Introduction to OpenMP
Extensions in OpenMP-4.0 and 4.5 (and 5.0)

Rolf Rabenseifner

rabenseifner@hirs.de
www.hlirs.de/people/rabenseifner/

University of Stuttgart
High-Performance Computing-Center Stuttgart (HLRS)
www.hlirs.de

© 2000-2023 HLRS, Rolf Rabenseifner (@ REC > online]

https://www.hlrs.de/training/par-prog-ws/

Major Extensions in OpenMP 4.0 (Released July 2013)

Version 3.1 to 4.0 Differences (page numbers in OpenMP 4.0) > p. 303

« Initial support of Fortran 2003 (extensions to Fortran 95) > p. 22

 New Section 2.4 on array sections (in Fortran and C/C++) > p.42

« Thread affinity and OpenMP places: > p. 49, 44, 241
- proc_bind & OMP_PLACES, OMP_PROC_ BIND

* simd construct to vectorize serial and parallelized loops > p. 68

« Support for accelerators through device constructs > p. 77

« Tasking extensions, e.g., > p. 116, 126
— depend clause, taskgroup construct,

« User-defined reductions > declare reduction directive > p. 180

« Enhancements to atomic: > p. 127
— New seq_cst clause and atomic swap with capture clause

« cancel and cancellation point construct > p. 140, 143, 199, 246

 OMP DISPLAY ENV to display all settings > p. 247

© 2000-2023 HLRS, Rolf Rabenseifner (@ REC - online]
Introduction to OpenMP - Major Extensions in OpenMP-4.0 Slide 2 /42

https://www.hlrs.de/training/par-prog-ws/

OMP_PLACES and Thread Affinity (see OpenMP-4.0 page 7 lines 29-32, p. 241-243)

A place consists of one or more processors. Drocessor is the smallest
Pinning on the level of places. unit to run a thread or task
Free migration of the threads on a place between the processors of that place.

+ export OMP PLACES=threads—<_abstract name >

- Each place corresponds to the single processor of a single hardware thread (hyper-thread)
* export OMP_ PLACES=cores

- Each place corresponds to the processors (one or more hardware threads) of a single core
- export OMP_PLACES=sockets

- Each place corresponds to the processors of a single socket (consisting of all hardware
threads of one or more cores)

« export OMP PLACES=abstact_name(num_places)
- In general, the number of places may be explicitly defined

<<lower-bound>:<number of entries>[:<stride>] =
* Or with explicit numberinq, e.g. 8 places, each consisting of 4 processors:

- export OMP_PLACES="{0,1,2,3},{445,6,7},{8,9,10,11}, .. {28,29,30,31}"
- export OMP_PLACES="{0:4},6{4:4},{8:4}, .. {28:4}"
- export OMP_ PLACES="{0:4}:8:4"

CAUTION:
The numbers highly depend on hardware
and operating system, e.g.,

{0,1} = hyper-threads of 15 core of 15t socket, or
{0,1} = 15t hyper-thread of 15t core
of 15t and 2" socket, or ...

© 2000-2023 HLRS, Rolf Rabenseifner (@ REC - online]
Introduction to OpenMP - Major Extensions in OpenMP-4.0

Slide 3 /42

https://www.hlrs.de/training/par-prog-ws/

OpenMP places and proc_bind (sece OpenMP-4.0 pages 49f, 239, 241-243)

export OMP_PLACES="{0},{1},{2}, .. {29},{30},{31}" or
export OMP_PLACES=threads (example with P=32 places)
* export OMP NUM THREADS="8,2,2"
export OMP_ PROC BIND="spread, spread,close" l

« Master thread encounters nested parallel regions:
#pragma omp parallel ~ uses: num_threads(8) proc_bind(spread)]
#pragma omp parallel - uses: num_threads(2) proc_bind(spread)]
#pragma omp parallel - uses: num_threads(2) proc_bind(close)

Only one place is used After first #pragma omp parallel: D
4 > /) threads in a team, each on a partitioned place list with 32/8=4 plac

-
out3|de of first parallel region: master thread has-a /ace list with all 32 places |

C H® @ I 1@ 19 19 H® |
b‘l@_l&f&l&r@ | [oTe | @©He | @1 | @de | @de |
spread: Sparse distribution of the 8 threads among the 32 places; partitioned place lists.
close: New threads as close as possible to the parent’s place; same place lists.

master: All new threads at the same place as the parent.

© 2000-2023 HLRS, Rolf Rabenseifner (@ REC - online]
Introduction to OpenMP - Major Extensions in OpenMP-4.0 Slide 4 /42

https://www.hlrs.de/training/par-prog-ws/

Goals behind OMP_PLACES and proc_bind

Example: [4 sockets|x|6 cores x[2 hyper-threads: = 48 processors
Vendor's numbering: round robin over the sockets, over cores, and hyperthreads

[0)4} 2l effzal || M el ziz1) | [2)6

export OMP PLACES=threads (="{0},{24},{4},{28},{8},{32},{12},{36},{16},{40},{20},{44},{1},{25}, ..., {23},{47}")
- OpenMP threads/tasks are pinned to hardware hyper-threads
export OMP_ PLACES=cores (="{0,24}, {4,28}, {8,32}, {12,36}, {16,40}, {20,44}, {1,25}, .., {23,47}")

- OpenMP threads/tasks are pinned to hardware cores
and can migrate between hyper-threads of the core
export OMP PLACES=sockets (="{0,24, 4,28, 8,32, 12,36, 16,40, 20,44}, {1,25,..},{..},{...23,47}")
- OpenMP threads/tasks are pinned to hardware sockets
and can migrate between cores & hyper-threads of the socket

Examples should be independent of vendor’s numbering & chosen pinning!
e Without nested parallel regions:

#pragma omp parallel num_threads(4*6) proc _bind(spread) -> one thread per core
e With nested regions:

#pragma omp parallel num_threads(4) proc_bind(spread) > one thread per socket
#pragma omp parallel num_threads(6) proc_bind(spread) - one thread per core
#pragma omp parallel num_threads(2) proc_bind(close) > one thread per hyper-thread

© 2000-2023 HLRS, Rolf Rabenseifner (@ REC - online]
Introduction to OpenMP - Major Extensions in OpenMP-4.0 Slide 5/42

https://www.hlrs.de/training/par-prog-ws/

#pragma omp simd \
. . for (i=0; i<n, i++)
Vectorization = SIMD Constructs |a|(l)|_|b(|l)rc|(l)|’ [TTTTTT

I vectorlzatlor A

SIMD Construct (OpenMP 4.0, page 68) (T T T /

@ * +#pragma omp simd [clause [[,] clause] ...]
for-loops <{ Loop iterations must be independent,]

i.e., they can be executed in parallel

\
. . OpenMP 5.0: Standard is changed, i.e., then
I Somp Slrry[clause [[,] clause] ...] safelen (5) will be best and correct.
do-loops

Expectation: Compilers already implemented
[! Somp end simd] OpenMP—5 0 since ... (nobody knows :-)

: ! ind safelen (4}
Clauses: //Di)oiffloleOO(faZOe = ;ﬁ4 5— 1|n0penMP40/45]
safelen(length) > i=100, 120, 140, 160, 180, 200, 220, .

of iterations

.

, ... real iteration numbers
2>L=_0 1 2 3 4 5 6 ... Logical iteration numbers

° 1 inear(list[: linear—step]) Alwayé maximal 5_elements can be together in a vector
o . a(i) = a(i-100)*b(i)
° prlvate(lwt) -> Parallelization of iterations with AL = 5,10,... - race-conditions
e | lastprivate(list) 2:01e J
See 2 /A e
#pragma * | reduction(reduction-identifier:list) (" k=expression; kstep=expression)
omp for/do - ; .
\collapse(n) I;$Ofrfl simd linear (k:kstep)
.) : 0 i=1.n The integer variable’s value is in linear
* aligned(list/: alignment]) a(i) = b(i)*c(k) | relationship with the iteration index.
k=k+kstep k gets private. Default linear-step = 1.
\END DO See OpenMP-4.0, page 172.)
e

Specifies that the list items have a given alignment.
Important after aligned allocation, e.g., with

* malloc_align(64)

« _ attribute__ ((aligned(64)))

Default is alignment for the architecture.

© 2000-2023 HLRS, Rolf Rabenseifner (@ REC - online]
Introduction to OpenMP - Major Extensions in OpenMP-4.0

=
Slide 6/ 42

https://www.hlrs.de/training/par-prog-ws/

Parallelization & SIMD

L IMD construct:
oop S construct f Cannot be specified separately.\

* #pragma omp for simd /[clause [[,] clause] ...] |+ Worksharing on parallel region.
for-loops Resulting chunks of iterations

« !Somp do simd [clause [[,] clause] ...] :/(\;l(l)lr;[hen IS EEIZ DA LA
do-loops '

[1Somp end do simd /nowait]] kCIauses apply to omp & for/do/

Parallel loop SIMD construct:

* {#pragma omp parallel for simd [clause [[,] clause] ...]
for-loops

e !Somp parallel do simd [clause [[,] clause] ...]
do-loops
!Somp end parallel do simd

» Purely a convenience that combines
omp parallel with omp for/do simd

» Clauses first apply to omp for/do simd and
remaining clauses then to omp parallel

A0 RO

© 2000-2023 HLRS, Rolf Rabenseifner (@ REC - online]
Introduction to OpenMP - Major Extensions in OpenMP-4.0 Slide 7 /42

https://www.hlrs.de/training/par-prog-ws/

Vectorized subroutines and functions

#fpragma omp declare simd notinbranch
float sqgrdist(floati\xl, float yl, floa 2, float y2) {
return (x1-x2)* (x\Lxx2) + (yl-y2)*(yl-y2)

} Generates an additional vector version of this routine.

notinbranch: function never called from inside
a conditional statement of a SIMD loop

void example () {

#fpragma omp parallel for simd
for (int i=0; i<N; i++) Uses the vector version of this routine.]
dl[i] = sgrdisti(x1(i],yl[1i],x2[1],y2[1]):
}
Other available clauses: Determines the vector length of the generated vector)

_ inbranch - see next slide routine. Length must be a constant expression.
Several #pragma omp declare simd with different

— simdlen (length) simdlen (length) values or sets of clauses are allowed.)

— aligned (argument-list[: alignment]) : . .

£ Ji Invariant value for all concurrent invocations of the
— uniform (argument-list) function in the execution of a single SIMD loop
— linear (argument-list[: constant-linear-step])

J

© 2000-2023 HLRS, Rolf Rabenseifner (@ REC - online]
Introduction to OpenMP - Major Extensions in OpenMP-4.0 Slide 8 /42

https://www.hlrs.de/training/par-prog-ws/

Vectorized subroutines and functions (continued)

#pragma omp declare simd inbranch

float sgrdist(float x1 loat yl1, float x2, float y2) {
return (x1-x2)* =-x2) + (yl-y2)*(yl-y2);
} (Trinbranch: \\

o function always called from inside a conditional statement of a SIMD loop
» generates masked vector version.

* Ifboth inbranch and notinbranch versions are need, then
two #pragma omp declare simd lines with both clauses are recommended

_ » will generate both normal and masked vector version. /

void example () {

#pragma omp parallel for simd Uses the masked vector version of this routine.]
for (int 1=0; 1<N; 1++) {
]

1f (x2 > x1) d[i] = sgrdist(xl([i],yl[1],x2[1],y2[1]);
else e[1] = sgrdist(x1l([i],yl[1] 1],y2[1]);

il,y , Y%

\ il,y yX2[1],y

Caution: — Automatic optimization (e.g., with function inlining) <-> OpenMP SIMD
— No guarantees about what is better ®

— Use OpenMP SIMD construct if the compiler auto-vectorization is not sufficient

© 2000-2023 HLRS, Rolf Rabenseifner (@ REC - online]
Introduction to OpenMP - Major Extensions in OpenMP-4.0 Slide 9 /42

https://www.hlrs.de/training/par-prog-ws/

Array sections

» Defined in OpenMP-4.0, Section 2.4, page 42
* With restriction:

— “can appear only in clauses where it is explicitly allowed” (page 42, line 3)
* Allowed in:

- map clauseon omp target constructs

— depend clause on omp task constructs

© 2000-2023 HLRS, Rolf Rabenseifner (@ REC - online]
Introduction to OpenMP - Major Extensions in OpenMP-4.0 Slide 10/42

https://www.hlrs.de/training/par-prog-ws/

GPU programming

 See OpenMP-4.0, Section 2.9, pages 77-94
« Will be included into our GPU programming courses.

© 2000-2023 HLRS, Rolf Rabenseifner (@ REC - online]
Introduction to OpenMP - Major Extensions in OpenMP-4.0 Slide 11 /42

https://www.hlrs.de/training/par-prog-ws/

Major Extensions in OpenMP 4.5 (Released Nov. 2015)

Version 4.0 to 4.5 Differences (page numbers in OpenMP 4.5) > p. 303

* New taskloop and taskloop simd werksharirg constructs - p. 87-92

* Nearly complete support of Fortran 2003 > p.22

« 1linear clause also for do and for loop worksharing - p. 56

* New simdlen clause for the simd construct > p. 72-75

» ordered(n) clause & ordered construct for nested loops, - p. 56,166,169
and dependencies can be explicitly specified

« New priority clause for the task construct - p. 83,268,303

» Possibility of i £ clause for parts of a combined construct > p. 147

. New hint clause for the critical construct & new lock routines - p. 149, 273

. Additional ref, val, uval modifiers for the 1inear clause on declare simd construct - p. 207

. Use of some C++ reference types was allowed in some data sharing attribute clauses - p. 188

. Semantics for reductions on C/C++ array sections were added and restrictions on the - p. 207
use of arrays and pointers in reductions were removed

 Enhanced support for accelerators

© 2000-2023 HLRS, Rolf Rabenseifner (@ REC - online]
Introduction to OpenMP - Major Extensions in OpenMP-4.5 Slide 12 /42

https://www.hlrs.de/training/par-prog-ws/

#pragma omp simd \

for (i=0; i<n, i++)
= = a(i) = b(i)+c(i); of iterations
Vectorization = SIMD Constructs EEENSEENEEEEE EEEEN)

I vectorlzatlor A

I|||I|||I|||I|||I|||j

OpenMP 5.0: Standard is changed, i.e., then

SIMD Construct (OpenMP 4.0, page 68)

e #pragma omp simd [clause clausel .. safelen (5) will be best and correct.
pf C‘II b [[r]) -] Expectation: Compilers already implemented
or-loops OpenMP-5.0 since ... (hobody knows :-)
J
Vv
 !Somp simd [clause [[,] clause]...](!$omp simd safelen (4)3 \
do-loops DO i=100, 1000, 20
P . - =100, 120, 140, 160, 180, 200, 220, ... real iteration numbers
[! Somp end simd] >L=0 1 2 3 4 5 6 .. Logicaliteration numbers

Alwayé maximal 5 elements can be together in a vector
Clauses: a(i) = a(i-100)*b(i)

- Parallelization of iterations with AL = 5,10,... = race-conditions
« safelen(lend) _END DO)

 simdlen(lenB)

linear(list/: linear-ste

also for . .
omp for/do prlvate(llst)

OpenMP- The simdlen clause specifies the preferred number of

iterations to be executed concurrently.

It is only a wish, no binding behavior! safelen still needed!

- — lastprivate(list) Restriction (OpenMP-4.5 page 75 Ilnes. 19—11): .

e . o \ OpenMP-4.5: lenB < lenA (this is stupid!)
#pragfm}?‘d reductlon(reductzon-zdentl i.e., in the example: simdlen (4), safelen (4)
emprree) _collapse(n) Correction in OpenMP 5.0: still lenB < lenA

. ' ' but now in the example: simdlen (5), safelen (S)J
« aligned(list/:alignment])
. - - . k=expression; kstep=expression \
Discussion of safelen and simdlenis based on | 1 somp simd linear (k:kstep)
a communication with Michael Klemm, Intel. DO i=1.n - - ; —
N The integer variable’s value is in linear
ag) = b(i)*c(k) | relationship with the iteration index.

© 2000-2023 HLRS, Rolf Rabenseifner (® REC = online) Ei:\l_lg(g((;;tep k gets private. Default linear-step = 1. o
Introduction to OpenMP - Major Extensions in OpenMP-4.5 K See OpenMP-4.0, page 172. e13/42

https://www.hlrs.de/training/par-prog-ws/

taskloop (a task generating construct)

Idea

« Execute, e.g., 100,000 loop iterations as 100 tasks, each with grain_size 1,000 iterations

Advantages

 One or some threads can execute a less compute intensive application part as some tasks,

while some other threads execute a loop as several tasks.

* No (inefficient) nested parallelism needed for this
* No load balancing problems between

ISOMP PARALLEL num_treads(2)
ISOMP SECTIONS
ISOMP SECTION

both numerical application parts
Disadvantages \
- omp taskloop grain size (1000) has similar dis-
advantages as omp d;/for schedule (dynamic,1000)

Before looking at the taskloop worksharing details
« Let's retake

!'a less compute intensive application part
ISOMP SECTION
ISOMP PARALLEL num_treads(7)
ISOMP DO
do i=1,100000
a(i) = b(i) +b(i-1)+b(i+1)+b(i-2)+...
end do
ISOMP END DO
ISOMP PARALLEL
ISOMP END SECTIONS
ISOMP END PARALLEL

— task
— single
— sections
— loop: do / for
« Several slides are skipped

© 2000-2023 HLRS, Rolf Rabenseifner (@ REC - online]
Introduction to OpenMP - Major Extensions in OpenMP-4.5

Slide 14 /42

https://www.hlrs.de/training/par-prog-ws/

OpenMP task Directive — Example:
Parallelized traversing of a tree

[Retake from the
OpenMP-3.0/3.1 course

J

struct node {
struct node *left;
struct node *right;
}s

extern void process(struct node *);

void traverse(struct node *p) { <
if (p->left) k

#pragma omp task // p is flrstprlvate by default <
traverse (p->left) ; «
if (p->right)
#pragma omp task // p is firstprivate by default
traverse (p->right) ; A

process(p); // significant work witﬁ\p

}
int main(int argc, char **argv
{ struct node tree;

. // producing the tree

#pragma omp parallel <
{

#pragma omp single <
{

traverse (&tree) ;//traversing the existing tree

} // end of omp single
} // end of omp parallel

OpenMP 3.0

Starting the parallel
team of threads
Using only one thread
for starting the
traversal

First execution with
single thread

(= 1%t task)

A new task is started
(on a new thread)
Arecursive call to
traverse() in this

2" task

3" task is started

Work is done
in 15t task

Recursive calls start-
ing 41, 5t . tasks

} Same example in Fortran: OpenMP 3.0,
© 2000-2023 HLRS, Rolf Rabenseifner (@ REC - online]

Exa. A.13.1f, page 178

Introduction to OpenMP - Major Extensions in OpenMP-4.5 > Retake from 3.0/3.1

Trick: OpenMP can
choose whether new
tasks are
immediately started
or deferred until free
thread is available. =

https://www.hlrs.de/training/par-prog-ws/

[Retake from the]
OpenMP-3.0/3.1 course

OpenMP task Directive — Syntax OpenMP 3.0

» The task construct defines an explicit task.

* Fortran:
SOMP task|[clause|[[,]clause]...]
block
lSOMP end task
o C/C++:

#pragma omp task|[clause|[][,]clause]...] new-line
structured-block

« Clauses:
— untied
— default(shared | none | private | firstprivate)
- private (list)
- firstprivate (list)
— shared (list)
— 1f (scalar expression)

© 2000-2023 HLRS, Rolf Rabenseifner (@ REC - online]
Introduction to OpenMP - Major Extensions in OpenMP-4.5 - Retake from 3.0/3.1 Slide 17 /42

https://www.hlrs.de/training/par-prog-ws/

[Retake from the]
OpenMP-3.0/3.1 course

OpenMP task Directive — Principles OpenMP 3.0

« When a thread encounters a task construct,
a task is generated from the code for the associated structured block.

« The encountering thread The number of tasks
— may immediately execute the task, can be limited, e.g., to
— or may defer its execution. the number of threads.

« Completion of a task can be guaranteed using task synchronization
constructs - taskwait construct.

 When if (false) clause exists, then execution is “serial”

« Task scheduling points:
— In the generating task: Immediately following the generation of an explicit task.
— In the generated task: After the last instruction of the task region.
— Iftask is “untied”. Everywhere inside of the task.
— In implicit and explicit barriers.
— In taskwait.

At task scheduling points, tasks can be resumed or suspended.
(Further constraints - OpenMP 3.0, Sect. 2.7.1, page 62)

© 2000-2023 HLRS, Rolf Rabenseifner (@ REC - online]
Introduction to OpenMP - Major Extensions in OpenMP-4.5 - Retake from 3.0/3.1 Slide 18 /42

https://www.hlrs.de/training/par-prog-ws/

[Retake from the]
OpenMP-3.0/3.1 course

OpenMP single Directive — Syntax

 The block is executed by only one thread in the team
(not necessarily the master thread)

 Fortran:
!SOMP single[clause[[,]clause] ...]
block
ISOMP end single[nowait]
« C/C++:

#pragma omp single[clause|[][,]clause] ...] new-line
Structured-block

* Implicit barrier at the end of single construct
(unless a nowait clause is specified)

* To reduce the fork-join overhead, one can combine
— several parallel parts (for, do, workshare, sections)
— and sequential parts (single)
in one parallel region (parallel .. end parallel)

© 2000-2023 HLRS, Rolf Rabenseifner (@ REC - online]
Introduction to OpenMP - Major Extensions in OpenMP-4.5 - Retake from 3.0/3.1 Slide 22 /42

https://www.hlrs.de/training/par-prog-ws/

D

[

Retake from the]
OpenMP-3.0/3.1 course

OpenMP sections Directives — C/C++

C/C++

#pragma omp parallel

{
#pragma omp sections
{ a=..;
b=...; }
#pragma omp section
{ c=..;
d=...; }
#pragma omp section
{ e=...;
f=...;}
#pragma omp section
{ g=...;
h=...; }
} *omp end sections®/
} "fomp end parallel*/

© 2000-2023 HLRS, Rolf Rabenseifner (@ REC - online]
Introduction to OpenMP - Major Extensions in OpenMP-4.5 > Retake from 3.0/3.1

Slide 23 /42

https://www.hlrs.de/training/par-prog-ws/

[

Retake from the]
OpenMP-3.0/3.1 course

OpenMP sections Directives — Fortran

Fortran:

ISOMP PARALLEL
ISOMP SECTIONS
a=...
b=...
ISOMP SECTION
Cc=...
d=...
ISOMP SECTION
e=...
f=...
ISOMP SECTION
g=...
h=...
ISOMP END SECTIONS
ISOMP END PARALLEL

© 2000-2023 HLRS, Rolf Rabenseifner (@ REC - online]
Introduction to OpenMP - Major Extensions in OpenMP-4.5 > Retake from 3.0/3.1

Slide 24 / 42

https://www.hlrs.de/training/par-prog-ws/

[Retake from the]
OpenMP-3.0/3.1 course

@ OpenMP do/for Directives — C/C++
C/ C++:
#pragma omp parallel private(f) | | |
{ =7 =7 =7 =7
f=7;
#pragma omp for 3 Nl Haxd] e
for (i=0; i<20; i++)
a[i] = b[i] + f * (i+1); ai=] [a@=| lam=| [al)=
b(i)+:| [b(i)+. [bl)*d b+
} I* omp end parallel */
© 2000-2023 HLRS, Rolf Rabenseifner (@ REC - online]
Introduction to OpenMP - Major Extensions in OpenMP-4.5 - Retake from 3.0/3.1 Slide 26/ 42

https://www.hlrs.de/training/par-prog-ws/

[Retake from the]
OpenMP-3.0/3.1 course

M OpenMP do/for Directives — Fortran

Fortran:
ISOMP PARALLEL private(f)

f=7
ISOMP DO
do i=1,20
a(i)=b(i) +f*i
end do
ISOMP END DO
ISOMP END PARALLEL

© 2000-2023 HLRS, Rolf Rabenseifner (@ REC - online]
Introduction to OpenMP - Major Extensions in OpenMP-4.5 > Retake from 3.0/3.1

=7 =7 =7 =7
= 1= i= i=
1,5 6,10 11,15 16,20
a(i)= a(i)= a(i)= a(i)=
byt b))+ bl
Slide 27 / 42

https://www.hlrs.de/training/par-prog-ws/

OpenMP taskloop Directive — Syntax

« Immediately following loop executed in several tasks.
M « Itis not a work-sharing among threads!
« = Should be executed only by one thread!

* Fortran: (Loop iterations must be
SOMP taskloop [clause[[,]clause] ...] independent, i.e., they can
do loop be executed in parallel

[! SOMP end taskloop] -\

« If used, then the end taskloop directive must appear immediately after
the end of the loop

« C/C++:
#pragma omp taskloop [clause][,]clause]...] new-line
for-loop

» The corresponding for-loop must have canonical shape
- see slide on #pragma omp for

© 2000-2023 HLRS, Rolf Rabenseifner (@ REC - online]
Introduction to OpenMP - Major Extensions in OpenMP-4.5 Slide 31/42

https://www.hlrs.de/training/par-prog-ws/

OpenMP taskloop Directive — Details

» taskloop clauses:

— 1f ([taskloop:] scalar-expr) [a task clause]
— shared (list) [a doffor clause] [a task clause]
— private (listy, firstprivate (list) [ado/forclause] [a task clause]
— lastprivate (list) [a do/for clause]
— default (shared | none) [a task clause]
— collapse(n) [a doffor clause]

— grainsize (grain-size)
— num_tasks (num-tasks)&xclusive
final(true) = all children tasks from generated

- untied, mergeable tasks will t?e s?quentially included
— final (scalar-expr), priority (priority-value) [a task clause]

] [a task clause]

S — nogroup
ince .
[OpenMP-S.OJ? — reduction (operator: list) [a do/for clause]

« do/ for clauses that are not valid on a taskloop directive:

_ __ — taskloop schedule is similar to]
schedule (type [’ Chunk])7 ldo/for schedule(dynamic, grain-size)

— linear (list]: linaer-step]), ordered [(n)], nowait

© 2000-2023 HLRS, Rolf Rabenseifner (@ REC - online]
Introduction to OpenMP - Major Extensions in OpenMP-4.5 Slide 32 /42

https://www.hlrs.de/training/par-prog-ws/

Retake from the
OpenMP-3.0/3.1 course

First touch

First write of a byte iIna mgmory page Don’t use calloc() with OpenMP — no first touch

- memory page IS located in the whole array is already mapped to physical memory
physical memory of the executing thread

#define n 1000000 malloc() does not speciffthe physical ___CcNUMAnode

double *x; int 1i: location of the memory pages of the array! { Socket } { Socket

X = (double *) malloc(n*sizeof (double)); '

// sequential initialization of the data {Flrst touch only by master thread 1 dxip
y

for (i=0 ; i<n; 1i++) x[1]=0;<> Whole array is in 1st CPU’s memor tralmsport

hypen
#pragma omp parallel \J¢
{ // parallelized numerical loop

#pragma omp for schedule(static)

for (1i=0 ; 1i<n; 1++) x[1]=huge computation (i) ;

memory memory

} {9 slower accesses by threads on 2nd CPU]

M 11e1 |mp033|ble with any dynamic schedule or
pragma omp patalle Ltaskloops (i.e., only with static schedule)

{// parallel initialization of the data T — e 5
#pragma omp for schedule (static) aralielized first touc
for (i=0 ; i<n; i++) x[1]=0; with same schedule .) (i

! as in the numerical loo
"1 -’1

// parallelized numerical loop
memory memory

| Socket | Socket

fpragma omp for schedule(static)
for (1=0 ; i<n; 1++) x[1]=huge computation (i) ;

} - Fast accesses by all threads because}
Slide 33 / 42

© 2000-2023 HLRS, Rolf Rabenseifner (® REC - online] L X[i] is in the own CPU’s memory
Introduction to OpenMP - Major Extensions in OpenMP-4.5

https://www.hlrs.de/training/par-prog-ws/

& OpenMP single & taskloop Directives — C/C++

C/ C++: (Tasks are spread out among J
the (unused) threads
#pragma omp parallel | /|/ |
{ _ /
#pragma omp single single L
/ { A 4 \\
A lot more tasks # taskl i= i= i= i=
than threads may pragfna o.mp a.s oop 0,4 5,9 10,14| (15,19
be produced to for (i=0; i<30; i++) an=]| (a0 [aG=] |a=
achieve a good ali] = b[i] + f* (i+1);)+ i))+ |l
load balancing [[
= i=
S % / 4 sindle®! 20,24| |25,29
omp end single N Il
} /*omp end parallel*/ ba(‘|()|-)|-_ b?l()'l'

© 2000-2023 HLRS, Rolf Rabenseifner (@ REC - online]
Introduction to OpenMP - Major Extensions in OpenMP-4.5 Slide 34 /42

https://www.hlrs.de/training/par-prog-ws/

[OpenMP single & taskloop Directives — Fortran

Fortran: [Tasks are spread out among]
the (unused) threads
ISOMP PARALLEL — /I/ I
/
ISOMP SINGLE -
/ single /
Alot more tasks % 1$0MP TASKLOOP } R
than threads may N L iz iz
behf?mduced tg do i=1,30 159 |640| 1115 [6:20
fe sl NI a0=| [208| [0 e
J a(i) =b(i) +f*i by sl b+ b+ bl
\ [[
end do i= =
21,25 26,30
ISOMP END TASKLOOP a(i)= a(i)=
b(i)+...| [b(i)+...
ISOMP END SINGLE '
ISOMP END PARALLEL

© 2000-2023 HLRS, Rolf Rabenseifner (@ REC - online]
Introduction to OpenMP - Major Extensions in OpenMP-4.5 Slide 35/42

https://www.hlrs.de/training/par-prog-ws/

OpenMP sections & taskloop Directives — C/C++
Use case: Hybrid MPI & OpenMP

#pragma omp parallel Instead of)
single sections, one
#ipragma omp s can also use
task . [
#pragma omp seetfom | single and a Sect.
{" I MPI halo communication:| task for the w2
- first section / :y
Number of |/ humerical loop using halo data: jjrom
tasks may #pragma omp taskloop MRR] Bortion ,
~ be for (i=0; i<100; i++) :
Influe_nced a[I] - b[l] +b[|-1]+b[|+1]+b[|-2], halo w;:hlout £
with } /*omp end of “first” section*/ RN idli
um_tasks | L58gse-emprsaTion | R AN
clauses { /I numerical loop without using halo data: withoh ith ,
- J #pragma omp taskloop Y _
for (i=100; i<10000; i++) Loop| |Lpep| (Logp) YerHeuf
afi] = b[i] +b[i-11+b[i+1 J+b[i-2]..; PR Wi k] (180
};*/*omp e(r:!\d of ‘fsecg/nd” section*/
) %O?nrgpeﬁg p:\?acﬁleolgls Caution / implication from the first touch slide:

if a and b represent data of the MPI subdomain, then
each MPI process should be within a NUMA domain
© 2000-2023 HLRS, Rolf Rabenseifner (® REC > online) (and not the whole ccNUMA node)
Introduction to OpenMP - Major Extensions in OpenMP-4.5

=
Slide 36 /42

https://www.hlrs.de/training/par-prog-ws/

2 OpenMP sections & taskloop Directives — Fortran

1I$SOMP PARALLEL Instead of sections, one

ISOMP SECTIONS ™ |can also use single and a

ISOMP SECTION task for the first section

y,

I MPIl halo communication:

Loop
portion

without
halo

op
ith

Loop Loop h I t
ith|h ith’h alo
i | ¥

Sect.
(Number of ! numerical loop using halo data: L
tasks may N soMmP TASKLOOP !
~ be do i=1,100 MBL
mqugnced a(i) = b(i) +b(i-1)+b(i+1)+b(i-2)+...
with end do SN
gra'”sizekor ISOMP END TASKLOOP Eomm
m:;EGsaeSs ° | 15OMP SECTION N
_ /I numerical loop without using halo data: ~ [Laop
I5OMP TASKLOOP AN
do i=101,10000)
. _ ‘ _ _ 0op
a(i) = b(i) +b(i-1)+b(i+1)+b(i-2)+... ithch
end do
ISOMP END TASKLOOP |
ISOMP END SECTIONS

Caution / implication
-> see previous slide

ISOMP END PARALLEL

© 2000-2023 HLRS, Rolf Rabenseifner (@ REC - online]
Introduction to OpenMP - Major Extensions in OpenMP-4.5

Slide 37 /42

https://www.hlrs.de/training/par-prog-ws/

Major Extensions in OpenMP 5.0 (Released Nov. 2018)

Version 4.5 to 5.0 Differences (page numbers in OpenMP 5.0) > p. 627-631
 reduction clause for taskloop and taskloop simd - p. 629:20-23

collapse (n) also for imperfectly nested loops (e.g. triangles) > p. 628:27-28,34-37
» Default loop schedule changed from monotonic t0 nonmonotonic

(if schedule is not static, and without ordered clause)

- free sequence of the chunks within a thread (within a chunk, the sequence is still monotonic)
- enables implementation of work stealing for dynamic/guided

- minimizes overhead > see OpenMPCon 2018, Cownie & Peyton = p. 628:31-33

« Scan option for reductions > p. 629:7-9
» Task reductions = OpenMPCon 2018, Michael Klemm: OpenMP API 5.0 = p. 629:10-14
* A lot of other smaller enhancements - p. 627-631

* Enhanced support for accelerators

Further information:
« OpenMPCon 2018 conference, slides: https://openmpcon.org/conf2018/program/

— Michael Klemm: OpenMP API 5.0 - Update on new Features
— Jim Cownie, Jonathan Peyton: Small, Easy to Use, OpenMP* Features You May Have Missed
— Michael Klemm, Xavier Martorell and Xavier Teruel: Advanced OpenMP Tutorial

© 2000-2023 HLRS, Rolf Rabenseifner (@ REC - online]
Introduction to OpenMP - Major Extensions in OpenMP-5.0 Slide 38 /42

https://www.hlrs.de/training/par-prog-ws/
https://openmpcon.org/conf2018/program/

Conclusions

OpenMP-4.0 includes important new features
— Based on experience with other products, e.g.,
o Thread-affinity packages
o MPI user-defined reductions
o OpenACC
o Long history of directives to support vectorizing
— Now, integral part of the OpenMP-4.0 standard !
OpenMP-4.5, major new features are
— taskloop
— extended GPU support

Acknowledgements

» Christian Terboven, Michael Klemm, Bronis R. de SupinskKi
— “Advanced OpenMP Tutorial” at ISC 2013, Leipzig

* Christoph Niethammer, José Gracia (HLRS)

© 2000-2023 HLRS, Rolf Rabenseifner (@ REC - online]
Introduction to OpenMP - Extensions in 4.0/4.5/5.0 & Conclusions

Slide 39/ 42

https://www.hlrs.de/training/par-prog-ws/

OpenMP Exercise: pi_taskloop program (1)

* Goal: usage of
— taskloop constructs

Always “01” in online courses

« Working directory: ~/OpenMP/#NR/pi taskloop/
#NR = number of your PC, e.g., 07

Serial programs:
— Fortran 90: pi taskloop.f90 and pi taskloop2.£f90

- C: pli taskloop.c and pi taskloop2.c

» The taskloop program is a skeleton for using single + taskloop constructs

« The taskloop2 program is prepared for sections + 2 x taskloop constructs
— Only the outer loop can be parallelized with taskloop
— The inner loop contains a reduction - one can not use taskloop

* The skeleton splits the loop into a loop nest
— The outer loop is without an reduction operation

— Reason: OpenMP 4.5 did not provide the reduction clause for taskloops
(resovled in OpenMP 5.0)

© 2000-2023 HLRS, Rolf Rabenseifner (@ REC - online]
Introduction to OpenMP - Extensions in 4.0/4.5/5.0 > Exercise Slide 40/ 42

https://www.hlrs.de/training/par-prog-ws/

OpenMP Exercise: pi_taskloop program (2)

« compile serial program pi. [f |[£90|c] and run
« add parallel region single and taskloop directives
» compile as OpenMP program
« set environment variable OMP NUM THREADS to 1, 2, 4 and run
— value of pi? (should be correct)
— examine the OMP_GET WTIME time (should be 2x and 4x faster)

» After successful execution, you may compare your result with the provided
solution:

- ../../solution/pi taskloop/pi taskloop solution.c oOfr
../../solution/pi taskloop/pi taskloop solution.f90

© 2000-2023 HLRS, Rolf Rabenseifner (@ REC - online]
Introduction to OpenMP - Extensions in 4.0/4.5/5.0 > Exercise D

‘|los

Slide 41 /42

https://www.hlrs.de/training/par-prog-ws/

OpenMP Advanced Exercise: pi_taskloop2 program (3)

« compile serial program pi. [f |[£90|c] and run
« add parallel region sections and two times the taskloop directives
» compile as OpenMP program
« set environment variable OMP NUM THREADS to 1, 2, 4 and run
— value of pi? (should be correct)
— examine the OMP_GET WTIME time (should be 2x and 4x faster)

» After successful execution, you may compare your result with the provided
solution:

- ../../solution/pi taskloop/pi taskloop2 solution.c or
../../solution/pi taskloop/pi taskloop2 solution.f90

© 2000-2023 HLRS, Rolf Rabenseifner (@ REC - online]
Introduction to OpenMP - Extensions in 4.0/4.5/5.0 - Advanced Exercise see also login-slides (in on-site courses only) D Slide 42 /42

https://www.hlrs.de/training/par-prog-ws/

Appendix

© 2000-2023 HLRS, Rolf Rabenseifner (@ REC - online]
Introduction to OpenMP - Appendix Slide 43(App.)

https://www.hlrs.de/training/par-prog-ws/

pi_taskloop solution.c — solution with taskloop

int main(int argc, char** argv) :)

{ Skeleton: Outer loop without reduction was added
int 1i; — —_—
double w,x,sum,pi; To prevent cache-line false sharing

int i outer; —
double sum outer[100][64]; // A cache line should be not larger than the 64 ints.
- // Each task j should use sum outer[j][0], i.e., each of
// these summing-variables is in a different cache-line

/* calculate pi = integral [0..1] 4/ (1+x**2) dx */
w=1.0/n;
sum=0.0;
for (i_outer=0; i outer<1l00; i outer++) sum outer[i outer][0]=0.0;

#pragma omp parallel
{

Solution: Using a taskloop within parallel / single

pragma omp single
pragma omp taskloop private (x,1i)
for (i outer=0; i outer<l00; i outer++)
for (i=i outer+1l;i<=n;i+=100)
{
X=w* ((double)i-0.5);
sum outer[i outer] [0] += f(x);

} /*end omp parallel*/ Skeleton: Summing up the outer loop outside of the numerical loop

for (i_outer=0; i outer<100; i outer++) sum += sum outer[i outer] [0];
pi=w*sum;

printf("computed pi = $24.16g\n", pi); Required for time measurements (hidden on this slide):
return 0; printf is an external activity that prevents that the
} compiler removes all calculations as “dead code”

© 2000-2023 HLRS, Rolf Rabenseifner (@ REC - online]
Introduction to OpenMP - Pitfalls D 8 Slide 44 (App.)

https://www.hlrs.de/training/par-prog-ws/

pi_taskloop_solution.f90 — solution with taskloop

program compute pi

implicit none
integer i ; integer, parameter :: n=10000000 | Skeleton: Outer loop without reduction was added
real (kind=8) w,x,sum,pi, f,a

integer i outer

real (kind=8) sum outer(0:63,0:99) 'A cache line should be not larger than the 64 ints.
— /;

To prevent cache-line false sharing

! calculate pi = integral [0..1] 4/ (1+x**2) dx
w=1.0 8/n ; sum=0.0_8
do i outer=0,99

sum outer (0,i outer)=0.0

enddo
! SOMP PARALLEL Solution: Using a taskloop within parallel / single

1SOMP SINGLE
1SOMP TASKLOOP PRIVATE (x,1i)
do 1 outer=0,99
do i=1i outer+l,n, 100
x=w* (1-0.5 8)
sum outer (0,i outer) = sum outer(0,i outer) + f(x);
enddo - - -
enddo
! SOMP END TASKLOOP

ISOMP END SINGLE
1SOMP END PARALLEL Skeleton: Summing up the outer loop outside of the numerical loop

do i_outer=0,99
sum = sum + sum outer(0,i_ outer)

enddo
pi=w*sum
write (*,'(/,a,lpg24.106)") 'computed pi = ', pi

© 2000-2023 HLRS, Rolf Rabenseifner (@ REC - online]
Introduction to OpenMP - Pitfalls

%oeq

'Each task j should use sum outer(0,j), i.e., each of
'these summing-variables is in a different cache-line

Slide 45(App.)

https://www.hlrs.de/training/par-prog-ws/

