
© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

Introduction to OpenMP

Rolf Rabenseifner
rabenseifner@hlrs.de

www.hlrs.de/people/rabenseifner/

University of Stuttgart
High Performance Computing Center Stuttgart (HLRS)

www.hlrs.de

Version 13, Aug 21, 2020 (for OpenMP 3.1 and older)

Change

Mar 03, 2022
from 2022

Mar 27, 2022
Corrections from

Aug 29, 2022
Corrections from

Oct 17, 2022
from 2022

M
from 2022

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

Outline
• Introduction into OpenMP – 3 (slide numbers)

• Programming and Execution Model – 20
– Parallel regions: team of threads – 21
– Syntax – 25
– Data environment (part 1) – 28
– Environment variables – 29
– Runtime library routines – 30
– Exercise 1: Parallel region / library calls / privat & shared variables – 33

• Worksharing directives – 42
– Which thread executes which statement or operation? – 43
– Exercise 2a: Pi – 57
– Tasks – 62
– Synchronization constructs, e.g., critical regions – 70
– Nesting and Binding – 77
– Exercise 2b: Pi – 81

• Data environment and combined constructs – 86
– Private and shared variables, Reduction clause – 87
– Combined parallel worksharing directives – 92
– Exercise 3: Pi with reduction clause and combined constructs – 95
– Exercise 4: Heat – 103

• Summary of OpenMP API – 123

• OpenMP Pitfalls & Optimization Problems – 127 & 141

• Appendix (exercise solutions) – 152

O
pe

nM
P

O
ut

lin
e

Introduction to OpenMP à Outline Slide 2

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

OpenMP Overview: What is OpenMP?

• OpenMP is a standard programming model for shared memory
parallel programming

• Portable across all shared-memory architectures
• It allows incremental parallelization
• Compiler based extensions to existing programming languages

– mainly by directives
– a few library routines

• Fortran and C/C++ binding
• OpenMP is a standardIn

tro
du

ct
io

n

Introduction to OpenMP à Intro Slide 3

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

Parallel hardware architectures

memory-interface

core

memory
bank

memory
bank

memory
bank

memory
bank

core core core

Socket / CPU

memory memory memory memory

hyper-transport

SocketSocketSocketSocket

Node NodeNodeNodeNode

node-interconnect

distributed memory

Cluster
à node-interconnect

NUMA (non-uniform memory access)
!! fast access only on its own memory !!
Many programming options:
• Shared memory / symmetric multi-

processing inside of each node
• distributed memory parallelization on the

node interconnect
• Or simply one MPI process on each core

Socket/CPU
à memory interface

UMA (uniform memory access)
SMP (symmetric multi-processing)
All cores connected to all memory
banks with same speed

Parallel execution streams on each
core, e.g.,
x[0 … 999] = … on 1st core
x[1000 … 1999] = … on 2nd core
x[2000 … 2999] = … on 3rd core
…

Node
à hyper-transport

ccNUMA (cache-coherent non-uniform
memory access)

#CPUs x memory bandwidth
Shared memory programming is possible
Performance problems:
• Each parallel execution stream should

mainly access the memory of its CPU
à First-touch strategy is needed to
minimize remote memory access

• Threads should be pinned to the
physical sockets

shared memory

Slide, courtesy to Claudia Blaas-Schenner

Shared memory programming with OpenMP

MPI works everywhere

and
Claudia‘s

see Acknowledgements slide

Introduction to OpenMP à Intro Slide 4

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

Shared Memory Directives – OpenMP, I.

Introduction to OpenMP à Intro

Real :: A(n,m), B(n,m)

do j = 2, m-1
do i = 2, n-1

B(i,j) = ... A(i,j)
... A(i-1,j) ... A(i+1,j)
... A(i,j-1) ... A(i,j+1)

end do
end do

Loop over y-dimension
Vectorizable loop over x-dimension

Calculate B,
using upper and lower,

left and right value of A

Data definition

!$OMP END PARALLEL DO

!$OMP PARALLEL DO

Slide 5

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

Shared Memory Directives – OpenMP, II.

Introduction to OpenMP à Intro

Master ThreadSingle Thread

Team of ThreadsParallel Region
!$OMP PARALLEL

Master ThreadSingle Thread
!$OMP END PARALLEL

Team of ThreadsParallel Region
!$OMP PARALLEL

Master ThreadSingle Thread
!$OMP END PARALLEL

Slide 6

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

Additional Halo Cells – MPI, I.

Halo
(Shadow,
Ghost cells)

User defined communication

Introduction to OpenMP à Intro Slide 7

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

Real :: A(n,m), B(n,m)
do j = 2, m-1

do i = 2, n-1
B(i,j) = ... A(i,j)

... A(i-1,j) ... A(i+1,j)

... A(i,j-1) ... A(i,j+1)
end do

end do

Message Passing – MPI, II.

Call MPI_Comm_size(MPI_COMM_WORLD, size, ierror)
Call MPI_Comm_rank(MPI_COMM_WORLD, myrank, ierror)
m1 = (m+size-1)/size; ja=1+m1*myrank; je=min(m1*(myrank+1), m)
jax=ja-1; jex=je+1 // extended boundary with halo

Real :: A(n, jax:jex), B(n, jax:jex)
do j = max(2,ja), min(m-1,je)

do i = 2, n-1
B(i,j) = ... A(i,j)

... A(i-1,j) ... A(i+1,j)

... A(i,j-1) ... A(i,j+1)
end do

end do

Call MPI_Send(.......) ! - sending the boundary data to the neighbors
Call MPI_Recv(.......) ! - receiving from the neighbors,

! storing into the halo cells

Loop over y-dimension
Vectorizable loop over x-dimension

Calculate B,
using upper and lower,

left and right value of A

Data definition

Introduction to OpenMP à Intro Slide 8

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

Motivation: Why should I use OpenMP?

Time/Effort

Performance

Scalar
Program

OpenMP

MPI

Code does not work

OpenMP+MPI

Introduction to OpenMP à Intro Slide 9

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

Further Motivation to use OpenMP

• OpenMP is the easiest approach to multi-threaded programming
• Multi-threading is needed to exploit modern hardware platforms:

– Several CPUs together within one ccNUMA node
– Several cores per CPU
– Hyperthreading

Introduction to OpenMP à Intro Slide 10

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

Where should I use OpenMP?

Problem size

#CPUs
#cores

Dominated by Overhead

MPI

OpenMP

Scalar

1 core

Introduction to OpenMP à Intro

Mar 03, 2022

Slide 11

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

Simple OpenMP Program

Serial Program:
void main()
{

double Res[1000];

for(int i=0;i<1000;i++) {
do_huge_comp(Res[i]);

}
}

Parallel Program:
void main()
{

double Res[1000];
#pragma omp parallel for

for(int i=0;i<1000;i++) {
do_huge_comp(Res[i]);

}
}

• Most OpenMP constructs are compiler directives or pragmas

• The focus of OpenMP is to parallelize loops
with independent iterations

• OpenMP offers an incremental approach to parallelism

Introduction to OpenMP à Intro Slide 12

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

Speedup, Efficiency, Scaleup, and Weak Scaling

• Definition: T(p,N) = time to solve problem of total size N on p processors

• Parallel speedup: S(p,N) = T(1,N) / T(p,N)
compute same problem with more processors in shorter time

• Parallel Efficiency: E(p,N) = S(p,N) / p

• Scaleup: Sc(p,N) = N / n with T(1,n) = T(p,N)
compute larger problem with more processors in same time

• Weak scaling: T(p, p•n) / T(1,n) is reported,
i.e., problem size per process (n) is fixed

• Problems:
– Absolute MFLOPS rate / hardware peak performance?
– Super-scalar speedup: S(p,N)>p, e.g., due to cache*) usage for large p:

• T(1,N) may be based on a huge number of N data elements in the memory in the one process,
whereas

• T(p,N) may be based on cache based execution due to only N/p data elements per process

– S(p,N) close to p or far less? à see Amdahl’s Law on next slide
*) Faster memory for temporary copies of recently used data

Sp
ee

du
p

&
 A

m
da

hl
’s

 L
aw

Three different ways of
reporting the success

course

Introduction to OpenMP à Intro Slide 13

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

Amdahl’s Law

T(p,N) = f·T(1,N) + (1-f)·T(1,N) / p
f ... sequential part of code that can not be done in parallel

S(p,N) = T(1,N) / T(p,N) = 1 / (f + (1-f) / p)
For p —> infinity, speedup is limited by S(p,N) < 1 / f

0
10
20
30
40
50
60
70
80
90

100

0 20 40 60 80 100
p = #processors

Sp
ee

du
p

S(
p,

N) S(p,N) = p (ideal speedup)
f=0.1% => S(p,N) < 1000
f= 1% => S(p,N) < 100
f= 5% => S(p,N) < 20
f= 10% => S(p,N) < 10

Introduction to OpenMP à Intro Slide 14

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

Amdahl’s Law (double-logarithmic)

T(p,N) = f·T(1,N) + (1-f)·T(1,N) / p
f ... sequential part of code that can not be done in parallel

S(p,N) = T(1,N) / T(p,N) = 1 / (f + (1-f) / p)
For p —> infinity, speedup is limited by S(p,N) < 1 / f

1

10

100

1000

1 10 100 1000
p = #processors

Sp
ee

du
p

S(
p,

N
) S(p,N) = p (ideal speedup)

f=0.1% => S(p,N) < 1000
f= 1% => S(p,N) < 100
f= 5% => S(p,N) < 20
f= 10% => S(p,N) < 10

Introduction to OpenMP à Intro Slide 15

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

AMD1) (Greg Rodgers)
Argonne National Laboratory (Kalyan Kumaran)
ARM (Graham Hunter)
ASC/Lawrence Livermore NL1) (Bronis R. de Supinski)
Barcelona Supercomputing Center (Xavier Martorell)
Brookhaven National Laboratory (Vivek Kale)
cOMPunity1) (Yonghong Yan)
CRAY1), a HPE company (Deepak Eachempati)
Edinburgh Parallel Computing Centre1) (Mark Bull)
Fujitsu1) (Naoki Sueyasu)
IBM1) (Kelvin Li)
INRIA (Olivier Aumage)
Intel1) (Xinmin Tian)
Lawrence Berkeley National Laboratory (Helen He)
Leibniz Supercomputing Centre (Volker Weinberg)
Los Alamos National Laboratory (Jamal Mohd-Yusof)
Maui HPC Center (Alice Koniges)
Mentor Graphics, a Siemens Business (Catherine Moore)
Micron (Randy Meyer)

Who owns OpenMP? - OpenMP Architecture Review Board
NASA1) (Henry Jin)
NEC1) (Shin-ichi Okano)
NVIDIA (Jeff Larkin)
Oak Ridge National Laboratory (Oscar Hernandez)
RWTH Aachen University1) (Dieter an Mey)
Sandia National Laboratory (Stephen Olivier)
Stony Brook University (Dr. Barbara Chapman)
SUSE (Michael Matz)
Texas Advanced Computing Center (Kent Milfeld)
The University of Manchester (Antoniu Pop)
University of Basel (Florina Ciorba)
University of Bristol (Simon McIntosh-Smith)
University of Delaware (Sunita Chandrasekaran)
University of Tennessee (Piotr Luszczek)
1) Already 2008 member of the ARB

From: https://www.openmp.org/about/members/
Last update: Aug 21, 2020

2020: 11 (=30%) companies + 22 (70%) HPC centers
2008: 11 (=70%) companies + 5 (30%) HPC centers

Introduction to OpenMP à Intro Slide 16

https://www.hlrs.de/training/par-prog-ws/
https://www.openmp.org/about/members/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

OpenMP Release History

OpenMP
Fortran 1.1

OpenMP
C/C++ 1.0

OpenMP
Fortran 2.0

OpenMP
C/C++ 2.0

1998

20001999

2002

OpenMP
Fortran 1.0

1997

OpenMP
2.5

May
2005

OpenMP
3.0

May
2008

OpenMP
3.1

July
2011

OpenMP
4.0

July
2013

OpenMP
4.5

Nov.
2015

Introduction to OpenMP à Intro

OpenMP
5.0

Nov.
2018

OpenMP
5.1

Nov.
2020

OpenMP
5.2

Nov.
2021

Slide 17

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

OpenMP Availability
• OpenMP 1.0 (C/C++) and OpenMP 1.1 (Fortran 90)

is available on all platforms in the commercial compilers
• Most features from OpenMP 2.0 are already implemented
• OpenMP 2.5 – no substantial new features/changes compared to 2.0
• OpenMP 3.0 – task concept added

– new features for loop worksharing
• OpenMP 3.1 – final and mergeable clauses for task construct

– taskyield construct to allow user-defined
task switching points

– min and max reduction in C/C++
– OMP_NUM_THREADS can handle a list for nested regions
– OMP_PROC_BIND to bind threads to processors

• OpenMP 4.0 – Thread affinity and OMP_PLACES
– SIMD support
– Support for accelerators
– Tasking extensions

• OpenMP 4.5 – taskloop

• OpenMP 5.0 – reduction clause for taskloop and taskloop simd
– default loop schedule changed from monotonic to nonmonotonic

à enables work stealing for dynamic & guided

Vers.

Introduction to OpenMP à Intro

Mar 03, 2022

Slide 18

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

OpenMP Information

• OpenMP Homepage: http://www.openmp.org/
• OpenMP user group: http://www.compunity.org/

• Barbara Chapman, Gabriele Jost, and Ruud van der Pas:
Using OpenMP.
MIT Press, 2008, ISBN-13: 978-0-262-53302-7.

• Georg Hager, Gerhard Wellein:
Introduction to High Performance Computing for Scientists and Engineers.
CRC Press, 2010, 256p, ISBN13: 978-1-439-81192-4

• R.Chandra, L. Dagum, D. Kohr, D. Maydan, J. McDonald, and R. Menon:
Parallel programming in OpenMP.
Academic Press, San Diego, USA, 2000, ISBN 1-55860-671-8

Introduction to OpenMP à Intro Slide 19

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

Outline — Programming and Execution Model
• Introduction into OpenMP
• Programming and Execution Model

– Parallel regions: team of threads
– Syntax
– Data environment (part 1)
– Environment variables
– Runtime library routines
– Exercise 1: Parallel region / library calls / privat & shared variables

• Worksharing directives
– Which thread executes which statement or operation?
– Exercise 2a: Pi
– Tasks
– Synchronization constructs, e.g., critical regions
– Nesting and Binding
– Exercise 2b: Pi

• Data environment and combined constructs
– Private and shared variables, Reduction clause
– Combined parallel worksharing directives
– Exercise 3: Pi with reduction clause and combined constructs
– Exercise 4: Heat

• Summary of OpenMP API
• OpenMP Pitfalls

Pr
og

ra
m

m
in

g&
Ex

ec
ut

io
n

M
od

el

Introduction to OpenMP à Programming and Execution Model Slide 20

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

OpenMP Programming Model

• OpenMP is a shared memory model.
• Workload is distributed between threads

– Variables can be
• shared among all threads
• duplicated for each thread

– Threads communicate through barriers (à next slide).
• Unintended sharing of data can lead to race conditions:

– race condition: when the program’s outcome changes as the
threads are scheduled differently.

• To control race conditions:
– Use synchronization to protect data conflicts.

Introduction to OpenMP à Programming and Execution Model Slide 21

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

Barrier

Introduction to OpenMP à Programming and Execution Model

threads = parallel execution streams
e.g., x[2000] = …

x[3000] = …

x[3001] = …

Barrier:
waits until all threads have called the barrier, and
then all threads will continue with the next operation

tim
e

Slide 22

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

Team of ThreadsParallel Region

OpenMP Execution Model

Sequential Part

Master ThreadSequential Part

Team of ThreadsParallel Region

Master ThreadSequential Part

Introduction to OpenMP à Programming and Execution Model

• Begin execution as a single
thread/process (master thread)

• Start of a parallel construct:
Master thread creates team of
threads

• Completion of a parallel construct:
Threads in the team synchronize:
implicit barrier

• Only master thread continues
execution

Combining this and the next slide

Fork-join model of parallel execution

Corrections fro. 2022

Slide 23

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

One executable statement,
possibly compound { …; …; … },

with a single entry at the top
and a single exit at the bottom

or an OpenMP construct.

OpenMP Parallel Region Construct

!$OMP PARALLEL

block

!$OMP END PARALLEL

structured block

#pragma omp parallel

/* omp end parallel */

Fortran:

C / C++:
C/C++

Fortran

A block of executable statements
with a single entry at the top

and a single exit at the bottom
or an OpenMP construct.

Introduction to OpenMP à Programming and Execution Model Slide 24

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

OpenMP Parallel Region Construct Syntax

• Block of code to be executed by multiple threads in parallel.
Each thread executes the same code in a replicated way!

• Fortran:
!$OMP PARALLEL [clause [[,] clause] ...]
block
!$OMP END PARALLEL

– parallel/end parallel directive pair must appear in the
same routine

• C/C++:
#pragma omp parallel [clause [[,] clause] ...] new-line

structured-block
• clause can be one of the following:

– private(list)
– shared(list)
– ...

C/C++

Fortran

[xxx] = xxx is optional

Introduction to OpenMP à Programming and Execution Model Slide 25

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

OpenMP Directive Format: C/C++

• #pragma directives – case sensitive
• Format:

#pragma omp directive_name [clause [[,] clause] ...] new-line
• Conditional compilation

#ifdef _OPENMP
block,
e.g., printf("%d avail.processors\n",omp_get_num_procs());

#endif

• Include file for library routines:
#ifdef _OPENMP
#include <omp.h>
#endif

• In the old OpenMP 1.0 syntax, the comma [,] between clauses was not allowed
(some compilers in use still may have this restriction)

C/C++

Introduction to OpenMP à Programming and Execution Model Slide 26

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

OpenMP Directive Format: Fortran

• Treated as Fortran comments – not case sensitive
• Format:

sentinel directive_name [clause [[,] clause] ...]
• Directive sentinels:

– Fixed source form: !$OMP | C$OMP | *$OMP [starting at column 1]
– Free source form: !$OMP [may be preceded by white space]

• Conditional compilation
– Fixed source form: !$ | C$ | *$
– Free source form: !$
– #ifdef _OPENMP [in my_fixed_form.F or .F90]

block
#endif

– Example:
!$ write(*,*) OMP_GET_NUM_PROCS(),’ avail. processors’

• Include file for library routines:
– include ’omp_lib.h’ or use omp_lib [implementation dependent]

Fortran

Introduction to OpenMP à Programming and Execution Model Slide 27

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

OpenMP Data Scope Clauses

• private (list)
Declares the variables in list to be private to
each thread in a team.
They are uninitialized.

• shared (list)
Makes variables that appear in list shared
among all the threads in a team

• If not specified: default shared, but
– stack (local) variables in called sub-programs are

PRIVATE
– Automatic variables within a block are PRIVATE
– Loop control variable of parallel OMP

• DO (Fortran)
• for (C)

is PRIVATE
– ... [see later: Data Model]

F=0

F=-1

F=-1

F=1 F=2

#pragma omp parallel private(F)

F=-1 with OpenMP ≥ 3.0
F= undef with OpenMP ≤ 2.5

Introduction to OpenMP à Programming and Execution Model Slide 28

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

OpenMP Environment Variables

• OMP_NUM_THREADS

– sets the number of threads to use during execution
– when dynamic adjustment of the number of threads is enabled,

the value of this environment variable is the maximum number
of threads to use

– setenv OMP_NUM_THREADS 16 [csh, tcsh]
– export OMP_NUM_THREADS=16 [sh, ksh, bash]

• OMP_SCHEDULE

– applies only to do/for and parallel do/for directives that
have the schedule type RUNTIME

– sets schedule type and chunk size for all such loops
– setenv OMP_SCHEDULE "GUIDED,4" [csh, tcsh]
– export OMP_SCHEDULE="GUIDED,4" [sh, ksh, bash]

Introduction to OpenMP à Programming and Execution Model Slide 29

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

OpenMP Runtime Library (1)

• Query functions
• Runtime functions

– Run mode
– Nested parallelism

• Lock functions
• C/C++: add #include <omp.h>
• Fortran: add all necessary OMP routine declarations, e.g.,

!$ INTEGER omp_get_thread_num

or use include file
!$ INCLUDE ’omp_lib.h’

or module
!$ USE omp_lib

Existence of include file or module or both is implementation dependent.

C/C++

Fortran

Introduction to OpenMP à Programming and Execution Model Slide 30

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

OpenMP Runtime Library (2)

• omp_get_num_threads Function
Returns the number of threads currently in the team executing the
parallel region from which it is called
– Fortran:

integer function omp_get_num_threads()

– C/C++:
int omp_get_num_threads(void);

• omp_get_thread_num Function
Returns the thread number, within the team, that lies between 0
and omp_get_num_threads()-1, inclusive. The master thread of
the team is thread 0
– Fortran:

integer function omp_get_thread_num()

– C/C++:
int omp_get_thread_num(void);

C/C++

Fortran

C/C++

Fortran

Introduction to OpenMP à Programming and Execution Model Slide 31

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

OpenMP Runtime Library (3): Wall clock timers

• Portable wall clock timers similar to MPI_WTIME
• DOUBLE PRECISION FUNCTION OMP_GET_WTIME()

double omp_get_wtime(void);

– provides elapsed time

START=OMP_GET_WTIME()
! Work to be measured
END = OMP_GET_WTIME()
PRINT *, ´Work took ´, END-START, ´ seconds´

– provides “per-thread time”, i.e. needs not be globally consistent

• DOUBLE PRECISION FUNCTION OMP_GET_WTICK()
double omp_get_wtick(void);

– returns the number of seconds between two successive clock ticks
C/C++

Fortran

C/C++

Fortran

Introduction to OpenMP à Programming and Execution Model Slide 32

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

Outline — Exercise 1: Parallel region
• Introduction into OpenMP
• Programming and Execution Model

– Parallel regions: team of threads
– Syntax
– Data environment (part 1)
– Environment variables
– Runtime library routines
– Exercise 1: Parallel region / library calls / privat & shared variables

• Worksharing directives
– Which thread executes which statement or operation?
– Exercise 2a: Pi
– Tasks
– Synchronization constructs, e.g., critical regions
– Nesting and Binding
– Exercise 2b: Pi

• Data environment and combined constructs
– Private and shared variables, Reduction clause
– Combined parallel worksharing directives
– Exercise 3: Pi with reduction clause and combined constructs
– Exercise 4: Heat

• Summary of OpenMP API
• OpenMP Pitfalls

Ex
er

ci
se

 1
:

Li
br

ar
y-

ca
lls

Introduction to OpenMP à Programming and Execution Model à Exercise 1

skip Slide 33

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

OpenMP Exercise 1: Parallel region (1)

• Goal: usage of
– runtime library calls
– conditional compilation
– environment variables
– parallel regions, private and shared clauses

• Working directory: ~/OpenMP/#NR/hello/
#NR = number of your PC, e.g., 01

• Serial programs:
– Fortran 90: hello.f90

– C: hello.c

Always “01” in online courses

#include <stdio.h>
#include <unistd.h>
int main(int argc, char** argv)
{

int i;
i = -1;

printf("hello world %d\n",i);
return 0;

}

program hello

integer i

i=-1

print *,'hello world',i

end program hello

i = “my rank”
into a
parallel
region

C/C++Fortran

i = “my rank”
into a
parallel
region

Introduction to OpenMP à Programming and Execution Model à Exercise 1 Slide 34

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

OpenMP Exercise 1: Parallel region (2)

• Compile serial program hello.[c|f90] and run
• Compile as OpenMP program and run on 4 cores

– add OpenMP compile option, e.g.,
• -fopenmp on gnu compilers gcc, and gfortran
• -qopenmp on Intel compiler icc and ifort

– export OMP_NUM_THREADS=4 ; ./a.out (with bash or similar)

– setenv OMP_NUM_THREADS 4 ; ./a.out (with tcsh or similar)

– expected result: program is not parallelized,
same output

see also login-slides (in on-site courses only)

bash$ gcc –fopenmp hello.c
or gfortran –fopenmp hello.f90
bash$ export OMP_NUM_THREADS=4; ./a.out
hello world -1
bash$

Introduction to OpenMP à Programming and Execution Model à Exercise 1

Mar 03, 2022

Slide 35

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

OpenMP Exercise 1: Parallel region (3)
• Please add the following additional code (i.e., don’t change existing code!)

– If compiled with OpenMP then
– i := the rank of the current thread

• Compile as OpenMP and as non-OpenMP program and run on 4 cores
– Expected result:

• Without OpenMP: no difference

• With OpenMP: Only the master thread is running, and therefore i = 0

– After successful execution, you may compare with the provided solution:
• ../../solution/hello/hello2.c or hello2.f90 (hello1 was your starting point)

bash$ gcc -fopenmp hello.c
or gfortran -fopenmp hello.f90
bash$ export OMP_NUM_THREADS=4; ./a.out
hello world 0
bash$

bash$ gcc hello.c
or gfortran hello.f90
bash$ export OMP_NUM_THREADS=4; ./a.out
hello world -1
bash$

Introduction to OpenMP à Programming and Execution Model à Exercise 1

Sep 27,
from 2021

Mar 03, 2022

Corrections fro. 2022
–

Slide 36

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

OpenMP Exercise 1: Parallel region (4)
• Please add the following additional code (i.e., don’t change existing code!)

– Execute the i=omp_get_...() together with the print statement
within a parallel region

• Compile as OpenMP and as non-OpenMP program and run on 4 cores
– Expected result:

• Without OpenMP: no difference to previous slide

• With OpenMP: Each thread executes its print statement after
each thread stored a different value into i = 0, 1, 2, 3, but the
variable i is shared! Therefore the output can be:

– After successful execution, you may compare with the provided solution:
• ../../solution/hello/hello3.c or hello3.f90

bash$ gcc -fopenmp hello.c
or gfortran -fopenmp hello.f90
bash$ export OMP_NUM_THREADS=4; ./a.out
hello world 3
hello world 1
hello world 1
hello world 3

…
hello world -1

Such a race condition may be invisible, i.e.,
you may see a correct result, e.g., 0 / 2 / 3 / 1,
although the software is WRONG!

Introduction to OpenMP à Programming and Execution Model à Exercise 1

Corrections

Mar 03, 2022

Corrections fro. 2022
–

Slide 37

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

OpenMP Exercise 1: Parallel region (5)
• If you could not see the race condition, then you can apply a small trick:

– Make the race-condition obvious:
– Add a sleep(1); in C, or a CALL sleep(1) in Fortran
– between the i= … and the print statement

• Compile as OpenMP and as non-OpenMP program and run on 4 cores
– Expected result:

• Without OpenMP: no difference to previous slide

• With OpenMP: Each thread stores a different value into i = 0, 1, 2, 3,
but the variable i is still shared. And printing starts one second later J
Therefore the output can be:

– After successful execution, you may compare with the provided solution:
• ../../solution/hello/hello4.c or hello4.f90

bash$ gcc -fopenmp hello.c
or gfortran -fopenmp hello.f90
bash$ export OMP_NUM_THREADS=4; ./a.out
hello world 2
hello world 2
hello world 2
hello world 2

…
hello world -1

If thread 2 was the last one
storing its rank into the shared
variable i

Introduction to OpenMP à Programming and Execution Model à Exercise 1

Corrections

Mar 03, 2022

Corrections fro. 2022
–

Slide 38

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

OpenMP Exercise 1: Parallel region (6)
• As last step, please add the private() clause to your parallel region directive:

– Make the variable i private

• Compile as OpenMP and as non-OpenMP program and run on 4 cores
– Expected result:

• Without OpenMP: no difference to previous slide

• With OpenMP: Each thread stores a different value 0, 1, 2, 3 into its private i.
And then it prints its private value.
Therefore the output can be:

– After successful execution, you may compare with the provided solution:
• ../../solution/hello/hello5.c or hello5.f90

bash$ gcc -fopenmp hello.c
or gfortran -fopenmp hello.f90
bash$ export OMP_NUM_THREADS=4; ./a.out
hello world 3
hello world 1
hello world 0
hello world 2

…
hello world -1

In any sequence

hello5.c

Introduction to OpenMP à Programming and Execution Model à Exercise 1

Corrections

Mar 03, 2022

Corrections fro. 2022
–

Slide 39

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

OpenMP Exercise 1: Summary

• Conditional compilation allows to keep the serial version of the program
in the same source files

• Testing an OpenMP library routine
(always within conditional compilation!)

• compilers need to be used with special option for OpenMP directives
to take any effect

• Parallel regions are executed by each thread in the same way unless
worksharing directives are used
(here, in this exercise, we used no worksharing)

• Decision about private or shared status of variables is important

Introduction to OpenMP à Programming and Execution Model à Exercise 1 Slide 40

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

Please stay here in the main room while you do this exercise

And have fun with this short exercise

Please do not look at the solution before you finished this exercise,
otherwise,

90% of your learning outcome may be lost

As soon as you finished the exercise,
please go to your breakout room

and continue your discussions with your fellow learners:

Exercise + Discussion + Break – planned: 25-30 Minutes

Discussion: MPI, we compared it with
“each process ~ a human being,

each message or collective communication ~ human communication”

Which analogy would fit to OpenMP –
or is this a stupid question?

During the Exercise (25-30 min.)

Introduction to OpenMP à Programming and Execution Model à Exercise 1

You may compare your
solution with the file in
the solution-directory

Slide 41

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

Outline — Worksharing directives
• Introduction into OpenMP
• Programming and Execution Model

– Parallel regions: team of threads
– Syntax
– Data environment (part 1)
– Environment variables
– Runtime library routines
– Exercise 1: Parallel region / library calls / privat & shared variables

• Worksharing directives
– Which thread executes which statement or operation?
– Exercise 2a: Pi
– Tasks
– Synchronization constructs, e.g., critical regions
– Nesting and Binding
– Exercise 2b: Pi

• Data environment and combined constructs
– Private and shared variables, Reduction clause
– Combined parallel worksharing directives
– Exercise 3: Pi with reduction clause and combined constructs
– Exercise 4: Heat

• Summary of OpenMP API
• OpenMP Pitfalls

W
or

ks
ha

rin
g

D
ire

ct
iv

es

Introduction to OpenMP à Worksharing directives Slide 42

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

Worksharing and Synchronization

• Which thread executes which statement or operation?
• and when?

– Worksharing constructs
– Master and synchronization constructs

• i.e., organization of the parallel work!!!

Introduction to OpenMP à Worksharing directives Slide 43

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

OpenMP Worksharing Constructs

• Divide the execution of the enclosed code region among the
members of the team

• Must be enclosed dynamically within a parallel region
• They do not launch new threads
• No implied barrier on entry
• sections directive
• for directive (C/C++)
• do directive (Fortran)
• workshare directive (Fortran)
• single directive

Task generating construct – another option for organizing the work in parallel
• task directive

C/C++

Fortran

Introduction to OpenMP à Worksharing directives

Mar 03, 2022

Slide 44

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

OpenMP sections Directives – C/C++

#pragma omp parallel
{
#pragma omp sections
{{ a=...;

b=...; }
#pragma omp section

{ c=...;
d=...; }

#pragma omp section
{ e=...;

f=...; }
#pragma omp section

{ g=...;
h=...; }

} /*omp end sections*/
} /*omp end parallel*/

C / C++:

a=...

b=...

c=...

d=...

e=...

f=...

g=...

h=...

C/C++

Introduction to OpenMP à Worksharing directives Slide 45

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

OpenMP sections Directives – Fortran

!$OMP PARALLEL
!$OMP SECTIONS

a=...
b=...

!$OMP SECTION
c=...
d=...

!$OMP SECTION
e=...
f=...

!$OMP SECTION
g=...
h=...

!$OMP END SECTIONS
!$OMP END PARALLEL

Fortran:

a=...

b=...

c=...

d=...

e=...

f=...

g=...

h=...

Fortran

Introduction to OpenMP à Worksharing directives Slide 46

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

OpenMP sections Directives – Syntax

Fortran

C/C++

Introduction to OpenMP à Worksharing directives

• Several blocks are executed in parallel
• Fortran:

!$OMP SECTIONS [clause [[,] clause] ...]
[!$OMP SECTION]

block1
[!$OMP SECTION

block2]
...
!$OMP END SECTIONS [nowait]

• C/C++:
#pragma omp sections [clause [[,] clause] ...] new-line

{
[#pragma omp section new-line]

structured-block1
[#pragma omp section new-line

structured-block2]
...

}

Blocks must be independent, i.e.,
they can be executed in parallel

Corrections
Indep

Slide 47

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

OpenMP do/for Directives – C/C++

#pragma omp parallel private(f)
{

f=7;

#pragma omp for
for (i=0; i<20; i++)

a[i] = b[i] + f * (i+1);

} /* omp end parallel */

C / C++:

i=
0,4

f=7

a(i)=
b(i)+...

i=
5,9

f=7

a(i)=
b(i)+...

i=
10,14

f=7

a(i)=
b(i)+...

i=
15,19

f=7

a(i)=
b(i)+...

C/C++

Introduction to OpenMP à Worksharing directives Slide 48

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

OpenMP do/for Directives – Fortran

!$OMP PARALLEL private(f)

f=7

!$OMP DO

do i=1,20

a(i) = b(i) + f * i

end do

!$OMP END DO

!$OMP END PARALLEL

Fortran:

i=
1,5

f=7

a(i)=
b(i)+...

i=
6,10

f=7

a(i)=
b(i)+...

i=
11,15

f=7

a(i)=
b(i)+...

i=
16,20

f=7

a(i)=
b(i)+...

Fortran

Introduction to OpenMP à Worksharing directives Slide 49

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

OpenMP do/for Directives – Syntax

• Immediately following loop executed in parallel

• Fortran:
!$OMP do [clause [[,] clause] ...]

do_loop
[!$OMP end do [nowait]]

• If used, the end do directive must appear immediately after the end of
the loop

• C/C++:
#pragma omp for [clause [[,] clause] ...] new-line

for-loop
• The corresponding for loop must have canonical shape

à next slide

Fortran

C/C++

Loop iterations must be
independent, i.e.,
they can be executed in parallel

Introduction to OpenMP à Worksharing directives Slide 50

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

OpenMP for Directives – Canonical Shape

• C/C++:
#pragma omp for [clause [[,] clause] ...] new-line

for-loop
• The corresponding for loop must have canonical shape:

for([integer type] var=lb; var < b; var++)
<= ++var
> var+=incr
>= var=var+incr

var-- ...

C/C++

var: must not be modified in the loop body;
integer (signed or unsigned),
or pointer type (C only), (OpenMP ≥ 3.0)
or random access iterator type (C++ only)

lb,b,incr: loop invariant expression
à the number of iterations must be computable at loop begin

Introduction to OpenMP à Worksharing directives Slide 51

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

OpenMP do/for Directives – Details

• clause can be one of the following:
– private(list) [see later: Data Model]
– reduction(operator:list) [see later: Data Model]
– collapse(n) (OpenMP ≥ 3.0)
– schedule(type [, chunk])
– nowait (C/C++: on #pragma omp for)

(Fortran: on $!OMP END DO)
– ...

• Implicit barrier at the end of do/for unless nowait is specified, i.e.,
if nowait is specified, threads do not synchronize at the end of the parallel loop

• collapse(n) with constant integer expression n:
The iterations of the following n nested loops are collapsed into one larger iteration
space.

• schedule clause specifies how the iterations (iteration space)
of the (nested) loop(s) are divided among the threads of the team.

Introduction to OpenMP à Worksharing directives Slide 52

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

OpenMP schedule Clause

Within schedule(type [, chunk]) type can be one of the following:
• static: Iterations are divided into pieces of a size specified by chunk.

The pieces are statically assigned to threads in the team in a
round-robin fashion in the order of the thread number.
Default chunk size: one contiguous piece for each thread.

• dynamic: Iterations are broken into pieces of a size specified by chunk.
As each thread finishes a piece of the iteration space, it dynamically obtains
the next set of iterations. Default chunk size: 1.

• guided: The chunk size is reduced in an exponentially decreasing manner with
each dispatched piece of the iteration space.
chunk specifies the smallest piece (except possibly the last).
Default chunk size: 1. Initial chunk size is implementation dependent.

• auto: Scheduling is delegated to the compiler and/or runtime system (OpenMP ≥ 3.0)
• runtime: The decision regarding scheduling is deferred until run time. The schedule

type and chunk size can be chosen at run time by setting the OMP_SCHEDULE
environment variable.

Default schedule: implementation dependent.

Introduction to OpenMP à Worksharing directives Slide 53

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

Loop scheduling

schedule(static)

• Method is implementation dependent, e.g.,
13 iterations on 3 threads = 5+5+3 or = 5+4+4

• Two loops in same parallel region and
with same count are divided in same way, OpenMP ≥ 3.0
i.e., static schedule is deterministic (in OpenMP-5.1/5.2, text moved to Sect.

2.11.2/4.4.5 Consistent Loop Schedules)

(dynamic,3) (guided,1) (auto)

(Ask the com
piler

and/orruntim
e system

)

Further information: OpenMP 3.0, Sect. 2.5.1, Description, pp 41-44

Colors without patterns,

Introduction to OpenMP à Worksharing directives Slide 54

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

The WORKSHARE directive

• WORKSHARE directive allows parallelization of array expressions and
FORALL statements

• Usage:
!$OMP WORKSHARE
A=B+C
! Rest of block
!$OMP END WORKSHARE

• Semantics:
– Work inside block is divided into separate units of work.
– Each unit of work is executed only once.
– The units of work are assigned to threads in any manner.
– The compiler must ensure sequential semantics.
– Similar to DO worksharing without explicit loops.

Fortran

Introduction to OpenMP à Worksharing directives

Corrections fro. 2022

Workshare exists at least since

Slide 55

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

OpenMP single Directive – Syntax

• The block is executed by only one thread in the team
(not necessarily the master thread)

• Fortran:
!$OMP single [clause [[,] clause] ...]

block
!$OMP end single [nowait]

• C/C++:
#pragma omp single [clause [[,] clause] ...] new-line

structured-block

• Implicit barrier at the end of single construct
(unless a nowait clause is specified)

• To reduce the fork-join overhead, one can combine
– several parallel parts (for, do, workshare, sections)
– and sequential parts (single)

in one parallel region (parallel … end parallel)

Fortran

C/C++

Introduction to OpenMP à Worksharing directives Slide 56

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

Outline — Exercise 2a: Pi
• Introduction into OpenMP
• Programming and Execution Model

– Parallel regions: team of threads
– Syntax
– Data environment (part 1)
– Environment variables
– Runtime library routines
– Exercise 1: Parallel region / library calls / privat & shared variables

• Worksharing directives
– Which thread executes which statement or operation?
– Exercise 2a: Pi
– Tasks
– Synchronization constructs, e.g., critical regions
– Nesting and Binding
– Exercise 2b: Pi

• Data environment and combined constructs
– Private and shared variables, Reduction clause
– Combined parallel worksharing directives
– Exercise 3: Pi with reduction clause and combined constructs
– Exercise 4: Heat

• Summary of OpenMP API
• OpenMP Pitfalls

Ex
er

ci
se

 2
a:

 p
i

Introduction to OpenMP à Worksharing directives à Exercise 2a Slide 57

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

OpenMP Exercise 2a: pi Program (1)

• Goal: usage of
– worksharing constructs: do/for
– critical directive à in Exercise 2b

• Working directory: ~/OpenMP/#NR/pi/
#NR = number of your PC, e.g., 01

• Serial programs:
– Fortran 90: pi.f90

– C: pi.c

– Calculating 4∫!
" !
!"#$ 𝑑𝑥 = 4 |arctan(𝑥) "

! = 4 #
$
− 0 = 𝜋

C/C++

Fortran

see also login-slidesIntroduction to OpenMP à Worksharing directives à Exercise 2a Slide 58

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

OpenMP Exercise 2a: pi Program (2)

• compile serial program pi.[c|f90] and run
• Compile and run with OpenMP

– Expected result: same pi-value and timing,
– but the program reports the number of threads, and timing with omp_get_wtime

• add parallel region and do/for directive in pi.[c|f90]and compile
• set environment variable OMP_NUM_THREADS to 2 and run

– value of pi? (should be wrong!)
• run again

– value of pi? (...wrong and unpredictable)
• set environment variable OMP_NUM_THREADS to 4 and run

– value of pi? (...and stays wrong)
• run again

– value of pi? (...but where is the race-condition?)

• After this test with race-conditions, you may compare your result with the
provided solution:
– ../../solution/pi/pi1.c or pi1.f90

pi.c

Introduction to OpenMP à Worksharing directives à Exercise 2a Slide 59

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

OpenMP Exercise 2a: pi Program (3)

• add private(x) clause in pi.[c|f90]and compile
• set environment variable OMP_NUM_THREADS to 2 and run

– value of pi? (should be still incorrect ...)
• run again

– value of pi?
• set environment variable OMP_NUM_THREADS to 4 and run

– value of pi?
• run again

– value of pi? (... and where is the second race-condition?)

• After this test with race-conditions, you may compare your result with
the provided solution:
– ../../solution/pi/pi2.c or pi2.f90

• And where is the second race-condition?
à We’ll resolve this in Exercise 2b – after the talk

“Synchronization constructs, e.g., critical regions”

pi2.cIntroduction to OpenMP à Worksharing directives à Exercise 2a Slide 60

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

Please stay here in the main room while you do this exercise

And have fun with this short exercise

Please do not look at the solution before you finished this exercise,
otherwise,

90% of your learning outcome may be lost

As soon as you finished the exercise,
please go to your breakout room

and continue your discussions with your fellow learners:

Exercise + Discussion + Break – planned: 15 Minutes

Discussion: Do you have ideas how one can solve the problem
based on the knowledge you learnt so far?

Please do not program – only discuss!

During the Exercise (15 min.)

Introduction to OpenMP à Worksharing directives à Exercise 2a

You may compare your
solution with the file in
the solution-directory

Slide 61

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

Outline — Tasks
• Introduction into OpenMP
• Programming and Execution Model

– Parallel regions: team of threads
– Syntax
– Data environment (part 1)
– Environment variables
– Runtime library routines
– Exercise 1: Parallel region / library calls / privat & shared variables

• Worksharing directives
– Which thread executes which statement or operation?
– Exercise 2a: Pi
– Tasks (a task generating construct)
– Synchronization constructs, e.g., critical regions
– Nesting and Binding
– Exercise 2b: Pi

• Data environment and combined constructs
– Private and shared variables, Reduction clause
– Combined parallel worksharing directives
– Exercise 3: Pi with reduction clause and combined constructs
– Exercise 4: Heat

• Summary of OpenMP API
• OpenMP Pitfalls

Ta
sk

s

Introduction to OpenMP à Worksharing directives à Tasks

Mar 03, 2022

Slide 62

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

OpenMP task Directive – Example:
Parallelized traversing of a tree OpenMP 3.0

struct node {
struct node *left;
struct node *right;

};
extern void process(struct node *);
void traverse(struct node *p) {

if (p->left)
#pragma omp task // p is firstprivate by default

traverse(p->left);
if (p->right)

#pragma omp task // p is firstprivate by default
traverse(p->right);

process(p); // significant work with p
}
int main(int argc, char **argv)
{ struct node tree;
... // producing the tree

#pragma omp parallel
{

#pragma omp single
{
traverse(&tree);//traversing the existing tree

} // end of omp single
} // end of omp parallel

}

C/C++ • Starting the parallel
team of threads

• Using only one thread
for starting the
traversal

• First execution with
single thread
(= 1st task)

• A new task is started
(on a new thread)

• A recursive call to
traverse() in this
2nd task

• 3rd task is started
• Work is done

in 1st task
• Recursive calls start-

ing 4th, 5th, … tasks
Trick: OpenMP can
choose whether new
tasks are
immediately started
or deferred until free
thread is available.

Same example in Fortran,
see OpenMP 3.0,
Exa. A.13.1f, page 178

Introduction to OpenMP à Worksharing directives à TasksPlease ignore the following skipped slide in pdf / handout during the lectures !

Corrections fro. 2022

Slide 63

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

OpenMP task Directive – Syntax OpenMP 3.0

• The task construct defines an explicit task.

• Fortran:
!$OMP task [clause [[,] clause] ...]

block
!$OMP end task

• C/C++:
#pragma omp task [clause [[,] clause] ...] new-line

structured-block

• Clauses:
– untied
– default(shared | none | private | firstprivate)
– private(list)
– firstprivate(list)
– shared(list)
– if(scalar expression)

Fortran

C/C++

Introduction to OpenMP à Worksharing directives à Tasks Slide 65

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

OpenMP task Directive – Principles OpenMP 3.0
• When a thread encounters a task construct,

a task is generated from the code for the associated structured block.
• The encountering thread

– may immediately execute the task,
– or may defer its execution.

• Completion of a task can be guaranteed using task synchronization
constructs à taskwait construct.

• When if(false) clause exists, then execution is “serial”
• Task scheduling points:

– In the generating task: Immediately following the generation of an explicit task.
– In the generated task: After the last instruction of the task region.
– If task is “untied”: Everywhere inside of the task.
– In implicit and explicit barriers.
– In taskwait.

At task scheduling points, tasks can be resumed or suspended.
(Further constraints à OpenMP 3.0, Sect. 2.7.1, page 62)

The number of tasks
can be limited, e.g., to
the number of threads.

Introduction to OpenMP à Worksharing directives à Tasks Slide 66

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

Outline — Synchronization constructs
• Introduction into OpenMP
• Programming and Execution Model

– Parallel regions: team of threads
– Syntax
– Data environment (part 1)
– Environment variables
– Runtime library routines
– Exercise 1: Parallel region / library calls / privat & shared variables

• Worksharing directives
– Which thread executes which statement or operation?
– Exercise 2a: Pi
– Tasks
– Synchronization constructs, e.g., critical regions
– Nesting and Binding
– Exercise 2b: Pi

• Data environment and combined constructs
– Private and shared variables, Reduction clause
– Combined parallel worksharing directives
– Exercise 3: Pi with reduction clause and combined constructs
– Exercise 4: Heat

• Summary of OpenMP API
• OpenMP Pitfalls

Sy
nc

hr
on

iz
at

io
n

C
on

st
ru

ct
s

Introduction to OpenMP à Worksharing directives à Synchronization Slide 70

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

OpenMP Synchronization

• Implicit Barrier
– end of parallel constructs
– end of all other control constructs
– implicit synchronization on control constructs

can be removed with nowait clause
• Explicit

– critical

– ...

NOWAIT only on control …

Introduction to OpenMP à Worksharing directives à Synchronization Slide 71

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

OpenMP critical Directive

• Enclosed code
– executed by all threads, but
– restricted to only one thread at a time

• Fortran:
!$OMP CRITICAL [(name)]

block
!$OMP END CRITICAL [(name)]

• C/C++:
#pragma omp critical [(name)] new-line

structured-block
• A thread waits at the beginning of a critical region until no other

thread in the team is executing a critical region with the same
name. All unnamed critical directives map to the same
unspecified name.

Fortran

C/C++

Introduction to OpenMP à Worksharing directives à Synchronization Slide 72

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

OpenMP critical — an example (C/C++)

C / C++: cnt = 0;
f=7;

#pragma omp parallel
{
#pragma omp for

for (i=0; i<20; i++) {
if (b[i] == 0) {

#pragma omp critical
cnt ++;

} /* endif */
a[i] = b[i] + f * (i+1);

} /* end for */
} /*omp end parallel */

i=
0,4

cnt=0
f=7

a[i]=
b[i]+...

i=
5,9

a[i]=
b[i]+...

i=
10,14

a[i]=
b[i]+...

i=
15,19

a[i]=
b[i]+...

if... if... if... if...

cnt++

cnt++

cnt++

cnt++

C/C++

Introduction to OpenMP à Worksharing directives à Synchronization Slide 73

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

OpenMP critical — an example (Fortran)

cnt = 0
f=7

!$OMP PARALLEL
!$OMP DO

do i=1,20
if (b(i).eq.0) then

!$OMP CRITICAL
cnt = cnt+1

!$OMP END CRITICAL
endif
a(i) = b(i) + f * i

end do
!$OMP END DO
!$OMP END PARALLEL

Fortran:

i=
1,5

cnt=0
f=7

a(i)=
b(i)+...

i=
6,10

a(i)=
b(i)+...

i=
11,15

a(i)=
b(i)+...

i=
16,20

a(i)=
b(i)+...

if... if... if... if...

cnt=cnt+1

cnt=cnt+1

cnt=cnt+1

cnt=cnt+1

Fortran

Introduction to OpenMP à Worksharing directives à Synchronization Slide 74

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

OpenMP critical — another example (Fortran)

mx = 0
!$OMP PARALLEL private(pmax)

pmax = 0 ! or most negative number

!$OMP DO private(r)
do i=1,20

r = work(i)
pmax = max(pmax,r)

end do
!$OMP END DO NOWAIT
!$OMP CRITICAL

mx = max(mx,pmax)
!$OMP END CRITICAL
!$OMP END PARALLEL

pmax
=0

mx=0

pmax
=0

pmax
=0

pmax
=0

mx=…

mx=…

mx=…
mx=…

enddo enddo enddo enddo

r=... r=... r=... r=...
pmax
= ...

pmax
= ...

pmax
= ...

pmax
= ...

i=
1,5

i=
6,10

i=
11,15

i=
16,20

Fortran

Only
once per
thread

Introduction to OpenMP à Worksharing directives à Synchronization Slide 75

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

OpenMP critical — another example (C/C++)

mx = 0;
#pragma omp parallel private(pmax)
{ pmax = 0; /* or most negative number */

#pragma omp for private(r) nowait
for (i=0; i<20; i++)
{ r = work(i);

pmax = (r>pmax ? r : pmax);
} /*end for*/
/*omp end for*/
#pragma omp critical
mx= (pmax>mx ? pmax : mx);
/*omp end critical*/

} /*omp end parallel*/

C/C++

pmax
=0

mx=0

pmax
=0

pmax
=0

pmax
=0

mx=…

mx=…

mx=…
mx=…

endfor endfor endfor endfor

r=... r=... r=... r=...
pmax
= ...

pmax
= ...

pmax
= ...

pmax
= ...

i=
0,4

i=
5,9

i=
10,14

i=
15,19

Only
once per
thread

Introduction to OpenMP à Worksharing directives à Synchronization Slide 76

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

Outline — Nesting and Binding
• Introduction into OpenMP
• Programming and Execution Model

– Parallel regions: team of threads
– Syntax
– Data environment (part 1)
– Environment variables
– Runtime library routines
– Exercise 1: Parallel region / library calls / privat & shared variables

• Worksharing directives
– Which thread executes which statement or operation?
– Exercise 2a: Pi
– Tasks
– Synchronization constructs, e.g., critical regions
– Nesting and Binding
– Exercise 2b: Pi

• Data environment and combined constructs
– Private and shared variables, Reduction clause
– Combined parallel worksharing directives
– Exercise 3: Pi with reduction clause and combined constructs
– Exercise 4: Heat

• Summary of OpenMP API
• OpenMP Pitfalls

N
es

tin
g

&
Bi

nd
in

g

Introduction to OpenMP à Worksharing directives à Nesting & Binding Slide 77

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

OpenMP Vocabulary

• Static extent of the parallel construct:
statements enclosed lexically within the construct

• Dynamic extent of the parallel construct:
further includes the routines called from within the construct

• Orphaned Directives:
Do not appear in the lexical extent of the parallel construct but lie in the
dynamic extent
– Parallel constructs at the top level of the program call tree
– Directives in any of the called routines

[The terms lexical extent and dynamic extent are no longer used
in OpenMP 2.5,
but still helpful to explain the complex impact of OpenMP directives.]

Introduction to OpenMP à Worksharing directives à Nesting & Binding Slide 78

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

Dynamic Extent

OpenMP Vocabulary

Static Extent Orphaned Directives

program a
!$OMP PARALLEL

call b
call c

!$OMP END PARALLEL
call d
stop
end

subroutine b
!$OMP DO

do i=1,n
...
enddo

!$OMP END DO
return
end
subroutine c
return
end

Introduction to OpenMP à Worksharing directives à Nesting & Binding Slide 79

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

OpenMP Control Structures — Summary

• Parallel region construct
– parallel

• Worksharing constructs
– sections
– for (C/C++)
– do (Fortran)
– workshare (Fortran)
– Single

• Task generating construct
– task

• Combined parallel worksharing constructs [see later]
– parallel for (C/C++)
– parallel do (Fortran)
– parallel workshare (Fortran)

• Synchronization constructs
– critical

C/C++

Fortran

C/C++

Fortran

Introduction to OpenMP à Worksharing directives à Summary

Mar 03, 2022

Slide 80

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

Outline — Exercise 2b: pi
• Introduction into OpenMP
• Programming and Execution Model

– Parallel regions: team of threads
– Syntax
– Data environment (part 1)
– Environment variables
– Runtime library routines
– Exercise 1: Parallel region / library calls / privat & shared variables

• Worksharing directives
– Which thread executes which statement or operation?
– Exercise 2a: Pi
– Tasks
– Synchronization constructs, e.g., critical regions
– Nesting and Binding
– Exercise 2b: Pi

• Data environment and combined constructs
– Private and shared variables, Reduction clause
– Combined parallel worksharing directives
– Exercise 3: Pi with reduction clause and combined constructs
– Exercise 4: Heat

• Summary of OpenMP API
• OpenMP Pitfalls

Ex
er

ci
se

 2
b:

 p
i

Introduction to OpenMP à Worksharing directives à Exercise 2b

skip Slide 81

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

OpenMP Exercise 2b: pi Program (4)

• Use your result from Exercise 2a (or solution pi2.[c|f90])
• Add critical directive in your pi.[c|f90] around the sum-

statement and compile
• set environment variable OMP_NUM_THREADS to 2 and run

– value of pi? (should be now correct!, but huge wtime!)
• run again

– value of pi? (but not reproducible in the last bit!)
• set environment variable OMP_NUM_THREADS to 4 and run

– value of pi? execution time? (Oh, does it take longer?)
• run again

– value of pi? execution time?
– How can you optimize your code?

• After successful execution, you may compare your result with the
provided solution:
– ../../solution/pi/pic.c or pic.f90

Introduction to OpenMP à Worksharing directives à Exercise 2b

Look at wall-clock time,
not at CPU time!

Sep 27,
from 2021

Mar 03, 2022

CPU time

Slide 82

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

OpenMP Exercise 2b: pi Program (5)

• move critical directive in pi.[c|f90] outside loop, and
compile

• set environment variable OMP_NUM_THREADS to 2 and run
– value of pi?

• set environment variable OMP_NUM_THREADS to 4 and run
– value of pi? execution time? (correct pi, half execution time)

• run again
– value of pi? execution time?

• After successful execution, you may compare your result with the
provided solution:
– ../../solution/pi/pic2.c or pic2.f90

pic2.cIntroduction to OpenMP à Worksharing directives à Exercise 2b see also login-slides

OpenMP-parallel with 4 threads
computed pi = 3.14159265358967
CPU time (clock) = 0.01659 sec
wall clock time (omp_get_wtime) = 0.01678 sec
wall clock time (gettimeofday) = 0.01679 sec

Slide 83

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

OpenMP Exercise 2: pi Program - Solution

Location: ~/OpenMP/solution/pi

• pi.[c|f90] original program
• pi1.[c|f90] incorrect (no private, no synchronous global access) !!!
• pi2.[c|f90] incorrect (still no synchronous global access to sum) !!!
• pic.[c|f90] solution with critical directive, but extremely slow!
• pic2.[c|f90] solution with critical directive outside loop

Introduction to OpenMP à Worksharing directives à Exercise 2b Slide 84

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

Please stay here in the main room while you do this exercise

And have fun with this short exercise

Please do not look at the solution before you finished this exercise,
otherwise,

90% of your learning outcome may be lost

As soon as you finished the exercise,
please go to your breakout room

and continue your discussions with your fellow learners:

Exercise + Discussion + Break – planned: 25 Minutes

During the Exercise (25 min.)

Introduction to OpenMP à Worksharing directives à Exercise 2b

You may compare your
solution with the file in
the solution-directory

Slide 85

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

Outline – Data environment and combined constructs
• Introduction into OpenMP
• Programming and Execution Model

– Parallel regions: team of threads
– Syntax
– Data environment (part 1)
– Environment variables
– Runtime library routines
– Exercise 1: Parallel region / library calls / privat & shared variables

• Worksharing directives
– Which thread executes which statement or operation?
– Exercise 2a: Pi
– Tasks
– Synchronization constructs, e.g., critical regions
– Nesting and Binding
– Exercise 2b: Pi

• Data environment and combined constructs
– Private and shared variables, Reduction clause
– Combined parallel worksharing directives
– Exercise 3: Pi with reduction clause and combined constructs
– Exercise 4: Heat

• Summary of OpenMP API
• OpenMP Pitfalls

D
at

a
En

v.
 &

 C
om

bi
ne

d
C

on
st

r.

Introduction to OpenMP à Data environment and combined constructs Slide 86

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

OpenMP Data Scope Clauses

• private (list)
Declares the variables in list to be private to each thread in a team.

• shared (list)
Makes variables that appear in list shared among all the threads in a
team

• If not specified: default shared
• Exceptions: private

– stack (local) variables in called subroutines
– Automatic variables within a block
– Loop control variable of parallel DO (Fortran) and FOR (C) loops
– Fortran only:

• Loop control variable of a sequential loop enclosed in a parallel or task
construct

• Implied-do and forall indices
• Recommendation for C/C++:

– Avoid private variables, use variables local to a block instead

Further information: OpenMP 3.0, Sect. 2.9.1, page 77

Introduction to OpenMP à Data environment and combined constructs Slide 87

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

• private (variable) creates a local incarnation of the variable for each thread
– value is uninitialized
– private copy is not storage associated with the original

Private Clause

program wrong
JLAST = -777

!$OMP PARALLEL
!$OMP DO PRIVATE(JLAST)

DO J=1,1000
...
JLAST = J

END DO
!$OMP END DO
!$OMP END PARALLEL

print *, JLAST à writes -777 (OpenMP ≥ 3.0)
or undefined value (OpenMP ≤ 2.5)

• If initialization is necessary use firstprivate(var)

• If value is needed after loop use lastprivate(var)
à var is updated by the thread that computes

• the sequentially last iteration (on do or for loops)
• the last section

• Nested private(var) with same var à allocates again new private storage
• Sometimes shared/private is undefined à see OpenMP 3.0, Example A.30.2c/f pp. 234-235

Introduction to OpenMP à Data environment and combined constructs Slide 88

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

OpenMP reduction Clause

• reduction (operator:list)
• Performs a reduction on the variables that appear in list, with the operator

operator
• operator: one of

– Fortran:
+, *, -, .and., .or., .eqv., .neqv.,
max, min, iand, ior, or ieor

– C/C++:
+, *, -, &, ^, |, &&, or ||
With OpenMP 3.1 and later: max, min

• Variables must not be private in the enclosing context
• With OpenMP 2.0 and later, variables can be arrays (Fortran)
• At the end of the reduction, the shared variable is updated to reflect the

result of combining the original value of the shared reduction variable with
the final value of each of the private copies using the operator specified

C/C++

Fortran

Introduction to OpenMP à Data environment and combined constructs Slide 89

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

OpenMP reduction — an example (Fortran)

sm = 0
!$OMP PARALLEL
!$OMP DO private(r), reduction(+:sm)

do i=1,20
r = work(i)
sm = sm + r

end do
!$OMP END DO
!$OMP END PARALLEL

i=
1,5

sm=0

i=
6,10

i=
11,15

i=
16,20

enddo enddo enddo enddo

r=... r=... r=... r=...
sm=
sm+r

sm=
sm+r

sm=
sm+r

sm=
sm+r

Fortran:

Fortran

Introduction to OpenMP à Data environment and combined constructs Slide 90

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

OpenMP reduction — an example (C/C++)

sm = 0;
#pragma omp parallel

{
#pragma omp for reduction(+:sm)

for(i=0; i<20; i++)
{ double r;

r = work(i);
sm = sm + r ;

} /*end for*/
/*omp end for*/

}
/*omp end parallel*/

i=
0,4

sm=0

i=
5,9

i=
10,14

i=
15,19

enddo enddo enddo enddo

r=... r=... r=... r=...
sm=
sm+r

sm=
sm+r

sm=
sm+r

sm=
sm+r

C / C++:

C/C++

Introduction to OpenMP à Data environment and combined constructs Slide 91

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

OpenMP Combined parallel do/for Directive

• Shortcut form for specifying a parallel region that contains a single
do/for directive

• Fortran:
!$OMP PARALLEL DO [clause [[,] clause] ...]

do_loop
[!$OMP END PARALLEL DO]

• C/C++:
#pragma omp parallel for [clause [clause] ...] new-line

for-loop
• This directive admits all the clauses of the parallel directive and

the do/for directive except the nowait clause, with identical
meanings and restrictions

Fortran

C/C++

Introduction to OpenMP à Data environment and combined constructs Slide 92

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

OpenMP Combined parallel do/for — an example

f=7

!$OMP PARALLEL DO

do i=1,20

a(i) = b(i) + f * i

end do

!$OMP END PARALLEL DO

Fortran:

i=
1,5

f=7

a(i)=
b(i)+...

i=
6,10

a(i)=
b(i)+...

i=
11,15

a(i)=
b(i)+...

i=
16,20

a(i)=
b(i)+...

Fortran

Introduction to OpenMP à Data environment and combined constructs Slide 93

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

OpenMP Combined parallel do/for — an example

f=7;

#pragma omp parallel for
for (i=0; i<20; i++)

a[i] = b[i] + f * (i+1);

C / C++:

i=
0,4

f=7

a(i)=
b(i)+...

i=
5,9

a(i)=
b(i)+...

i=
10,14

a(i)=
b(i)+...

i=
15,19

a(i)=
b(i)+...

C/C++

Introduction to OpenMP à Data environment and combined constructs Slide 94

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

Outline — Exercise 3: pi with reduction
• Introduction into OpenMP
• Programming and Execution Model

– Parallel regions: team of threads
– Syntax
– Data environment (part 1)
– Environment variables
– Runtime library routines
– Exercise 1: Parallel region / library calls / privat & shared variables

• Worksharing directives
– Which thread executes which statement or operation?
– Exercise 2a: Pi
– Tasks
– Synchronization constructs, e.g., critical regions
– Nesting and Binding
– Exercise 2b: Pi

• Data environment and combined constructs
– Private and shared variables, Reduction clause
– Combined parallel worksharing directives
– Exercise 3: Pi with reduction clause and combined constructs
– Exercise 4: Heat

• Summary of OpenMP API
• OpenMP Pitfalls

Ex
er

ci
se

 3
: p

i
(c

on
tin

ue
d)

Introduction to OpenMP à Data environment and combined constructs à Exercise 3

skip Slide 95

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

OpenMP Exercise 3: pi Program (1)

• Goal: usage of
– worksharing constructs: do/for
– critical directive
– reduction clause
– combined parallel worksharing constructs:

parallel do/parallel for

• Working directory: ~/OpenMP/#NR/pi/
#NR = number of your PC, e.g., 01

• Use your result pi.[c|f90] from the exercise 2
• or copy solution of exercise 2 to your directory:

– cp ../../solution/pi/pic2.* .

• or copy slow “critical inside loop” solution of exercise 2 to your directory:
– cp ../../solution/pi/pic.* .

see also login-slidesIntroduction to OpenMP à Data environment and combined constructs à Exercise 3 Slide 96

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

OpenMP Exercise 3: pi Program (2)

• remove critical directive in pi.[c|f90],
remove your additional partial sum variable, i.e., restore original numeric,
and add reduction clause and compile

• set environment variable OMP_NUM_THREADS to 2 and run
– value of pi?

• run again
– value of pi?

• set environment variable OMP_NUM_THREADS to 4 and run
– value of pi? execution time?

• run again
– value of pi? execution time?

• After successful execution, you may compare your result with the provided
solution:
– ../../solution/pi/pir.c or pir.f90

pir.cIntroduction to OpenMP à Data environment and combined constructs à Exercise 3 Slide 97

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

OpenMP Exercise 3: pi Program (3)

• change parallel region + do/for to the combined parallel worksharing
construct parallel do/parallel for and compile

• set environment variable OMP_NUM_THREADS to 2 and run
– value of pi?

• run again
– value of pi?

• set environment variable OMP_NUM_THREADS to 4 and run
– value of pi?

• run again
– value of pi?

• After successful execution, you may compare your result with the
provided solution:
– ../../solution/pi/pir2.c or pir2.f90

• At the end, compile again without OpenMP
– Does your code still compute a correct value of pi?

see also login-slides

pir2.cIntroduction to OpenMP à Data environment and combined constructs à Exercise 3 Slide 98

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

OpenMP Exercise 3: pi Program - Solution

Location: ~/OpenMP/solution/pi

• pi.[c|f90] original program
• pi1.[c|f90] incorrect (no private, no synchronous global access) !!!
• pi2.[c|f90] incorrect (still no synchronous global access to sum) !!!
• pic.[c|f90] solution with critical directive, but extremely slow!
• pic2.[c|f90] solution with critical directive outside loop
• pir.[c|f90] solution with reduction clause
• pir2.[c|f90] solution with combined parallel do/for

and reduction clauseS&al

Introduction to OpenMP à Data environment and combined constructs à Exercise 3 Slide 99

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

OpenMP Exercise 3: pi Program - Execution Times F90

0

2

4

6

8

10

12

14

16

18

ex
ec

ut
io

n
tim

e
[s

ec
]

1 2 4 8
no. of processes

pi
pic
pic2
pir

Introduction to OpenMP à Data environment and combined constructs à Exercise 3 Slide 100

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

OpenMP Exercise 3: pi Program - Summary

• Decision about private or shared status of variables is important

• Correct results with reduction clause and with critical directive

• Using the simple version of the critical directive is much more time
consuming than using the reduction clause Þ no parallelism left

• More sophisticated use of critical directive leads to much better
performance

• Convenient reduction clause

• Convenient shortcut form

Introduction to OpenMP à Data environment and combined constructs à Exercise 3 Slide 101

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

Please stay here in the main room while you do this exercise

And have fun with this short exercise

Please do not look at the solution before you finished this exercise,
otherwise,

90% of your learning outcome may be lost

As soon as you finished the exercise,
please go to your breakout room

and continue your discussions with your fellow learners:

Exercise + Discussion + Break – planned: 20 Minutes

Already in your breakout room, you may test
different loop schedules (static, dynamic, guided, auto)

and share your results with your colleagues.

Did you oversubscribe your hardware?

During the Exercise (20 min.)

Introduction to OpenMP à Data environment and combined constructs à Exercise 3

You may compare your
solution with the file in
the solution-directory

Slide 102

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

Outline — Exercise 4: Heat
• Introduction into OpenMP
• Programming and Execution Model

– Parallel regions: team of threads
– Syntax
– Data environment (part 1)
– Environment variables
– Runtime library routines
– Exercise 1: Parallel region / library calls / privat & shared variables

• Worksharing directives
– Which thread executes which statement or operation?
– Exercise 2a: Pi
– Tasks
– Synchronization constructs, e.g., critical regions
– Nesting and Binding
– Exercise 2b: Pi

• Data environment and combined constructs
– Private and shared variables, Reduction clause
– Combined parallel worksharing directives
– Exercise 3: Pi with reduction clause and combined constructs
– Exercise 4: Heat Conduction Exercise

• Summary of OpenMP API
• OpenMP Pitfalls

Ex
er

ci
se

 4
: h

ea
t

Introduction to OpenMP à Data environment and combined constructs à Exercise 4: Heat

skip Slide 103

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

OpenMP Exercise: Heat Conduction(1)

• solves the PDE for unsteady heat conduction df/dt=Df
• uses an explicit scheme: forward-time, centered-space
• solves the equation over a unit square domain
• initial conditions: f=0 everywhere inside the square
• boundary conditions: f=x on all edges
• number of grid points: 20x20

Introduction to OpenMP à Data environment and combined constructs à Exercise 4: Heat Slide 104

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

OpenMP Exercise: Heat Conduction (2)

• Goals:
– parallelization of a real application
– usage of different parallelization methods with respect to their

effect on execution times
• Working directory: ~/OpenMP/#NR/heat/

#NR = number of your PC, e.g., 01
• Serial programs:

– Fortran: heat.F90
– C: heat.c

• Compiler calls:
– See login slides

• Options:
-O4 -Dimax=80 -Dkmax=80 (default is 20x20)
-O4 -Dimax=250 -Dkmax=250
-O4 -Dimax=1000 -Dkmax=1000 -Ditmax=500

Fortran

C/C++

see also login-slidesIntroduction to OpenMP à Data environment and combined constructs à Exercise 4: Heat

Corrections fro. 2022
–

unlimit or
ulimit -s 200000
once before calling mpirun

Slide 105

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

OpenMP Exercise: Heat Conduction (3)

Tasks:
• Parallelize heat.c or heat.F

– Use critical sections for global maximum: Use trick with partial
maximum inside of the parallelized loop, and critical section outside
of the loop to compute global maximum

– Or just with: reduction(max:dphimax)
– Hints:

• Parallelize outer loop (index i in Fortran, k in C)
• make inner loop index private!

• Compile and run with 80x80 serial, and parallel with 1, 2, 3, 4 threads

• Result may look like
Serial: 0.4 sec, 1 thread: 0.5 sec, 2 threads: 2.8 sec, …

• Why is the parallel version significantly slower than the serial one?

TO DO

TO DO
S&al

Introduction to OpenMP à Data environment and combined constructs à Exercise 4: Heat Slide 106

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

OpenMP Exercise: Heat Conduction (4)

• Reason already in the serial program:
– Bad sequence of the nested loops

for (k=1;k<kmax;k++) C/C++
{ for (i=1;i<imax;i++)

{ dphi=(phi[i+1][k]+phi[i-1][k]-2.*phi[i][k])*dy2i
+(phi[i][k+1]+phi[i][k-1]-2.*phi[i][k])*dx2i;

phin[i][k] = phi[i][k] + dphi;
}

}

do i=1,imax-1 Fortran
do k=1,kmax-1

dphi = (phi(i+1,k)+phi(i-1,k)-2.*phi(i,k))*dy2i
+(phi(i,k+1)+phi(i,k-1)-2.*phi(i,k))*dx2i

phin(i,k) = phi(i,k) + dphi
enddo

enddo

Fortran

C/C++

– Inner loop should use contiguous index in the array, i.e.,
– First index in Fortran è “do i=…” must be inner loop
– Second index in C/C++ è “for (k=…)” must be inner loop

Automati-
cally fixed
by serial

compiler !

Not fixed
by

OpenMP
compiler !

Fortran

C/C++

Introduction to OpenMP à Data environment and combined constructs à Exercise 4: Heat Slide 107

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

OpenMP Exercise: Heat Conduction (5)

• Interchange sequence of nested loops for i and k

• Compile and run parallel with 80x80 and with 1, 2, 3, 4 threads

• Result may look like
à 1 thread: 0.5 sec, 2 threads: 0.45 sec, 3 threads: 0.40 sec

• Reasons:
– Problem is too small — parallelization overhead too large

• Compile and run parallel with 250x250 and with 1, 2, 3, 4 threads
à 1 thread: 4.24 sec, 2 threads: 2.72 sec, 3 threads: 2.27 sec
à Don’t worry that computation is prematurely finished by itmax=15000

• With 1000x1000 and -Ditmax=500 and with 1, 2, 3, 4 threads
à 1 thread: 5.96 sec, 2 threads: 2.79 sec, 3 threads: 1.35 sec
à Super-linear speed-up due to better cache reuse on smaller problem

TO DO

TO DO

TO DO

TO DO

Don‘t forget to modify name
of private inner loop index!!!

heatr2_x.fheatc2_x.c

Introduction to OpenMP à Data environment and combined constructs à Exercise 4: Heat

Corrections fro. 2022
–

Slide 108

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

OpenMP Exercise: Heat Conduction (6)
Advanced exercise

• Substitute
– the current parallel region

that is forked and joined
in each it=… iteration

– by a parallel region
around it=… loop
forked and joined only once

• Caution:
– dphimax=0

must be surrounded by
#pragma omp barrier
#pragma omp single
{ dphimax=0;
}

– Why?

TO DO

TO DO

/*time step iteration */
for (it=1;it<=itmax;it++)
{

dphimax=0.; /*line A*/

for (i=1;i<imax;i++)
{

for (k=1;k<kmax;k++)
{

dphi=(phi[i+1][k]+phi[i-1][k]-2.*phi[i][k])*dy2i
+(phi[i][k+1]+phi[i][k-1]-2.*phi[i][k])*dx2i;

dphi=dphi*dt;
dphimax=max(dphimax,dphi);
phin[i][k]=phi[i][k]+dphi;

}
}

for (i=1;i<imax;i++)
{

for (k=1;k<kmax;k++)
{

phi[i][k]=phin[i][k];
}

}

if(dphimax<eps) break; /*line B*/
}

worksharing

worksharing

Shared(dphimax) is necessary for B.
Write-write-conflict on A-A without single.
Write-read-conflict on A-B without barrier.

Introduction to OpenMP à Data environment and combined constructs à Exercise 4: Heat

printing. This animation does

Slide 109

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

OpenMP Exercise: Heat Conduction (7)
Advanced exercise

• Execute abort-statement (if (dphimax<eps) …)
only each 20th it=… iteration
Move omp barrier directly after if (dphimax<eps) …
that this barrier is also executed only each 20th it=… iteration

• Add schedule(runtime) and compare execution time

• Fortran only:
Substitute critical-section-trick
by reduction(max:dphimax) clause

TO DO

TO DO

TO DOFortran

see also login-slidesIntroduction to OpenMP à Data environment and combined constructs à Exercise 4: Heat Slide 110

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

OpenMP Exercise: Heat - Solution (1)
Location: ~/OpenMP/solution/heat

• heat.[F|c] Original program
• heat_x.[F|c] Better serial program with interchanged nested loops
• heatc.[F|c] Extremely slow solution with critical section

inside iteration loop
• heatc2.[F|c] Slow solution with critical section outside inner

loop, one parallel region inside time step iteration
loop (it=…)

• heatc2_x.[F|c] Fast solution with critical section outside inner
loop, one parallel region inside iteration loop,
interchanged nested loops

• heatc3_x.[F|c] … and parallel region outside of it=… loop
• heatc4_x.[F|c] … and abort criterion only each 20th iteration
• heats2_x.[F|c] Solution with schedule(runtime) clause
• heatr2_x.[F|c] Solution with reduction clause, one parallel region

inside iteration loop

Introduction to OpenMP à Data environment and combined constructs à Exercise 4: Heat Slide 111

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

OpenMP Exercise: Heat - Solution (2)

• heatc2 à heatc2_x
Loss of optimization with OpenMP directives (and compilers)

• For controlling the parallelization:
– Version 20x20: 1116 iterations
– Version 80x80: 14320 iterations
– Version 250x250: 15001 iterations [if itmax = 15000 (default)]

110996 iterations [if itmax is extended to 150000]

• heatc2_x ßà heatc3_x
Additional overhead for barriers and single sections
(including implied barrier)
must be compared with fork-join-overhead

Introduction to OpenMP à Data environment and combined constructs à Exercise 4: Heat Slide 112

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

OpenMP Exercise: Heat - Solution (3) – 20x20 Time

Heat example, 20x20, 1116 iterations

0
0,01
0,02
0,03
0,04
0,05
0,06
0,07
0,08
0,09
0,1

serial 1 2 3 4 6 8 10

number of threads

w
al

l-c
lo

ck
 e

xe
cu

tio
n

tim
e

[s
ec

]

heat.c
heatc.c
heatc2.c
heat_x.c
heatc2_x.c
heatc3_x.c
heatc4_x.c

heatc is
extreme slow

Measurements on NEC TX-7 (asama.hww.de), 16 cores, May 4-5, 2006

Introduction to OpenMP à Data environment and combined constructs à Exercise 4: Heat

Mar 03, 2022

Slide 113

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

OpenMP Exercise: Heat - Solution (4) – 20x20 Efficiency

Heat example, 20x20, 1116 steps

0%

20%

40%

60%

80%

100%

120%

serial 1 2 3 4 6 8 10

number of threads

Pa
ra

lle
l e

ffi
ci

en
cy

heat.c
heatc.c
heatc2.c
heat_x.c
heatc2_x.c
heatc3_x.c
heatc4_x.c

20x20:
20% overhead already

with 1 thread

20x20:
>90% overhead with ³2

threads

Introduction to OpenMP à Data environment and combined constructs à Exercise 4: Heat Slide 114

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

OpenMP Exercise: Heat - Solution (5) – 80x80 Time

Heat example, 80x80, 14320 iterations

0

0,5

1

1,5

2

2,5

3

3,5

serial 1 2 3 4 6 8 10

number of threads

w
al

l-c
lo

ck
 e

xe
cu

tio
n

tim
e

[s
ec

]

heat.c
heatc.c
heatc2.c
heat_x.c
heatc2_x.c
heatc3_x.c
heatc4_x.c

80x80:
no chance without

efficient loop nesting

80x80:
still no speedup due to
small (80x80) data set

Introduction to OpenMP à Data environment and combined constructs à Exercise 4: Heat Slide 115

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

OpenMP Exercise: Heat - Solution (6) – 80x80 Efficiency

Heat example, 80x80, 14320 steps

0%

20%

40%

60%

80%

100%

120%

serial 1 2 3 4 6 8 10

number of threads

Pa
ra

lle
l e

ffi
ci

en
cy

heat.c
heatc.c
heatc2.c
heat_x.c
heatc2_x.c
heatc3_x.c
heatc4_x.c

Introduction to OpenMP à Data environment and combined constructs à Exercise 4: Heat Slide 116

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

OpenMP Exercise: Heat - Solution (7) – 250x250 Time

Heat example, 250x250, 15000 iterations

0
2
4
6
8

10
12
14
16
18

serial 1 2 3 4 6 8 10

number of threads

w
al

l-c
lo

ck
 e

xe
cu

tio
n

tim
e

[s
ec

]

heat.c
heatc.c
heatc2.c
heat_x.c
heatc2_x.c
heatc3_x.c
heatc4_x.c

250x250:
speedup 1.6
with 2 threads

Introduction to OpenMP à Data environment and combined constructs à Exercise 4: Heat Slide 117

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

OpenMP Exercise: Heat - Solution (8) – 250x250 Efficiency

Heat example, 250x250, 15000 steps

0%

20%

40%

60%

80%

100%

120%

serial 1 2 3 4 6 8 10

number of threads

Pa
ra

lle
l e

ffi
ci

en
cy

heat.c
heatc.c
heatc2.c
heat_x.c
heatc2_x.c
heatc3_x.c
heatc4_x.c

250x250:
Efficiency < 70%
with ³3 threads

Introduction to OpenMP à Data environment and combined constructs à Exercise 4: Heat Slide 118

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

OpenMP Exercise: Heat - Solution (9) – 1000x1000 Time

Heat example, 1000x1000, 500 iterations

0
2
4
6
8

10
12
14
16
18

serial 1 2 3 4 6 8 10

number of threads

w
al

l-c
lo

ck
 e

xe
cu

tio
n

tim
e

[s
ec

]

heat.c
heatc.c
heatc2.c
heat_x.c
heatc2_x.c
heatc3_x.c
heatc4_x.c

Introduction to OpenMP à Data environment and combined constructs à Exercise 4: Heat Slide 119

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

OpenMP Exercise: Heat - Solution (10) – 1000x1000 Efficiency

Heat example, 1000x1000, 500 steps

0%

50%

100%

150%

200%

250%

serial 1 2 3 4 6 8 10

number of threads

Pa
ra

lle
l e

ffi
ci

en
cy

heat.c
heatc.c
heatc2.c
heat_x.c
heatc2_x.c
heatc3_x.c
heatc4_x.c

1000x1000:
Efficiency 100-200%

with 3-10 threads
due to cache effects

Introduction to OpenMP à Data environment and combined constructs à Exercise 4: Heat Slide 120

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

OpenMP Exercise: Heat - Execution Times F90 with 150x150

0
10
20
30
40
50
60
70
80
90

100
ex

ec
ut

io
n

tim
e [

se
c]

1 2 4 8
no. of processes

heat
heatc2
heatp
heatr
heats default
heats stat 4
heats stat 20
heats dyn 10

Maximum overhead
with

dynamic schedule

Measurements with
previous version of

the software

Introduction to OpenMP à Data environment and combined constructs à Exercise 4: Heat Slide 121

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

OpenMP Exercise: Heat Conduction - Summary

• Overhead for parallel versions using 1 thread.
• Be careful with compiler based optimizations.
• Datasets must be large enough to achieve good speed-up.
• Intel Inspector or another race condition detection tool

should be used to guarantee zero race conditions.
• Be careful when using other than default scheduling strategies:

– dynamic is generally expensive
– static: overhead for small chunk sizes is clearly visible

Introduction to OpenMP à Data environment and combined constructs à Exercise 4: Heat Slide 122

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

Outline — Summary of the OpenMP API
• Introduction into OpenMP
• Programming and Execution Model

– Parallel regions: team of threads
– Syntax
– Data environment (part 1)
– Environment variables
– Runtime library routines
– Exercise 1: Parallel region / library calls / privat & shared variables

• Worksharing directives
– Which thread executes which statement or operation?
– Exercise 2a: Pi
– Tasks
– Synchronization constructs, e.g., critical regions
– Nesting and Binding
– Exercise 2b: Pi

• Data environment and combined constructs
– Private and shared variables, Reduction clause
– Combined parallel worksharing directives
– Exercise 3: Pi with reduction clause and combined constructs
– Exercise 4: Heat

• Summary of OpenMP API
• OpenMP Pitfalls

Su
m

m
ar

y
of

 O
pe

nM
P

AP
I

Introduction to OpenMP à Summary of OpenMP API Slide 123

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

OpenMP Components

• Set of compiler directives
– Control Constructs

• Parallel Regions
• Worksharing constructs

– Data environment
– Synchronization

• Runtime library functions
• Environment variables

Introduction to OpenMP à Summary of OpenMP API Slide 124

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

OpenMP Architecture

Threads in Operating System

User / ShellSource with OMP directives

Application (Executable)

Compiler

Runtime Library

Compiled
Directives

Environment
Variables

Introduction to OpenMP à Summary of OpenMP API Slide 125

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online
Intro. to OpenMP

OpenMP

Control Constructs Synchronization ConstructsData Constructs

Binding

Nesting

Conditional
Compilation

master

critical

barrier

atomic *

ordered

threadprivate * OMP_SCHEDULE

static,chunk

dynamic,chunk

guided,chunk

OMP_NUM_THREADS

OMP_DYNAMIC *

OMP_NESTED *

Environment Functions

Lock Functions

Parallel Region

if Data Scope

shared

private

reduction

copyIn *

default *

firstprivate

lastprivate

Runtime Library

Directives

Environment Variables

OpenMP Constructs

Work Sharing

sections

single

do/for

schedule

ordered

workshare

atomic
Is similar to a critical

section, but with
restrictions

threadprivate(list)
can be used for private
data that is persistent

from one parallel region
to the next

copyin(list)
copies master thread’s
threadprivate variables
into those of each other

thread of the team

default(shared | none)
modifies the implicit default

Can be used only on
parallel or task directive.

Fortran:...| private | firstprivate)

OMP_DYNAMIC
The operating system
can choose smaller
number of threads.

OMP_NESTED
Parallel regions inside of

parallel regions are
possible.

Task generating constructs

task, taskloop
(in 3.0) (in 4.5) . ● REC à online

Mar 03, 2022
simd (in 4.0)

Slide 126

https://www.hlrs.de/training/par-prog-ws/
https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

Outline — OpenMP Pitfalls
• Introduction into OpenMP
• Programming and Execution Model

– Parallel regions: team of threads
– Syntax
– Data environment (part 1)
– Environment variables
– Runtime library routines
– Exercise 1: Parallel region / library calls / privat & shared variables

• Worksharing directives
– Which thread executes which statement or operation?
– Exercise 2a: Pi
– Tasks
– Synchronization constructs, e.g., critical regions
– Nesting and Binding
– Exercise 2b: Pi

• Data environment and combined constructs
– Private and shared variables, Reduction clause
– Combined parallel worksharing directives
– Exercise 3: Pi with reduction clause and combined constructs
– Exercise 4: Heat

• Summary of OpenMP API
• OpenMP Pitfalls

O
pe

nM
P

Pi
tfa

lls

Introduction to OpenMP à Pitfalls Slide 127

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

Implementation-defined behavior

See Appendix D of the OpenMP 4.0 standard, e.g.:
• The size of the first chunk in SCHEDULE(GUIDED)
• default schedule for SCHEDULE(RUNTIME)
• default schedule
• default number of threads
• default for dynamic thread adjustment
• number of levels of nested parallelism supported
• atomic directives might be replaced by critical regions
• behavior in case of thread exhaustion
• allocation status of allocatable arrays that are not affected by COPYIN

clause are undefined if dynamic thread mechanism is enabled
• Fortran: Is include ‘omp_lib.h’ or use omp_lib

or both available?

Introduction to OpenMP à Pitfalls Slide 128

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

Implied flush directive
• A FLUSH directive identifies a sequence point at which a consistent view of

the shared memory is guaranteed

• It is implied at the following constructs:
– BARRIER
– CRITICAL and END CRITICAL
– END {DO, FOR, SECTIONS}
– END {SINGLE, WORKSHARE}
– ORDERED AND END ORDERED
– PARALLEL and END PARALLEL

with their combined variants
– Immediately before and after every

task scheduling point (OpenMP ≥ 3.0)

• It is NOT implied at the following constructs:
– Begin of DO, FOR, WORKSHARE, SECTIONS
– Begin of MASTER and END MASTER
– Begin of SINGLE

• Recommendation: Do not loop with testing on data modifications caused by
other threads (without correct and sufficient flushing)

More secure: Use OpenMP synchronization methods

Thread- n m
number

new value
Memory

old value
Cache*)

CPU
Registers

cache flush
is needed to
load the
new value
into the CPU

*) Faster memory for temporary copies
of recently used data

?

Introduction to OpenMP à Pitfalls Slide 129

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

Two types of SMP errors

• Race Conditions
– Data-Race: Two threads access the same shared variable and

at least one thread modifies the variable and
the accesses are concurrent, i.e. unsynchronized

– The outcome of a program depends on the detailed timing of the
threads in the team.

– This is often caused by unintended share of data
• Deadlock

– Threads lock up waiting on a locked resource that will never become
free.

• Avoid lock functions if possible
• At least avoid nesting different locks

Introduction to OpenMP à Pitfalls Slide 130

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

Example for race condition (1)

• The result varies unpredictably based on specific order of execution
for each section.

• Wrong answers produced without warning!

!$OMP PARALLEL SECTIONS
A = B + C

!$OMP SECTION
B = A + C

!$OMP SECTION
C = B + A

!$OMP END PARALLEL SECTIONS

Introduction to OpenMP à Pitfalls Slide 131

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

Example for race condition (2)

• The result varies unpredictably because the value of X isn’t
dependable until the barrier at the end of the do loop.

• Solution: Be careful when you use NOWAIT.

!$OMP PARALLEL SHARED (X), PRIVATE(ID,TMP)
ID = OMP_GET_THREAD_NUM()

!$OMP DO REDUCTION(+:X)
DO 100 I=1,100

TMP = WORK1(I)
X = X + TMP

100 CONTINUE
!$OMP END DO NOWAIT

Y(ID) = WORK2(X,ID)
!$OMP END PARALLEL

Introduction to OpenMP à Pitfalls Slide 132

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

OpenMP programming recommendations

• Write SMP code that is
– portable and
– equivalent to the sequential form.

• Use tools like “Intel® Inspector”
(formerly “Intel® Thread Checker” and “Assure”).

Introduction to OpenMP à Pitfalls Slide 133

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

Sequential Equivalence

• Two forms of sequential equivalence
– Strong SE: bitwise identical results.
– Weak SE: equivalent mathematically but due to quirks of

floating point arithmetic, not bitwise identical.
• Using a limited subset of OpenMP

e.g., no locks
• Advantages:

– program can be tested,debugged and used in sequential mode
– this style of programming is also less error prone

Introduction to OpenMP à Pitfalls Slide 134

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

Rules for Strong Sequential Equivalence

• Control data scope with the base language
– Avoid the data scope clauses.
– Only use private for scratch variables local to a block (eg.

temporaries or loop control variables) whose global initialization
don’t matter.

• Locate all cases where a shared variable can be written by multiple
threads.
– The access to the variable must be protected.
– If multiple threads combine results into a single value, enforce

sequential order.
– Do not use the reduction clause carelessly.

(no floating point operations +,-,*)
– Use the ordered directive and the ordered clause.

• Concentrate on loop parallelism/data parallelism

Introduction to OpenMP à Pitfalls Slide 135

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

Example for Ordered Clause: pio.c / .f90

#pragma omp for ordered private(x, myf)
for (i=1;i<=n;i++)
{
x=w*((double)i-0.5);
myf=f(x); /* f(x) should be expensive! */

#pragma omp ordered
{
sum=sum+myf;

}
}

• “ordered” corresponds to “critical” + “order of execution”
• only efficient if workload outside ordered directive is large enough

ordered directive

ordered clause

Introduction to OpenMP à Pitfalls

pio.c
Mar 03, 2022

Slide 136

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

Rules for weak sequential equivalence

• For weak sequential equivalence only mathematically valid
constraints are enforced.

• Floating point arithmetic is not associative and not
commutative.

• In many cases, no particular grouping of floating point
operations is mathematically preferred so why take a
performance hit by forcing the sequential order?

– In most cases, if you need a particular grouping of floating point
operations, you have a bad algorithm.

• How do you write a program that is portable and satisfies weak
sequential equivalence?
– Follow the same rules as the strong case, but relax sequential

ordering constraints.

Introduction to OpenMP à Pitfalls Slide 139

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

Thread-safe library functions

• Library functions (if called inside of parallel regions)
must be thread-safe

• Automatically switched if OpenMP option is used:
– e.g., Intel compiler:

• ifort -qopenmp -o my_prog my_prog.f or my_prog.f90 (Fortran)
• icc -qopenmp -o my_prog my_prog.c (C, C++)

• Manually by compiler option:
– e.g., IBM compiler:

• xlf_r -O -qsmp=omp -o my_prog my_prog.f (Fortran, fixed form)
• xlf90_r -O -qsmp=omp -o my_prog my_prog.f90 (Fortran, free form)
• xlc_r -O -qsmp=omp -o my_prog my_prog.c (C)
• The “_r” forces usage of reentrant library functions (not identical with thread-safe)

• Manually by programmer: Some library function are using an internal
buffer to store its state – one must use its reentrant counterpart:

• e.g., reentrant erand48() instead of drand48()
gmtime_r() gmtime()
... ...

Introduction to OpenMP à Pitfalls

Corrections fro. 2022
–

Slide 140

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

Optimization Problems – Overview

• Prevent unnecessary fork and join of parallel regions
– if you can execute several loop / workshare / sections / single inside of

one parallel region
• Prevent unnecessary synchronizations

– e.g. with critical or ordered regions inside of loops
• Prevent false-sharing (of cache-lines) à 3rd next slide

• Prevent unnecessary cache-coherence or memory communication
– E.g., same schedules for same memory access patterns à 6th next slide

– First touch on (cc)NUMA architectures à 8th next slide
• To locate arrays/objects already in a parallelized initialization

to the threads where they are mainly used
– Pin the threads to CPUs [not useful in time sharing on over-committed systems]

• Otherwise, after each time slice, threads may run on other CPUs
• numactl, or LIKWID (portable !!!)
• dplace -x2 (SGI), O(1) scheduler (HP), SUNW_OMP_PROBIND envir. (Sun)
• fplace –r -o 1,2 command (Intel), …

Do not pin the management threads

O
pt

im
iz

at
io

n
Pr

ob
le

m
s

Introduction to OpenMP à Pitfalls

Corrections fro. 2022
–

Slide 141

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

Get a feeling for the involved overheads

Operation Minimum overhead
(cycles)

Scalability

Hit L1 cache 1-10 Constant

Function call 10-20 Constant

Thread ID 10-50 Constant, log, linear

Integer divide 50-100 Constant

Static do/for, no barrier 100-200 Constant

Miss all caches 100-300 Constant

Lock acquisition 100-300 Depends on contention

Dynamic do/for, no barrier 1000-2000 Depends on contention

Barrier 200-500 Log, linear

Parallel 500-1000 Linear

Ordered 5000-10000 Depends on contention

All numbers are approximate!! They are very platform dependent !!

Author:
Matthias Müller Introduction to OpenMP à Pitfalls Slide, courtesy to Uwe Küster & Matthias Müller Slide 142

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

Optimization Problems

• Prevent frequent synchronizations, e.g., with critical regions

• Loop: partial_max is updated locally up to 10000/#threads times
• Critical region: max is updated only up to #threads times

max = 0;
#pragma omp parallel private(partial_max)
{

partial_max = 0;
#pragma omp for

for (i=0; i<10000; i++)
{
x[i] = ...;
if (x[i] > partial_max) partial_max = x[i];

}
#pragma omp critical

if (partial_max > max) max = partial_max;
}

Introduction to OpenMP à Pitfalls Slide 143

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

False-sharing

• Several threads are accessing data
through the same cache-line.*)

• This cache-line has to be moved
between these threads.

• This is very time-consuming.
*) The smallest accessible unit in memory and caches,
usually 64 or 128 bytes, i.e., 8 or 16 doubles

a 00000 000 00

CPU CPU

thread 0 thread 1

cache-line

memory

a[0]++

00001000

1

a[1]++

1000

1100

1100

Author:
Rolf Rabenseifner Introduction to OpenMP à Pitfalls

piarr.c Slide 144

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

Measurements on NEC TX-7 with 128 bytes cache lines,
timings with false-sharing (stride 1-8 with more than 1 thread) were varying from run to run.

False-sharing – results from the experiment

0

1

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10 12
Threads

W
al

l-c
lo

ck
 ti

m
e

[s
ec

]
stride 1
(8 bytes)

stride 2
(16 bytes)

stride 4
(32 bytes)

stride 8
(64 bytes)

stride 16
(128 bytes)

stride 100
(800 bytes)

ideal speed-up

80x
slower

Although each thread accesses independent variables, the performance
will be terrible, if these variables are located in the same cache-line

Test program, see
Appendix: piarr.c

Introduction to OpenMP à Pitfalls Slide 145

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

0

2

4

6

8

10

12

0 2 4 6 8 10 12

Threads

Sp
ee
d-
up

stride 1
(8 bytes)
stride 2
(16 bytes)
stride 4
(32 bytes)
stride 8
(64 bytes)
stride 16
(128 bytes)
stride 100
(800 bytes)
ideal speed-up

False-sharing – same with speed-up

Measurements on NEC TX-7 with 128 bytes cache lines,
timings with false-sharing (stride 1-8 with more than 1 thread) were varying from run to run.

Cache-line false-sharing
may kill any speed-up!

perfect

Introduction to OpenMP à Pitfalls Slide 146

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

Communication overhead, e.g., due to different schedules

a

local
caches

shared memory

a[0..
..7]

a[8..
..15]

a[16..
..23]

a[24..
..31]

Storing data into …

CPU CPU CPU CPU

a

a[0,4,8,
12,16,..]

a[1,5,9,
13,17,..]

a[2,6,10,
14,18,..]

a[3,7,11,
15,19,..]

Reusing data from different threads…

CPU CPU CPU CPU Only
partially
fast cache
access

Often slow
cache
coherence
protocol

Introduction to OpenMP à Pitfalls

pivec.c Slide 147

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

Communication overhead – results from the experiment
Calculation of pi with vector chunks

Wall-clock time - the smaller the better!
Timing on NEC TX-7, with n=10,000,000

0,01

0,1

1

1e+2 1e+3 1e+4 1e+5 1e+6 1e+7

vector length [bytes]

w
al

l-c
lo

ck
 ti

m
e

[s
ec

] 1 thread, SPLIT
1 thread, normal
2 thread, SPLIT
2 thread, normal
4 thread, SPLIT
4 thread, normal
8 thread, SPLIT
8 thread, normal

1.9 x slower

Significant performance penalties
because several threads are accessing the same data in different loops

No cache reuse with 10
MB vectors, therefore

no differences

Test program, see
Appendix: pivec.cIntroduction to OpenMP à Pitfalls Slide 148

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

First touch
First write of a byte in a memory page
à memory page is located in the

physical memory of the executing thread

Introduction to OpenMP à Acknowledgements

memory memory

SocketSocket

#define n 1000000
double *x; int i;
x = (double *) malloc(n*sizeof(double));

// sequential initialization of the data
for (i=0 ; i<n; i++) x[i]=0;

#pragma omp parallel
{ // parallelized numerical loop

#pragma omp for schedule(static)
for (i=0 ; i<n; i++) x[i]=huge_computation(i);

}

First touch only by master thread
à Whole array is in 1st CPU’s memory

à slower accesses by threads on 2nd CPU

#pragma omp parallel
{// parallel initialization of the data

#pragma omp for schedule(static)
for (i=0 ; i<n; i++) x[i]=0;

// parallelized numerical loop
#pragma omp for schedule(static)

for (i=0 ; i<n; i++) x[i]=huge_computation(i);
}

Parallelized first touch
with same schedule
as in the numerical loop

à Fast accesses by all threads because
x[i] is in the own CPU’s memory

memory memory

SocketSocket

hyper-transport

malloc() does not specify the physical
location of the memory pages of the array!

ccNUMA node

impossible with any dynamic schedule or
taskloops (i.e., only with static schedule)

Don’t use calloc() with OpenMP – no first touch
whole array is already mapped to physical memory

Slide 149

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

Acknowledgements

Thanks to
– Rainer Keller (Hochschule für Technik, Stuttgart),
– Matthias Müller (RWTH Aachen),
– Isabel Loebich,

the original co-authors of this course.

Introduction to OpenMP à Acknowledgements Slide 150

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

OpenMP Summary

• Standardized compiler directives for shared memory programming
• Fork-join model based on threads
• Support from all relevant hardware vendors
• OpenMP offers an incremental approach to parallelism
• OpenMP allows to keep one source code version for scalar and parallel

execution
• Equivalence to sequential program is possible if necessary

– strong equivalence
– weak equivalence
– no equivalence

• OpenMP programming includes race conditions and deadlocks,
but a subset of OpenMP can be considered safe

• Tools like the Intel® Inspector help to write correct parallel programs

O
pe

nM
P

Su
m

m
ar

y

Introduction to OpenMP à Summary Slide 151

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

Appendix

Introduction to OpenMP à Appendix (App.)Slide 152

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

Appendix – Content

• Example hello – parallel region – written in C and Fortran
• Example pi, written in C
• Example pi, written in Fortran (free form)
• Example heat

– heatc2.c – parallel version in C, with critical region (4 pages)
– heatr.f – parallel version in Fortran, with reduction clause (4 pages)

• Cache-line false-sharing experiment: piarr.c
• Communication overhead / different schedules experiment: pivec.c

(App.)Introduction to OpenMP à Appendix Slide 153

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

Example hello – Parallel region

• hello6.c – final solution in C
• hello6.f90 – final solution in Fortran

(App.)Introduction to OpenMP à Programming and Execution Model à Exercise 1 Slide 154

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

hello5.c – Parallel region

#include <stdio.h>
#include <unistd.h>

ifdef _OPENMP
include <omp.h>
endif

int main(int argc, char** argv)
{
int i;

i = -1;

#pragma omp parallel private(i)
{

ifdef _OPENMP
i = omp_get_thread_num();

endif
sleep(1);
printf("hello world %d\n", i);

}

return 0;
}

f90 (App.)

Header file for OpenMP library routines

Introduction to OpenMP à Programming and Execution Model à Exercise 1

Conditional compilation because library
routines are available only within OpenMP

Parallel region Private-clause that each thread
has its own private i variable

Conditional compilation because library
routines are available only within OpenMP

Query the my_rank of the thread that calls
this function

With this sleep(1)-trick between storing data into i and
reading i in the print statement, one would see the
race-condition in the output if one forgets to make i
private. (Do not do this in programs in production!)

Slide 155

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

hello5.f90 – Parallel region

program hello

integer i

!$ integer OMP_GET_THREAD_NUM

i=-1

!$OMP PARALLEL PRIVATE(i)

!$ i=OMP_GET_THREAD_NUM()

call sleep(1)

print *,'hello world',i

!$OMP END PARALLEL

end program hello

back (App.)Introduction to OpenMP à Programming and Execution Model à Exercise 1

Direct declaration of the result type of the library
function.
You may prefer to use the general statement
USE omp (although not 100% portable).

Conditional compilation
because library
routines are available
only within OpenMP

Parallel region Private-clause that each thread
has its own private i variable

Conditional compilation because library
routines are available only within OpenMP

Query the my_rank of the thread that calls
this function

With this sleep(1)-trick between storing data into i and
reading i in the print statement, one would see the
race-condition in the output if one forgets to make i
private. (Do not do this in programs in production!)

Slide 156

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

Example pi, written in C

• pi.c – sequential code
• pi0.c – sequential code with a parallel region,

verifying a team of threads
• pic2.c – parallel version with a critical region outside of the loop
• pir.c – parallel version with a reduction clause
• pir2.c – parallel version with combined parallel for
• pio.c – parallel version with ordered region
• pio2.c – parallel version with ordered execution

if the number of threads is fixed

(App.)Introduction to OpenMP à Worksharing directives à Exercises 2a + 2b + 3: Pi Slide 157

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

pi.c – sequential code
#include <stdio.h>
#include <time.h>
#include <sys/time.h>
#ifdef _OPENMP
include <omp.h>
#endif
#define f(A) (4.0/(1.0+A*A))
const int n = 10000000;
int main(int argc, char** argv)
{
int i;
double w,x,sum,pi;
clock_t t1,t2;
struct timeval tv1,tv2;
struct timezone tz;

ifdef _OPENMP
double wt1,wt2;

endif
ifdef _OPENMP
pragma omp parallel

{
pragma omp single

printf("OpenMP-parallel with %1d
threads\n", omp_get_num_threads());

} /* end omp parallel */
endif
pragma omp barrier

gettimeofday(&tv1, &tz);
ifdef _OPENMP

wt1=omp_get_wtime();
endif
t1=clock();

/* pi = integral [0..1] 4/(1+x**2) dx */
w=1.0/n;
sum=0.0;
for (i=1;i<=n;i++)
{
x=w*((double)i-0.5);
sum=sum+f(x);

}
pi=w*sum;

t2=clock();
ifdef _OPENMP

wt2=omp_get_wtime();
endif
gettimeofday(&tv2, &tz);
printf("computed pi = %24.16g\n", pi);
printf("CPU time (clock)
= %12.4g sec\n", (t2-t1)/1000000.0);

ifdef _OPENMP
printf("wall clock time
(omp_get_wtime) = %12.4g sec\n",
wt2-wt1);

endif
printf("wall clock time (gettimeofday)
= %12.4g sec\n",
(tv2.tv_sec-tv1.tv_sec) +
(tv2.tv_usec-tv1.tv_usec)*1e-6);

return 0;
}

timing block A

timing block B

timing block C

The include and timing blocks
are removed on the next slides

the calculation

include block

f90

OpenMP check

(App.)Introduction to OpenMP à Worksharing directives à Exercise 2a Slide 158

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

pi0.c – only verification of team of threads
– without parallelization

--- INCLUDE BLOCK ---
#define f(A) (4.0/(1.0+A*A))
const int n = 10000000;
int main(int argc, char** argv)
{
int i;
double w,x,sum,pi;
--- TIMING_BLOCK A ---

ifdef _OPENMP
int myrank, num_threads;

pragma omp parallel private(myrank,num_threads)
{
myrank = omp_get_thread_num();
num_threads = omp_get_num_threads();
printf("I am thread %2d of %2d threads\n", myrank, num_threads);
} /* end omp parallel */

else
printf("This program is not compiled with OpenMP\n");

endif
--- TIMING BLOCK B ---

/* calculate pi = integral [0..1] 4/(1+x**2) dx */
w=1.0/n;
sum=0.0;
for (i=1;i<=n;i++)
{
x=w*((double)i-0.5);
sum=sum+f(x);

}
pi=w*sum;
--- TIMING BLOCK C ---
return 0;

}

f90 (App.)Introduction to OpenMP à Worksharing directives à (Exercise 2a) Slide 159

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

pi2.c
parallelization with race-condition, i.e., WRONG program

--- INCLUDE BLOCK ---
#define f(A) (4.0/(1.0+A*A))
const int n = 10000000;
int main(int argc, char** argv)
{
int i;
double w,x,sum,pi;
--- TIMING BLOCK A ---
--- PRINT NUM_THREADS ---
--- TIMING BLOCK B ---

/* pi = integral [0..1] 4/(1+x**2) dx */
w=1.0/n;
sum=0.0;

#pragma omp parallel private(x), shared(w,sum)
{
pragma omp for
for (i=1;i<=n;i++)
{
x=w*((double)i-0.5);
sum=sum+f(x);

}
} /*end omp parallel*/
pi=w*sum;
--- TIMING BLOCK C ---
return 0;

}

f90 (App.)

Read/write race-conditions on shared variable sum.
Or wrong results if sum would be declared as private.

Introduction to OpenMP à Worksharing directives à Exercise 2a Slide 160

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

pic2.c
parallelization with critical region outside of the loop

--- INCLUDE BLOCK ---
#define f(A) (4.0/(1.0+A*A))
const int n = 10000000;
int main(int argc, char** argv)
{
int i;
double w,x,sum,sum0,pi;
--- TIMING BLOCK A ---
--- PRINT NUM_THREADS ---
--- TIMING BLOCK B ---

/* pi = integral [0..1] 4/(1+x**2) dx */
w=1.0/n;
sum=0.0;

#pragma omp parallel private(x,sum0), shared(w,sum)
{
sum0=0.0;

pragma omp for nowait
for (i=1;i<=n;i++)
{
x=w*((double)i-0.5);
sum0=sum0+f(x);

}
pragma omp critical
{
sum=sum+sum0;

}
} /*end omp parallel*/
pi=w*sum;
--- TIMING BLOCK C ---
return 0;

}

f90 (App.)Introduction to OpenMP à Worksharing directives à Exercise 2b Slide 161

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

pir.c – parallelization with reduction clause
--- INCLUDE BLOCK ---
#define f(A) (4.0/(1.0+A*A))
const int n = 10000000;
int main(int argc, char** argv)
{
int i;
double w,x,sum,pi;
--- TIMING BLOCK A ---
--- PRINT NUM_THREADS ---
--- TIMING BLOCK B ---

/* calculate pi = integral [0..1] 4/(1+x**2) dx */
w=1.0/n;
sum=0.0;

#pragma omp parallel private(x), shared(w,sum)
{
pragma omp for reduction(+:sum)
for (i=1;i<=n;i++)
{
x=w*((double)i-0.5);
sum=sum+f(x);

}
} /*end omp parallel*/
pi=w*sum;

--- TIMING BLOCK C ---
return 0;

}

f90 (App.)Introduction to OpenMP à Worksharing directives à Exercise 3 Slide 162

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

pir2.c – combined parallel for with reduction clause
--- INCLUDE BLOCK ---
#define f(A) (4.0/(1.0+A*A))
const int n = 10000000;
int main(int argc, char** argv)
{
int i;
double w,x,sum,pi;
--- TIMING BLOCK A ---
--- PRINT NUM_THREADS ---
--- TIMING BLOCK B ---

/* calculate pi = integral [0..1] 4/(1+x**2) dx */
w=1.0/n;
sum=0.0;

#pragma omp parallel for private(x), shared(w), reduction(+:sum)
for (i=1;i<=n;i++)
{
x=w*((double)i-0.5);
sum=sum+f(x);

}
/*end omp parallel for*/
pi=w*sum;

--- TIMING BLOCK C ---
return 0;

}

f90 (App.)Introduction to OpenMP à Worksharing directives à Exercise 3 Slide 163

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

pio.c – parallelization with ordered clause
--- INCLUDE BLOCK ---
#define f(A) (4.0/(1.0+A*A))
const int n = 10000000;
int main(int argc, char** argv)
{
int i;
double w,x,sum,myf,pi;
--- TIMING BLOCK A ---
--- PRINT NUM_THREADS ---
--- TIMING BLOCK B ---

/* calculate pi = integral [0..1] 4/(1+x**2) dx */
w=1.0/n;
sum=0.0;

#pragma omp parallel private(x,myf), shared(w,sum)
{
pragma omp for ordered
for (i=1;i<=n;i++)
{
x=w*((double)i-0.5);
myf = f(x);

pragma omp ordered
{
sum=sum+myf;

}
}

} /*end omp parallel*/
pi=w*sum;

--- TIMING BLOCK C ---
return 0;

}

CAUTION
The sequentialization of the

ordered region may cause heavy
synchronization overhead

f90 (App.)

Most compute time should be
outside of the ordered region

Introduction to OpenMP à Pitfalls Slide 164

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

pio2.c – ordered, but only if number of threads is fixed
...
double w,x,sum,sum0,pi;
...
/* calculate pi = integral [0..1] 4/(1+x**2) dx */
w=1.0/n;
sum=0.0;

#pragma omp parallel private(x,sum0,num_threads), shared(w,sum)
{
sum0=0.0;

#ifdef _OPENMP
num_threads=omp_get_num_threads();

#else
num_threads=1

#endif
pragma omp for schedule(static,(n-1)/num_threads+1)
for (i=1;i<=n;i++)
{
x=w*((double)i-0.5);
sum0=sum0+f(x);

}
#pragma omp for ordered schedule(static,1)
for (i=0;i<num_threads;i++)
{

#pragma omp ordered
sum=sum+sum0;

}
} /*end omp parallel*/
pi=w*sum;

...

CAUTION
1. Only if the number of threads is fixed

AND if the floating point rounding is the
same,
then the result is the same on two
different platforms and any repetition of
this program.

2. This program cannot be verified with
Assure because it has to call
omp_get_num_threads().

3. To use Assure, the second loop must be
substituted by the critical region as
shown in pic2.c

f90 (App.)Introduction to OpenMP à Pitfalls Slide 165

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

Example pi, written in Fortran (free form)

• pi.f90 – sequential code
• pi0.f90 – sequential code with a parallel region,

verifying a team of threads
• pic2.f90 – parallel version with a critical region outside of the loop
• pir.f90 – parallel version with a reduction clause
• pir2.f90 – parallel version with combined parallel for
• pio.f90 – parallel version with ordered region
• pio2.f90 – parallel version with ordered execution

if the number of threads is fixed

(App.)Introduction to OpenMP à Worksharing directives à Exercise 2a + 2b + 3: Pi Slide 166

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

pi.f90 – sequential code
program compute_pi
implicit none
! times using cpu_time
real t0,t1
!--unused-- use omp_lib
!$ double precision omp_get_wtime
!$ double precision wt0,wt1
integer i
integer, parameter :: n=10000000
real(kind=8) w,x,sum,pi,f,a
! function to integrate
f(a)=4.0_8/(1.0_8+a*a)
…
!$ write (*,*) 'OpenMP-parallel with',omp_get_num_threads(),'threads‘
…
!$ wt0=omp_get_wtime()
call cpu_time(t0)
! calculate pi = integral [0..1] 4/(1+x**2) dx
w=1.0_8/n
sum=0.0_8
do i=1,n

x=w*(i-0.5_8)
sum=sum+f(x)

enddo
pi=w*sum
call cpu_time(t1)
!$ wt1=omp_get_wtime()
write (*,'(/,a,1pg24.16)') 'computed pi = ', pi
write (*,'(/,a,1pg12.4)') 'cpu_time: ', t1-t0
!$ write (*,'(/,a,1pg12.4)') 'omp_get_wtime:', wt1-wt0
end program compute_pi

timing block A.f

timing block B.f

timing block C.f

The timing blocks are
removed on the next slides

the calculation

back

OpenMP check

(App.)Introduction to OpenMP à Worksharing directives à Exercise 2a Slide 167

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

pi0.f90 – only verification of team of threads
– without parallelization

program compute_pi
implicit none
--- TIMING BLOCK A ---
integer i
integer, parameter :: n=10000000
real(kind=8) w,x,sum,pi,f,a
!$ integer omp_get_thread_num, omp_get_num_threads
!$ integer myrank, num_threads

logical openmp_is_used
! function to integrate
f(a)=4.0_8/(1.0_8+a*a)
!$omp parallel private(myrank, num_threads)
!$ myrank = omp_get_thread_num()
!$ num_threads = omp_get_num_threads()
!$ write (*,*) 'I am thread',myrank,'of',num_threads,'threads'
!$omp end parallel

openmp_is_used = .false.
!$ openmp_is_used = .true.

if (.not. openmp_is_used) then
write (*,*) 'This program is not compiled with OpenMP'

endif
--- TIMING BLOCK B ---
! calculate pi = integral [0..1] 4/(1+x**2) dx
w=1.0_8/n
sum=0.0_8
do i=1,n

x=w*(i-0.5_8)
sum=sum+f(x)

enddo
pi=w*sum
--- TIMING BLOCK C ---
end program compute_pi

back (App.)Introduction to OpenMP à Worksharing directives à (Exercise 2a) Slide 168

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

pi2.f90
parallelization with race-condition, i.e., WRONG program

program compute_pi
implicit none
--- TIMING BLOCK A ---
integer i
integer, parameter :: n=10000000
real(kind=8) w,x,sum,pi,f,a
! function to integrate
f(a)=4.0_8/(1.0_8+a*a)
--- PRINT NUM_THREADS ---
--- TIMING BLOCK B ---
! calculate pi = integral [0..1] 4/(1+x**2) dx
w=1.0_8/n
sum=0.0_8
!$OMP PARALLEL PRIVATE(x), SHARED(w,sum)
!$OMP DO
do i=1,n

x=w*(i-0.5_8)
sum=sum+f(x)

enddo
!$OMP END DO
!$OMP END PARALLEL
pi=w*sum
--- TIMING BLOCK C ---
end program compute_pi

back (App.)

Read/write race-conditions on shared variable sum.
Or wrong results if sum would be declared as private.

Introduction to OpenMP à Worksharing directives à Exercise 2a Slide 169

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

pic2.f90
parallelization with critical region outside of the loop

program compute_pi
implicit none
--- TIMING BLOCK A ---
integer i
integer, parameter :: n=10000000
real(kind=8) w,x,sum,sum0,pi,f,a
! function to integrate
f(a)=4.0_8/(1.0_8+a*a)
--- PRINT NUM_THREADS ---
--- TIMING BLOCK B ---
! calculate pi = integral [0..1] 4/(1+x**2) dx
w=1.0_8/n
sum=0.0_8
!$OMP PARALLEL PRIVATE(x,sum0), SHARED(w,sum)
sum0=0.0_8
!$OMP DO
do i=1,n

x=w*(i-0.5_8)
sum0=sum0+f(x)

enddo
!$OMP END DO NOWAIT
!$OMP CRITICAL

sum=sum+sum0
!$OMP END CRITICAL
!$OMP END PARALLEL
pi=w*sum
--- TIMING BLOCK C ---
end program compute_pi

back (App.)Introduction to OpenMP à Worksharing directives à Exercise 2b Slide 170

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

pir.f90 – parallelization with reduction clause
program compute_pi
implicit none
--- TIMING BLOCK A ---
integer i
integer, parameter :: n=10000000
real(kind=8) w,x,sum,pi,f,a
! function to integrate
f(a)=4.0_8/(1.0_8+a*a)
--- PRINT NUM_THREADS ---
--- TIMING BLOCK B ---
! calculate pi = integral [0..1] 4/(1+x**2) dx
w=1.0_8/n
sum=0.0_8
!$OMP PARALLEL PRIVATE(x), SHARED(w,sum)
!$OMP DO REDUCTION(+:sum)
do i=1,n

x=w*(i-0.5_8)
sum=sum+f(x)

enddo
!$OMP END DO
!$OMP END PARALLEL
pi=w*sum
--- TIMING BLOCK C ---
end program compute_pi

back (App.)Introduction to OpenMP à Worksharing directives à Exercise 3 Slide 171

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

pir2.f90 – combined parallel do with reduction clause
program compute_pi
implicit none
--- TIMING BLOCK A ---
integer i
integer, parameter :: n=10000000
real(kind=8) w,x,sum,pi,f,a
! function to integrate
f(a)=4.0_8/(1.0_8+a*a)
--- PRINT NUM_THREADS ---
--- TIMING BLOCK B ---
! calculate pi = integral [0..1] 4/(1+x**2) dx
w=1.0_8/n
sum=0.0_8
!$OMP PARALLEL DO PRIVATE(x), SHARED(w), REDUCTION(+:sum)
do i=1,n

x=w*(i-0.5_8)
sum=sum+f(x)

enddo
!$OMP END PARALLEL DO
pi=w*sum
--- TIMING BLOCK C ---
end program compute_pi

back (App.)Introduction to OpenMP à Worksharing directives à Exercise 3 Slide 172

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

pio.f90 – parallelization with ordered clause
program compute_pi
implicit none
--- TIMING BLOCK A ---
integer i
integer, parameter :: n=10000000
real(kind=8) w,x,sum,myf,pi,f,a
! function to integrate
f(a)=4.0_8/(1.0_8+a*a)
--- PRINT NUM_THREADS ---
--- TIMING BLOCK B ---
! calculate pi = integral [0..1] 4/(1+x**2) dx
w=1.0_8/n
sum=0.0_8
!$OMP PARALLEL PRIVATE(x,myf), SHARED(w,sum)
!$OMP DO ORDERED
do i=1,n

x=w*(i-0.5_8)
myf=f(x)

!$OMP ORDERED
sum=sum+myf

!$OMP END ORDERED
enddo
!$OMP END DO
!$OMP END PARALLEL
pi=w*sum
--- TIMING BLOCK C ---
end program compute_pi

back (App.)

CAUTION
The sequentialization of the

ordered region may cause heavy
synchronization overhead

Most compute time should be
outside of the ordered region

Introduction to OpenMP à Pitfalls Slide 173

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

pio2.f90 – ordered, but only if number of threads is fixed
...
!--unused-- use omp_lib
!$ integer omp_get_num_threads
real(kind=8) w,x,sum,sum0,pi,f,a
...
! calculate pi = integral [0..1] 4/(1+x**2) dx
w=1.0_8/n
sum=0.0_8
!$OMP PARALLEL PRIVATE(x,sum0,num_threads), SHARED(w,sum)
sum0=0.0_8
num_threads=1
!$ num_threads=omp_get_num_threads()
!$OMP DO SCHEDULE(STATIC,(n-1)/num_threads+1)
do i=1,n

x=w*(i-0.5_8)
sum0=sum0+f(x)

enddo
!$OMP END DO
!$OMP DO ORDERED SCHEDULE(STATIC,1)
do i=1,num_threads
!$OMP ORDERED

sum=sum+sum0
!$OMP END ORDERED
enddo
!$OMP END DO
!$OMP END PARALLEL
pi=w*sum
...

CAUTION
1. Only if the number of threads is fixed

AND if the floating point rounding is the
same,
then the result is the same on two
different platforms and any repetition of
this program.

2. This program cannot be verified with
Assure because it has to call
omp_get_num_threads().

3. To use Assure, the second loop must be
substituted by the critical region as
shown in pic2.f90

back (App.)Introduction to OpenMP à Pitfalls Slide 174

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

heatc2_x.c – Parallelization of main loop and critical region
(page 1 of 4) – declarations

#include <stdio.h>
#include <sys/time.h>
#ifdef _OPENMP
include <omp.h>
#endif
#define min(A,B) ((A) < (B) ? (A) : (B))
#define max(A,B) ((A) > (B) ? (A) : (B))
#define imax 20
#define kmax 11
#define itmax 20000
void heatpr(double phi[imax+1][kmax+1]);

int main()
{
double eps = 1.0e-08;
double phi[imax+1][kmax+1], phin[imax][kmax];
double dx,dy,dx2,dy2,dx2i,dy2i,dt,dphi,dphimax,dphimax0;
int i,k,it;
struct timeval tv1,tv2; struct timezone tz;

ifdef _OPENMP
double wt1,wt2;

endif

ifdef _OPENMP
pragma omp parallel

{
pragma omp single

printf("OpenMP-parallel with %1d threads\n",
omp_get_num_threads());
} /* end omp parallel */

endif

(App.)Introduction to OpenMP à Worksharing directives à Exercise 4: Heat Slide 175

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

heatc2_x.c (page 2 of 4) – initialization
dx=1.0/kmax; dy=1.0/imax;
dx2=dx*dx; dy2=dy*dy;
dx2i=1.0/dx2; dy2i=1.0/dy2;
dt=min(dx2,dy2)/4.0;

/* start values 0.d0 */
#pragma omp parallel private(i,k) shared(phi)
{
#pragma omp for
for (i=1;i<imax;i++)
{ for (k=0;k<kmax;k++)
{ phi[i][k]=0.0;
}

}
/* start values 1.d0 */
#pragma omp for
for (i=0;i<=imax;i++)
{ phi[i][kmax]=1.0;
}

}/*end omp parallel*/
/* start values dx */
phi[0][0]=0.0;
phi[imax][0]=0.0;
for (k=1;k<kmax;k++)
{ phi[0][k]=phi[0][k-1]+dx;
phi[imax][k]=phi[imax][k-1]+dx;

}
printf("\nHeat Conduction 2d\n");
printf("\ndx = %12.4g, dy = %12.4g, dt = %12.4g, eps = %12.4g\n",

dx,dy,dt,eps);
printf("\nstart values\n");
heatpr(phi);

(App.)Introduction to OpenMP à Worksharing directives à Exercise 4: Heat Slide 176

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online
Introduction to OpenMP à Worksharing directives à Exercise 4: Heat

heatc2_x.c (page 3 of 4) – time step integration
gettimeofday(&tv1, &tz);
ifdef _OPENMP

wt1=omp_get_wtime();
endif
/* iteration */
for (it=1;it<=itmax;it++)
{ dphimax=0.;

#pragma omp parallel private(i,k,dphi,dphimax0) \
shared(phi,phin,dx2i,dy2i,dt,dphimax)

{
dphimax0=dphimax;

#pragma omp for
for (i=1;i<imax;i++)
{ for (k=0;k<kmax;k++)
{ dphi=(phi[i+1][k]+phi[i-1][k]-2.*phi[i][k])*dy2i

+(phi[i][k+1]+phi[i][k-1]-2.*phi[i][k])*dx2i;
dphi=dphi*dt;
dphimax0=max(dphimax0,dphi);
phin[i][k]=phi[i][k]+dphi;

}
}

#pragma omp critical
{ dphimax=max(dphimax,dphimax0);
}
/* save values */
#pragma omp for

for (i=1;i<imax;i++)
{ for (k=0;k<kmax;k++)
{ phi[i][k]=phin[i][k];
}

}
}/*end omp parallel*/

if(dphimax<eps) break;
}

In C, phi and phin are contiguous
in the last index [k]. Therefore the
k-loop should be the inner loop!
This optimization is done in all

heat..._x.c versions

(App.)● REC à online Slide 177

https://www.hlrs.de/training/par-prog-ws/
https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

heatc2_x.c (page 4 of 4) – wrap up
ifdef _OPENMP

wt2=omp_get_wtime();
endif
gettimeofday(&tv2, &tz);
printf("\nphi after %d iterations\n",it);
heatpr(phi);

ifdef _OPENMP
printf("wall clock time (omp_get_wtime) = %12.4g sec\n", wt2-wt1);

endif
printf("wall clock time (gettimeofday) = %12.4g sec\n", (tv2.tv_sec-
tv1.tv_sec) + (tv2.tv_usec-tv1.tv_usec)*1e-6);

}
void heatpr(double phi[imax+1][kmax+1])
{ int i,k,kl,kk,kkk;
kl=6; kkk=kl-1;
for (k=0;k<=kmax;k=k+kl)
{ if(k+kkk>kmax) kkk=kmax-k;
printf("\ncolumns %5d to %5d\n",k,k+kkk);
for (i=0;i<=imax;i++)
{ printf("%5d ",i);
for (kk=0;kk<=kkk;kk++)
{ printf("%#12.4g",phi[i][k+kk]);
}
printf("\n");

}
}

return;
}

back (App.)Introduction to OpenMP à Worksharing directives à Exercise 4: Heat Slide 178

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

heatr2_x.f – Parallelization of main loop with reduction clause
(page 1 of 4) – declarations

program heat
implicit none
integer i,k,it, imax,kmax,itmax

c using reduction
parameter (imax=20,kmax=11)
parameter (itmax=20000)
double precision eps
parameter (eps=1.d-08)
double precision phi(0:imax,0:kmax), phin(1:imax-1,1:kmax-1)
double precision dx,dy,dx2,dy2,dx2i,dy2i,dt,dphi,dphimax

! times using cpu_time
real t0
real t1

!--unused-- include 'omp_lib.h'
!$ integer omp_get_num_threads
!$ double precision omp_get_wtime
!$ double precision wt0,wt1
!
!$omp parallel
!$omp single
!$ write(*,*)'OpenMP-parallel with',omp_get_num_threads(),'threads'
!$omp end single
!$omp end parallel
C

dx=1.d0/kmax
dy=1.d0/imax
dx2=dx*dx
dy2=dy*dy
dx2i=1.d0/dx2
dy2i=1.d0/dy2
dt=min(dx2,dy2)/4.d0

(App.)Introduction to OpenMP à Worksharing directives à Exercise 4: Heat Slide 179

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

heatr2_x.f (page 2 of 4) – initialization
!$OMP PARALLEL PRIVATE(i,k), SHARED(phi)
c start values 0.d0
!$OMP DO

do k=0,kmax-1
do i=1,imax-1
phi(i,k)=0.d0

enddo
enddo

!$OMP END DO
c start values 1.d0
!$OMP DO

do i=0,imax
phi(i,kmax)=1.d0

enddo
!$OMP END DO
!$OMP END PARALLEL
c start values dx

phi(0,0)=0.d0
phi(imax,0)=0.d0
do k=1,kmax-1
phi(0,k)=phi(0,k-1)+dx
phi(imax,k)=phi(imax,k-1)+dx
enddo

c print array
write (*,'(/,a)')
f 'Heat Conduction 2d'
write (*,'(/,4(a,1pg12.4))')
f 'dx =',dx,', dy =',dy,', dt =',dt,', eps =',eps
write (*,'(/,a)')
f 'start values'
call heatpr(phi,imax,kmax)

(App.)Introduction to OpenMP à Worksharing directives à Exercise 4: Heat Slide 180

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

heatr2_x.f (page 3 of 4) – time step integration
!$ wt0=omp_get_wtime()

call cpu_time(t0)

c iteration
do it=1,itmax
dphimax=0.

!$OMP PARALLEL PRIVATE(i,k,dphi), SHARED(phi,phin,dx2i,dy2i,dt,dphimax)
!$OMP DO REDUCTION(max:dphimax)

do k=1,kmax-1
do i=1,imax-1
dphi=(phi(i+1,k)+phi(i-1,k)-2.*phi(i,k))*dy2i

f +(phi(i,k+1)+phi(i,k-1)-2.*phi(i,k))*dx2i
dphi=dphi*dt
dphimax=max(dphimax,dphi)
phin(i,k)=phi(i,k)+dphi

enddo
enddo

!$OMP END DO
c save values
!$OMP DO

do k=1,kmax-1
do i=1,imax-1
phi(i,k)=phin(i,k)

enddo
enddo

!$OMP END DO
!$OMP END PARALLEL

if(dphimax.lt.eps) goto 10
enddo

10 continue

In Fortran, phi and phin are
contiguous in the first index [i].
Therefore the i-loop should be

the inner loop!
This optimization is done in all

heat..._x.f versions

(App.)Introduction to OpenMP à Worksharing directives à Exercise 4: Heat Slide 181

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

heatr2_x.f (page 4 of 4) – wrap up
call cpu_time(t1)

!$ wt1=omp_get_wtime()

c print array
write (*,'(/,a,i6,a)')
f 'phi after',it,' iterations'
write (*,'(/,a,1pg12.4)') 'cpu_time : ', t1-t0

!$ write (*,'(/,a,1pg12.4)') 'omp_get_wtime:', wt1-wt0
c

stop
end

c
c

subroutine heatpr(phi,imax,kmax)
double precision phi(0:imax,0:kmax)

c
kl=6
kkk=kl-1
do k=0,kmax,kl
if(k+kkk.gt.kmax) kkk=kmax-k
write (*,'(/,a,i5,a,i5)') 'columns',k,' to',k+kkk
do i=0,imax
write (*,'(i5,6(1pg12.4))') i,(phi(i,k+kk),kk=0,kkk)
enddo
enddo

c
return
end

back (App.)Introduction to OpenMP à Worksharing directives à Exercise 4: Heat Slide 182

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

False-sharing – an experiment (solution/pi/piarr.c)
n = 100000000; w=1.0/n; sum=0.0;
stride=1; if (argc>1) stride=atoi(argv[1]); /* unit is "double" */

#pragma omp parallel private (x,index) shared(w,sum,p_sum)
{
ifdef _OPENMP

index=stride*omp_get_thread_num();
else

index=0;
endif
p_sum[index]=0;

#pragma omp for
for (i=1;i<=n;i++)
{
x=w*((double)i-0.5);
p_sum[index+(x>1?1:0)] = p_sum[index] + 4.0/(1.0+x*x);
/* The term (x>1?1:0) is always zero. It is used to prohibit

register caching of of p_sum[index], i.e., to guarantee that
each access to this variable is done via cache in the memory. */

}
#pragma omp critical
{
sum=sum+p_sum[index];

}
}
pi=w*sum;

The thread-locality of psum[index]
variables is forced manually,
and in the same cache-line

if stride is small enough

back (App.)Introduction to OpenMP à Pitfalls Slide 183

https://www.hlrs.de/training/par-prog-ws/

/ 151

© 2000-2023 HLRS, Rolf Rabenseifner ● REC à online

Communication overhead – an experiment
(solution/pi/pivec.c)

n=10000000; w=1.0/n; sum=0.0;
for (j=1;j<=n;j=j+m)
{
j_e = (j+m-1>n ? n : j+m-1);
#pragma omp parallel private(x,sum0) \

shared(w,sum)
{
sum0=0;

#pragma omp for
for (i=j;i<=j_e;i++)
{
x=w*((double)i-0.5);
vec[i-j] = 4.0/(1.0+x*x);

}

|
|
|

#pragma omp critical
{
sum=sum+sum0;

}
}
} /*end loop j*/
pi=w*sum;

Normal:
#pragma omp for
for (i=j;i<=j_e;i++)
{
sum0=sum0+vec[i-j];

}
#pragma omp for
for (i=0;i<16;i++)
{ /*dummy loop */
sum0=1.0*sum0;

}

Split: with cache coherence
communication !!!

#pragma omp for
for (i=j;i<(j+j_e)/2;i++)
{
sum0=sum0+vec[i-j];

}
#pragma omp for
for (i=(j+j_e)/2;i<=j_e;i++)
{
sum0=sum0+vec[i-j];

}

2 variants

back (App.)Introduction to OpenMP à Pitfalls Slide 184

https://www.hlrs.de/training/par-prog-ws/

