Sterile neutrino dark matter from scalar decay

Michael A. Schmidt

9 Mar 2023 @ Institut Jožef Stefan

The University of New South Wales Sydney Sydney-CPPC

based on work in collaboration with Rupert Coy JCAP 08 (2022) 070 [2204.08795] Adisorn Adulpravitchai JHEP 01 (2015) 006 [1409.4330] Adisorn Adulpravitchai JHEP 12 (2015) 023 [1507.05694]

Dark Matter

- Virial theorem $\left(\frac{1}{2} \langle v^2 \rangle = \frac{GM}{R}\right)$ applied to COMA cluster (F.Zwicky 1933)
- Galactic rotation curves $[\mathcal{O}(10s) \mathrm{kpc}]$
- Gravitational lensing [$< O(200) \rm kpc$]
- Bullet cluster (X-ray + grav. lensing)
- Cosmic microwave background Large scale structure

• . . .

Properties of Dark Matter

- Lifetime larger than age of universe
- Relic density Planck 1807.06209 $\Omega_{dm}h^2 = 0.120 \pm 0.001$
- Structure formation
 ⇒ DM sufficiently cold
- Not excluded by direct or indirect searches
- Compatible with constraints on self-interactions

1407.0017

Properties of Dark Matter

- Lifetime larger than age of universe
- Relic density Planck 1807.06209 $\Omega_{dm}h^2 = 0.120 \pm 0.001$
- Structure formation
 ⇒ DM sufficiently cold
- Not excluded by direct or indirect searches
- Compatible with constraints on self-interactions

1407.0017

keV sterile neutrinos

Well motivated via their link to neutrino masses

- keV sterile neutrino in seesaw model mixing with active neutrinos ⇒ Decaying DM
- Fermionic DM in radiative seesaw Ma hep-ph/0601225
 Stable DM
 produced via freeze-in Molinaro, Yaguna, Zapata 1405.1259

Warm dark matter candidate

may wash out structure
at small scales
⇒ ease small-scale structure issues

Suppression of small scale structure

Size of astrophysical object: L Free-streaming scale: $r_{\rm FS} = \int_{t_i}^{t_0} \frac{\langle v(t) \rangle}{a(t)} dt$

Suppression of small scale structure

Potential stays the same

weakens

Suppression of small scale structure

Constraints

Constraints

X-ray observations

Grey-hatched: Structure formation constraints

Neutrino oscillations Barbieri, Dolgov 1991; Enqvist, Kainulainen, Maalampi 1991

• Non-resonant oscillations – Dodelson-Widrow mechanism

Dodeson, Widrow hep-ph/9303287

• Resonant oscillations - Shi-Fuller mechanism Shi, Fuller astro-ph/9810076

Thermal production

Hidden decoupled (mirror) sector

Berezhiani, Mohapatra hep-ph/9505385; Berezhiani, Dolgov, Mohapatra hep-ph/9511221

• New gauge interaction and entropy dilution

Bezrukov, Hettmansperger, Lindner 0912.4415; Nemevsek, Senjanovic, Zhang 1205.0844

Scalar decays [if via same coupling as oscillations typically subdominant]

- Inflaton decay Shaposhnikov, Tkachev hep-ph/0604236; Bezrukov, Gorbunov 0912.0390
- In thermal equilibrium

Kusenko hep-ph/0609081; Kusenko, Petraki 0711.4646; Frigerio, Yaguna 1409.0659; Adulpravitchai, MS 1507.05694

- Out of thermal equilibrium Merle, Niro, Schmidt 1306.3996; Adulpravitchai, MS 1409.4330
- Complex scalar decay Coy, MS 2204.08795

Neutrino oscillations Barbieri, Dolgov 1991; Enqvist, Kainulainen, Maalampi 1991

Non-resonant oscillations – Dodelson-Widrow mechanism

Dodeson, Widrow hep-ph/9303287 excluded e.g. Horiuchi et al. 1311.0282

• Resonant oscillations - Shi-Fuller mechanism Shi, Fuller astro-ph/9810076

Thermal production

Hidden decoupled (mirror) sector

Berezhiani, Mohapatra hep-ph/9505385; Berezhiani, Dolgov, Mohapatra hep-ph/9511221

• New gauge interaction and entropy dilution

Bezrukov, Hettmansperger, Lindner 0912.4415; Nemevsek, Senjanovic, Zhang 1205.0844

Scalar decays [if via same coupling as oscillations typically subdominant]

- Inflaton decay Shaposhnikov, Tkachev hep-ph/0604236; Bezrukov, Gorbunov 0912.0390
- In thermal equilibrium

Kusenko hep-ph/0609081; Kusenko, Petraki 0711.4646; Frigerio, Yaguna 1409.0659; Adulpravitchai, MS 1507.05694

- Out of thermal equilibrium Merle, Niro, Schmidt 1306.3996; Adulpravitchai, MS 1409.4330
- Complex scalar decay Coy, MS 2204.08795

Neutrino oscillations Barbieri, Dolgov 1991; Enqvist, Kainulainen, Maalampi 1991

Non-resonant oscillations – Dodelson-Widrow mechanism

Dodeson, Widrow hep-ph/9303287 excluded e.g. Horiuchi et al. 1311.0282

• Resonant oscillations - Shi-Fuller mechanism Shi, Fuller astro-ph/9810076

Thermal production

Hidden decoupled (mirror) sector

Berezhiani, Mohapatra hep-ph/9505385; Berezhiani, Dolgov, Mohapatra hep-ph/9511221

• New gauge interaction and entropy dilution

Bezrukov, Hettmansperger, Lindner 0912.4415; Nemevsek, Senjanovic, Zhang 1205.0844

Scalar decays [if via same coupling as oscillations typically subdominant]

- Inflaton decay Shaposhnikov, Tkachev hep-ph/0604236; Bezrukov, Gorbunov 0912.0390
- In thermal equilibrium

Kusenko hep-ph/0609081; Kusenko, Petraki 0711.4646; Frigerio, Yaguna 1409.0659; Adulpravitchai, MS 1507.05694

- Out of thermal equilibrium Merle, Niro, Schmidt 1306.3996; Adulpravitchai, MS 1409.4330
- Complex scalar decay Coy, MS 2204.08795

Real scalar: out-of-equilibrium decay [1409.4330]

Model

- New particles: sterile neutrino N and real scalar ϕ
- Lagrangian [discrete Z_4 lepton number with charges L(1), N(-1), $\phi(2)$]

$$-\Delta \mathcal{L} = -\frac{\kappa}{2} H^{\dagger} H \phi^{2} + \left[y^{\nu} L H N + \frac{f}{2} \phi N^{2} + \text{h.c.} \right]$$

- Effective scalar interaction after EWSB $\begin{bmatrix} \langle H \rangle = \begin{pmatrix} 0 & v \end{pmatrix}^T \text{ and } \phi = v_{\phi} + \varphi \end{bmatrix}$ $\Delta V(h, \varphi) = \kappa \left(\frac{h^2 \varphi^2}{4} + \frac{v}{\sqrt{2}} h \varphi^2 \right)$
- Neutrino mixing: $\propto rac{y^{
 u}v}{fv_{\phi}} \ll 1$
- Sterile neutrino DM production
 - φ in thermal equilibrium [κ sizeable] Petraki, Kusenko 0711.4646
 - arphi frozen in $[\kappa \ll 1]$ Merle, Niro, Schmidt 1306.3996; Adulpravitchai, MS 1409.4330

See also Merle, Totzauer 1502.01011; König, Merle, Totzauer 1609.01289

Dominantly two step production

Several approximations: $g_* = \text{const},$

no finite T effects, ...

Dark Matter Abundance [1409.4330]

 $m_{\omega} = 500 \text{GeV}; \ \kappa = 2.7 \cdot 10^{-7}$

 $m_{\varphi} = 30 {
m GeV}; \ \kappa = 3.7 \cdot 10^{-9}$

Higgs annihilation solid (decay dashed), ZZ (solid), WW (dashed); $t\bar{t}$ $m_N = 7.1$ keV; $\lambda_{\phi} = 0.5$

Dark matter abundance $[\Omega_{\rm DM} {\it h}^2 \simeq 0.120 \pm 0.001$ $_{\mbox{\tiny Planck1807.06209}}]$

$$\Omega_N \simeq \frac{m_N Y_N^\infty s(T_0)}{\rho_c}$$

Higgs decays dominant contribution when kinematically accessible

Suppression of Small Scale Structure

• Free streaming horizon e.g. Boyarsky, Lesgourges, Ruchayskiy, Viel 0812.0010

$$r_{FS} \simeq \int_{t_d}^{t_0} rac{\langle v(t)
angle}{a(t)} dt = \int_{t_d}^{t_{nr}} rac{1}{a(t)} dt + \int_{t_{nr}}^{t_{eq}} rac{\langle v(t)
angle}{a(t)} dt + \int_{t_{eq}}^{t_0} rac{\langle v(t)
angle}{a(t)} dt$$

 t_d decay time; t_{eq} time of matter-radiation equality; t_0 today

Hasenkamp, Kersten 1212.4160; Merle, Niro, Schmidt 1306.3996; Adulpravitchai, MS 1409.4330

Average velocity

$$\langle v(t)
angle = egin{cases} 1 & ext{for } t < t_{nr} \ rac{\langle p
angle}{m_N} & ext{for } t > t_{nr} \end{cases}$$

• Sterile neutrino become non-relativistic at time t_{nr} with

$$m_N = \langle p(T_{nr}) \rangle \simeq rac{\sqrt{\pi}}{2} T_{nr} \quad \Rightarrow \quad t_{nr} \simeq rac{\pi}{16} rac{m_{\varphi}^2}{m_N^2} \left(rac{g_*^s(T_0)}{g_*^s(T_{in})}
ight)^{2/3} t_{in}$$

Free-Streaming Horizon

$$r_{FS}\simeqrac{\sqrt{t_{eq}t_{nr}}}{a_{eq}}\left(5+\lnrac{t_{eq}}{t_{nr}}
ight)$$

$$r_{FS} \simeq 0.366 rac{z \, \mathrm{keV}}{m_{\mathrm{th}}} \left(7.299 + \ln rac{m_{\mathrm{th}}}{z \, \mathrm{keV}}
ight) \mathrm{Mpc} \qquad \mathrm{with} \quad z = rac{T_{\mathrm{dm}}}{T}$$
 12

Full calculation of distribution functions [1609.01289]

Real scalar decay: in thermal equilibrium [1507.05694]

Neutrinophillic Two-Higgs Doublet Model [1507.05694]

- New particles odd under Z_2 Sterile neutrino $N \rightarrow -N$ Second Higgs doublet $H_{\nu} \rightarrow -H_{\nu}$
- Lagrangian

$$-\mathcal{L}_N = y_{LN} L H_{\nu} N + \frac{1}{2} m_N N N + \text{h.c.}$$

• Scalar potential

$$V = \mu_{\nu}^{2} H_{\nu}^{\dagger} H_{\nu} + \frac{\lambda_{2}}{2} (H_{\nu}^{\dagger} H_{\nu})^{2}$$
$$+ \lambda_{3} H^{\dagger} H H_{\nu}^{\dagger} H_{\nu} + \lambda_{4} |H^{\dagger} H_{\nu}|^{2} + \frac{\lambda_{5}}{2} [(H^{\dagger} H_{\nu})^{2} + \text{h.c.}]$$

• Scalar particle masses $m_{kk}^2 = \mu_
u^2 + \left(\lambda_3 + \lambda_4
ight) v^2$

$$m_{k,K^0}^2 = m_{kk}^2 \pm \lambda_5 v^2$$
 $m_{K^{\pm}}^2 = m_{kk}^2 - \lambda_4 v^2$

Neutrino Mass

Radiative seesaw Ma hep-ph/0601225; Molinaro, Yaguna, Zapata 1405.1259

- H_{ν} does not obtain VEV
- Radiative neutrino mass generation

$$m_{\nu} \simeq 10^{-2} \text{eV} \left(\frac{\lambda_5 y_{2,3}^2}{10^{-11}}\right) \times \begin{cases} \left(\frac{1\text{TeV}}{M_{2,3}}\right) & m_{kk} \ll M_{2,3} \\ \left(\frac{1\text{TeV}}{m_{kk}}\right) \left(\frac{M_{2,3}}{m_{kk}}\right) & m_{kk} \gg M_{2,3} \end{cases}$$

- keV sterile neutrino does not (significantly) contribute
- Sterile neutrino is stable

• Soft-breaking term $V_{\text{soft}} = \mu_{12}^2 H^{\dagger} H_{\nu} + \text{h.c.}$ • Induced V(T) ((H_{ν}) Re(μ^2) (L_{ν}) $L_{\nu} \rightarrow \bullet$)

$$\Rightarrow \text{ Induced VEV } \frac{\langle H_{\nu} \rangle}{\nu} = \frac{\operatorname{Re}(\mu_{12}^2)}{m_k^2} + i \frac{\operatorname{Im}(\mu_{12}^2)}{m_{\kappa^0}^2}$$

- Active-sterile mixing $heta_{lpha} \simeq rac{y_{LN,lpha} \langle H_{
 u}
 angle}{m_{\mu'}}$

Neutrino Mass

Radiative seesaw Ma hep-ph/0601225; Molinaro, Yaguna, Zapata 1405.1259

- H_{ν} does not obtain VEV
- Radiative neutrino mass generation

$$m_{\nu} \simeq 10^{-2} \text{eV} \left(\frac{\lambda_5 y_{2,3}^2}{10^{-11}}\right) \times \begin{cases} \left(\frac{1\text{TeV}}{M_{2,3}}\right) & m_{kk} \ll M_{2,3} \\ \left(\frac{1\text{TeV}}{m_{kk}}\right) \left(\frac{M_{2,3}}{m_{kk}}\right) & m_{kk} \gg M_{2,3} \end{cases}$$

- keV sterile neutrino does not (significantly) contribute
- Sterile neutrino is stable

Naturally small seesaw Ma hep-ph/0011121; Haba, Ishida, Takahashi 1407.6827

• Soft-breaking term $V_{
m soft}=\mu_{12}^2H^\dagger H_
u+{
m h.\,c.}$,

$$\Rightarrow \text{ Induced VEV } \frac{\langle H_{\nu} \rangle}{\nu} = \frac{\operatorname{Re}(\mu_{12}^2)}{m_k^2} + i \frac{\operatorname{Im}(\mu_{12}^2)}{m_{K^0}^2}$$

- Active-sterile mixing $\theta_{lpha} \simeq rac{y_{LN,lpha} \langle H_{
 u} \rangle}{m_N}$
- \Rightarrow Possible X-ray line signal

 V_k

Scalar decay

• Dominating for $r \gtrsim m_{kk}$ • One daughter has Fermi-Dirac distribution \Rightarrow Pauli-blocking

Scattering

• Scattering suppressed for $T \leq m_{kk}$

Ν

- Neglected in analytic study
- \Rightarrow Freeze-in IR dominated

$$\begin{array}{c} \ell^{\mp}, \ell^{\mp}, \nu & \longrightarrow & W^{\pm} \\ \nu, \nu, \ell^{\pm} & & \\ k, K^{0}, K^{\pm} & \longrightarrow & N \end{array}$$

Scalar decay

 ν, ν, ℓ^{\pm} • Dominating for $T \lesssim m_{kk}$ • One daughter has Fermi-Dirac distribution $N \Rightarrow$ Pauli-blocking

Scattering

- Scattering suppressed for $T \leq m_{kk}$
- Neglected in analytic study
- \Rightarrow Freeze-in IR dominated

$$\ell^{\mp}, \ell^{\mp}, \nu \longrightarrow W^{\pm}$$

$$\nu, \nu, \ell^{\pm}$$

$$k, K^{0}, K^{\pm} \longrightarrow N$$

Derived analytic solution to Boltzmann equation Finite temperature corrections neglected among other approximations.

See Drewes, Kang 1510.05646 for finite temperature corrections

Dark Matter Abundance

Free-Streaming Horizon

Free-Streaming Horizon

18

How cold is sterile neutrino DM?

Complex scalar decay: thermalised [2204.08795]

Complex scalar decay - model

SM + sterile neutrino N_R and complex scalar ϕ

$$\begin{split} \mathcal{L}_{\mathrm{int}} &\supset -\frac{f}{2} \left(\phi N_R^T C N_R + \mathrm{h.c.} \right) - \left(y_i^{\nu} \,\overline{L_i} \tilde{H} N_R + \mathrm{h.c.} \right) \\ &+ \lambda_{\phi} \left(|\phi|^2 - \frac{v_{\phi}^2}{2} \right)^2 + \kappa \left(|\phi|^2 - \frac{v_{\phi}^2}{2} \right) \left(H^{\dagger} H - \frac{v^2}{2} \right) \end{split}$$

Lepton number: $\mathit{N_R} \sim 1$, $\phi \sim -2$

Symmetry breaking of lepton number

 $\phi(x) = \frac{v_{\phi} + \varphi(x)}{\sqrt{2}} e^{i\alpha(x)/v_{\phi}}$

Scalar φ , pNGB (Majoron) α

$$\Rightarrow \mathcal{L}_{s} = \left(\frac{\varphi}{v_{\phi}} + \frac{\varphi^{2}}{2v_{\phi}^{2}}\right) \partial_{\mu}\alpha \partial^{\mu}\alpha - V(h,\varphi)$$

Complex scalar decay - model

SM + sterile neutrino N_R and complex scalar ϕ

$$\begin{split} \mathcal{L}_{\mathrm{int}} &\supset -\frac{f}{2} \left(\phi N_R^T C N_R + \mathrm{h.c.} \right) - \left(y_i^{\nu} \,\overline{L_i} \tilde{H} N_R + \mathrm{h.c.} \right) \\ &+ \lambda_{\phi} \left(|\phi|^2 - \frac{v_{\phi}^2}{2} \right)^2 + \kappa \left(|\phi|^2 - \frac{v_{\phi}^2}{2} \right) \left(H^{\dagger} H - \frac{v^2}{2} \right) \end{split}$$

Lepton number: $N_R \sim 1$, $\phi \sim -2$

Symmetry breaking of lepton number

 $\phi(x) = \frac{v_{\phi} + \varphi(x)}{\sqrt{2}} e^{i\alpha(x)/v_{\phi}}$ Scalar φ , pNGB (Majoron) α

$$\Rightarrow \mathcal{L}_{s} = \left(\frac{\varphi}{v_{\phi}} + \frac{\varphi^{2}}{2v_{\phi}^{2}}\right) \partial_{\mu}\alpha \partial^{\mu}\alpha - V(h,\varphi)$$

Sterile neutrino interactions

Local B - L transformation

$$f
ightarrow e^{iQ^{(f)}_{B-L}lpha(x)/2v_{\phi}}f$$

 \Rightarrow explicit derivative couplings

$$\begin{aligned} \mathcal{L}_{\nu} &= -\frac{m_{N}}{2} \frac{\varphi}{v_{\phi}} \overline{n_{Mi}} \left[\operatorname{Re}(U_{Ni}U_{Nj}) - i\operatorname{Im}(U_{Ni}U_{Nj})\gamma_{5} \right] n_{Mj} \\ &- \frac{\partial_{\mu}\alpha}{4v_{\phi}} \overline{n_{Mi}} \gamma^{\mu} \gamma_{5} n_{Mj} (U^{\dagger}PU)_{ij} + g_{Z} Z_{\mu} J_{Z}^{\mu} + \left(g W_{\mu}^{-} J_{W}^{\mu-} + \operatorname{h.c.} \right) \end{aligned}$$

Flavour-changing charged and neutral currents

$$J_W^{\mu-} = \frac{U_{ij}}{\sqrt{2}} \,\overline{e_i} \gamma^{\mu} P_L n_{Mj} \qquad \qquad J_Z^{\mu} = \frac{1}{4} \sum_{\alpha=1}^3 U_{\alpha i}^* U_{\alpha j} \overline{n_{Mi}} \gamma^{\mu} n_{Mj}$$

with P = diag(1, 1, 1, -1) and the mixing matrix U, $\hat{n}_{M\alpha} = Un_{Mi}$ \Rightarrow Dominant sterile neutrino decay $N \rightarrow \nu \alpha$ with $(U^{\dagger}PU)_{\nu N} \sim 2\theta$

Experimental constraints

CMB constraint on u - u scattering mediated by pNGB α $v_{\phi} \gtrsim 0.7 { m MeV}(m_{ u}/1{ m eV})$ Forastieri, Lattanzi, Natoli 1904.07810

DM decay from flavour violating interactions

DM lifetime > age of universe

- Fastest decay: $N \to \nu \alpha$ $\sin^2(2\theta) \lesssim 10^{-25} \frac{v_{\phi}}{\text{GeV}} \left(\frac{10 \text{keV}}{m_N}\right)^3$
- $N \to \nu Z (\to \nu \nu)$ $\sin^2(2\theta) \lesssim 1.2 \times 10^{-3} \left(\frac{10 \text{keV}}{m_N}\right)^5$

Pal, Wolfenstein (1982); Barger, Phillips hep-ph/9503295

- $N \rightarrow \nu \varphi (\rightarrow \nu \nu)$
- $N \to \nu \varphi (\to \alpha \alpha)$

X-ray observations $N \rightarrow \nu \gamma$ via W boson loop

CMB constraint on u -
u scattering mediated by pNGB α $v_{\phi} \gtrsim 0.7 {
m MeV}(m_{
u}/1{
m eV})$ Forastieri,Lattanzi, Natoli 1904.07810

DM decay from flavour violating interactions

DM lifetime > age of universe

• Fastest decay: $N \to \nu \alpha$ $\sin^2(2\theta) \lesssim 10^{-25} \frac{v_{\phi}}{\text{GeV}} \left(\frac{10 \text{keV}}{m_N}\right)^3$

•
$$N \to \nu Z (\to \nu \nu)$$

 $\sin^2(2\theta) \lesssim 1.2 \times 10^{-3} \left(\frac{10 \text{keV}}{m_N}\right)^5$

Pal, Wolfenstein (1982); Barger, Phillips hep-ph/9503295

- $N \rightarrow \nu \varphi (\rightarrow \nu \nu)$
- $N \to \nu \varphi (\to \alpha \alpha)$

X-ray observations $N \rightarrow \nu \gamma$ via W boson loop

Sterile neutrino production – main idea

Sterile neutrino production – main idea

23

Sterile neutrino production – scalar sector

- energy transfer to dark sector $rac{d(
 ho_{\mathrm{dark}}a^4)}{dt}=C[\mathrm{SM}
 ightarrow\phi]$
- 3 different regimes, depending on m_{arphi}/m_h

Thermal corrections

- Thermal corrections dominantly due to thermal scalar masses
- only relevant for temperatures close to critical temperature
- corrections generally $\lesssim 2\%$

Thermalisation of dark scalar sector

• kinetic (α) and chem. (α, φ) equil.: $\langle \Gamma(\alpha \alpha \leftrightarrow \varphi(\varphi)) \rangle_{\alpha} > H$

• kinetic (φ) equil.: relaxation rate $x_{\varphi}^{-1} \langle \Gamma(\alpha \varphi \leftrightarrow \alpha \varphi) \rangle_{\varphi} > H$ 26

Thermalisation of dark scalar sector - results

- observed DM abundance for $z\simeq 0.1$

 Thermalisation if (a) Γ > H preceded by Γ_{initial} > H and in addition (b) more than 80% of φ produced

Thermalisation of keV sterile neutrinos

- + $\varphi,\,\alpha$ in kinetic and chemical equilibrium
- kin. and chemical equil. $\langle \Gamma(\varphi \leftrightarrow NN) \rangle_N, \langle \Gamma(\alpha \alpha \leftrightarrow NN) \rangle_N > H$
- kinetic equilibrium

 $\langle \Gamma(\alpha N \leftrightarrow \alpha N) \rangle_N > H$ ²⁸

Thermalisation of keV sterile neutrinos - results

- Thermalization achieved below lines of constant κ (coloured)
- constant DM abundance (black)

Summary: Take-home messages

keV sterile neutrino from scalar decay is viable DM scenario

DM distribution (and thus free-streaming horizon) sensitive to production mechanism

pNGB in case of complex scalar may thermalise dark sector

Backup slides

Real scalar - Higgs portal coupling [1409.4330]

Dark Matter Abundance II

DM abundance

$$\Omega_N h^2 \simeq 3.5 imes 10^{15} rac{m_N}{10 {
m keV}} rac{100 {
m GeV}}{m_{kk}} \sum_lpha |y_{LN,lpha}|^2$$

 \Rightarrow Yukawa couplings $\sim 10^{-8}$ for scalars at TeV scale

Dark Matter Abundance [Pauli blocking neglected]

study of fermionic FIMP DM in radiative seesaw model Molinaro, Yaguna, Zapata 1405.1259