this work is on τ+τ−

production from heavy flavor annihilation in the colliding protons 
(bb̄ → τ+τ− and cc̄ → τ+τ−). Even though it is suppressed by 
small heavy quark PDFs, this signature has been demonstrated pre-
viously to be extremely constraining for a particular explicit NP 
model addressing the R(D(∗)) anomaly [19], owing in particular 
to the ∼ 1/|V cb| enhancement of the relevant bb̄ → τ+τ− neutral 
current process over the charged b → cτν transition, as dictated by 
flavor constraints. As discussed above, in the EW preserving limit 
and in absence of cancellations (to be discussed later) a similar 
conclusion can be reached individually for terms in Eq. (3) propor-
tional to cQ Q LL and cdQ Le but not the ones proportional to cQ uLe
and cQ uLe′ . Obviously, no such flavor enhancement is there for the 
related charged current mediated process of τ+ν production from 
b̄c annihilation. The resulting constraints thus turn out not to be 
competitive. All other signatures involve at least three particles in 
the final state of the high energy collision and are thus expected 
to be phase-space suppressed.1 As we demonstrate in the next sec-
tion using explicit models, these conclusions hold generally even in 
presence of on-shell production of heavy NP mediators. A notable 
exception are top quark decays, which do present an orthogo-
nal sensitive high-pT probe, relevant especially for light mediator 
masses below the top quark mass [28]. In the following we thus 
restrict our analysis to mediator masses above ∼ 200 GeV.

3. Models

The different chiral structures being probed by R(D(∗)) single 
out a handful of simplified single mediator models [26]. In the fol-
lowing we consider the representative cases, where we extend the 
SM by a single field transforming non-trivially under the SM gauge 
group.

First categorization of single mediators is by color. While col-
orless intermediate states can only contribute to b → cτν tran-
sitions in the s ≡ (pb − pc)

2-channel, colored ones can be ex-
changed in the t ≡ (pb − pτ )2- or u ≡ (pb − pν)2-channels. The 
colorless fields thus need to appear in non-trivial SU (2)L mul-

1 Exceptions arise in case of on-shell QCD or EW pair production of new parti-
cles, which is not captured by the EFT in Eq. (3) and which we discuss on explicit 
simplified model examples in Sec. 3.
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anomaly in Sec. 3. The resulting constraints coming from existing 
τ+τ− searches by ATLAS and CMS are presented in Sec. 4. Future 
experimental prospects as well as possible directions for model 
building in order to alleviate τ+τ− constraints are discussed in 
Sec. 5.

2. Effective field theory

At sufficiently low energies, the exchange of new massive parti-
cles induces effects which can be fully captured by the appearance 
of local higher dimensional operators within an effective field the-
ory description where the SM contains all the relevant degrees 
of freedom. The leading contributions appear at operator dimen-
sion six. While the effects in semileptonic B decays can without 
loss of generality be described in terms of effective operators re-
specting the QCD and QED gauge symmetries relevant below the 
electroweak breaking scale vEW " 246 GeV, this is certainly not 
suitable for processes occurring at LHC energies. To fully explore 
the possible high-pT signatures associated with effects in R(D(∗)), 
a set of semileptonic dimension six operators invariant under the 
full SM gauge symmetry is required. In the following we adopt the 
following complete basis [25,26]

Leff ⊃ ci jkl
Q Q LL(Q̄ iγµσ a Q j)(L̄kγ

µσa Ll)

+ ci jkl
Q uLe(Q̄ iu

j
R)iσ 2(L̄k$

l
R) + ci jkl

dQ Le(d̄
i
R Q j)(L̄k$

l
R)

+ ci jkl
Q uLe′(Q̄ σµνu j

R)iσ 2(L̄σµν$l
R) + h.c. , (3)

where Q i = (V ∗
jiu

j
L, d

i
L)

T and Li = (U∗
jiν

j, $i
L)

T are the SM quark 
and lepton weak doublets in a basis which coincides with the 
mass-ordered mass-eigenbasis of down-like quarks (di ) and charged 
leptons ($i ), V (U ) is the CKM (PMNS) flavor mixing matrix 
and σ a are the Pauli matrices acting on SU (2)L indices (sup-
pressed). Note that we have omitted a fifth possible operator 
(d̄i

Rσµν Q j)(L̄kσ
µν$l

R), which can be shown to be redundant.
First observation that can be made at this point is that in addi-

tion to charged current (ui → d j$kνl) transitions, all operators pre-
dict the appearance of neutral quark and lepton currents (ui ū j →
$k$̄l and/or did̄ j → $k$̄l). We note however that this would no 
longer be true in presence of additional light neutral fermions (νR ) 
which could mimic the missing energy signature of SM neutrinos 
in B → D(∗)τν decays. Additional operators can namely be con-
structed by the simultaneous substitution $R ↔ νR and uR ↔ dR

in Eq. (3), plus the operator (d̄i
Rγµu j

R)(ν̄Rγ µ$k
R) which can affect 

R(D(∗)) [15] but do not contribute to neutral currents involving 
charged leptons. In the EFT approach such contributions thus seem 
to be transparent to the tauonic high-pT probes discussed in the 
following. Consequently we do not include operators involving νR
in our EFT discussion. In Sec. 3 however, we use an explicit dy-
namical model to show that specific UV solutions of the R(D(∗))
puzzle involving νR can still be susceptible to our constraints.

To proceed further, we need to specify the flavor structure of 
the operators. We work with a particular choice of flavor alignment 
(consistent with an U (2) flavor symmetry acting on the first two 
generations of SM fermions), namely ci jkl

Q Q LL " cQ Q LLδi3δ j3δk3δl3, 
ci jkl

dQ Le " cdQ Leδi3δ j3δk3δl3, which is motivated by (1) the require-
ment that the dominant effects appear in charged currents cou-
pling to b-quarks and tau-leptons, and (2) stringent constraints on 
flavor changing neutral currents (FCNCs) (see Refs. [15,19,26] for 
more detailed discussion on this point). Small deviations from this 
limit, consistent with existing flavor constraints, would however 
not affect our conclusions. A common and crucial consequence of 
these flavor structures is that b → c quark currents always carry 
additional flavor suppression of the order ∼ |V cb| " 0.04 compared 

to the dominant b → t (charged current) and b → b, t → t (neutral 
current) transitions.

The flavor structure of cQ uLe and cQ uLe′ requires a separate dis-
cussion. In the down-quark mass basis used in Eq. (3), the simplest 
choice ensuring dominant effects appear in b → cτν would be 
ci jkl

Q uLe(′) " cQ uLe(′)δi3δ j2δk3δl3. However this flavor structure leads to 
potentially dangerous c → u FCNCs, suppressed only by order of 
∼ |V ub| " 0.004 compared to the leading charged current effects. 
A safer choice with respect to flavor constraints would be to im-
pose flavor alignment in the mass basis of up-like quarks. In both 
cases the dominant induced neutral current is in the t → c sec-
tor, while c → c is suppressed or completely absent. However, it 
has been shown previously [26], that non-zero cQ uLe alone can-
not accommodate both R(D(∗)) and be consistent with the mea-
surements of the corresponding decay spectra. While cQ uLe′ can 
provide a good fit in the EFT [27], it cannot be matched alone 
onto single-mediator models in the UV. In the next section we 
provide the matching relations for suitable combinations of EFT 
operators within explicit NP models. It turns out that models ad-
dressing R(D(∗)) through cQ uLe(′) contributions generically induce 
additional operators at low energies which do lead to sizeable 
b → b and/or c → c neutral current transitions.

We are now in a position to identify the relevant LHC sig-
natures at high pT . The main focus of this work is on τ+τ−

production from heavy flavor annihilation in the colliding protons 
(bb̄ → τ+τ− and cc̄ → τ+τ−). Even though it is suppressed by 
small heavy quark PDFs, this signature has been demonstrated pre-
viously to be extremely constraining for a particular explicit NP 
model addressing the R(D(∗)) anomaly [19], owing in particular 
to the ∼ 1/|V cb| enhancement of the relevant bb̄ → τ+τ− neutral 
current process over the charged b → cτν transition, as dictated by 
flavor constraints. As discussed above, in the EW preserving limit 
and in absence of cancellations (to be discussed later) a similar 
conclusion can be reached individually for terms in Eq. (3) propor-
tional to cQ Q LL and cdQ Le but not the ones proportional to cQ uLe
and cQ uLe′ . Obviously, no such flavor enhancement is there for the 
related charged current mediated process of τ+ν production from 
b̄c annihilation. The resulting constraints thus turn out not to be 
competitive. All other signatures involve at least three particles in 
the final state of the high energy collision and are thus expected 
to be phase-space suppressed.1 As we demonstrate in the next sec-
tion using explicit models, these conclusions hold generally even in 
presence of on-shell production of heavy NP mediators. A notable 
exception are top quark decays, which do present an orthogo-
nal sensitive high-pT probe, relevant especially for light mediator 
masses below the top quark mass [28]. In the following we thus 
restrict our analysis to mediator masses above ∼ 200 GeV.

3. Models

The different chiral structures being probed by R(D(∗)) single 
out a handful of simplified single mediator models [26]. In the fol-
lowing we consider the representative cases, where we extend the 
SM by a single field transforming non-trivially under the SM gauge 
group.

First categorization of single mediators is by color. While col-
orless intermediate states can only contribute to b → cτν tran-
sitions in the s ≡ (pb − pc)

2-channel, colored ones can be ex-
changed in the t ≡ (pb − pτ )2- or u ≡ (pb − pν)2-channels. The 
colorless fields thus need to appear in non-trivial SU (2)L mul-

1 Exceptions arise in case of on-shell QCD or EW pair production of new parti-
cles, which is not captured by the EFT in Eq. (3) and which we discuss on explicit 
simplified model examples in Sec. 3.
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Effective Field Theory

Simplified Model

Complete Model

• 2499 leading dim-6 operators 
• Most are flavour-sensitive

Challenges

• Many signatures

• Extra Higgs, Z’, W’, 
Leptoquark, Coloron, 
Quark and Lepton 
Partners 
+ many more

• Uncountable 
• Most imagination needed

• Many observables

…

…
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Talk more often to 
your colleagues from 
different experiments 
and theory!
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Theoretical Flavour Physics
Precision calculations of flavour observables in and beyond the SM 
- to match the (foreseen) experimental precision

Flavour model building  
- to explain the SM and the new physics flavour puzzle, …

Outlook
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Figure 1: Timelines of the main experiments performing precision measurements on rare b and c processes. The integrated
luminosities already collected and expected are taken from Refs. [50–52]. FCC-ee is placed in the same row of the LHC
timeline since this project can limit the lifetime of the LHC datataking. CEPC collider expected timeline is taken from
Ref. [53]. BESIII experiment timeline and future tau-charm factory timelines relevant for the charm physics program are
taken from Ref. [54] and Ref. [55] respectively.
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Experimental Flavour 
Physics is in a full sprint

+ NA62, MEG II, Mu3e, ... 
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