
1 www.prace-ri.euOpenMP – Overview | soHPC | Ljubljana, Slovenia

Introduction to OpenMP

LECAD laboratory, FS UL

Matic Brank

http://www.prace-ri.eu/

2 www.prace-ri.euOpenMP – Overview | soHPC | Ljubljana, Slovenia

Outline

What is OpenMP?

▶ Standard programming model for shared memory parallel programming

▶ Portable across all shared-memory architectures

▶ It allows incremental parallelization

▶ Compiler based extensions to existing programming languages

▶ Fortran and C/C++ binding

http://www.prace-ri.eu/

3 www.prace-ri.euOpenMP – Overview | soHPC | Ljubljana, Slovenia

Outline

What is OpenMP?

OpenMP -> Open specifications for Multi Processing

▶ API for shared-memory parallel computing

▶ Open standard for portable and scalable parallel programming

▶ Flexible and easy to implement

▶ Specification for a set of compiler directives, library routines and environment variables

▶ Designed for Fortran and C/C++

http://www.prace-ri.eu/

4 www.prace-ri.euOpenMP – Overview | soHPC | Ljubljana, Slovenia

Ownership and timeline

Ownership

▶ OpenMP ARB (Architecture review board)

▶ Its mission is to standardize directive-

based multi-language high-level

parallelism that is performant, productive

and portable

▶ Jointly defined by a group of major

computer hardware and software

vendors and major parallel computing

user facilities (such as AMD, Intel, IBM,

HP, Fujitsu, Microsoft,…)

Release history

▶ 1997 OpenMP - Fortran 1.0

▶ 1998 OpenMP - C/C++ 1.0

▶ 1999 OpenMP - Fortran 1.1

▶ 2000 OpenMP - Fortran 2.0

▶ 2002 OpenMP - C/C++ 2.0

▶ 2005 OpenMP 2.5

▶ 2008 OpenMP 3.0

▶ 2013 OpenMP 4.0

▶ 2018 OpenMP 5.0 stable release

▶ 2020 OpenMP 5.1 release

http://www.prace-ri.eu/

5 www.prace-ri.euOpenMP – Overview | soHPC | Ljubljana, Slovenia

OpenMP – Main terminology

▶ OpenMP thread: a running process specified by OpenMP

▶ Thread team: a set of threads which cooperate on a task

▶ Master thread: Main thread which coordinates the parallel jobs

▶ Thread safety: This term refers to correct execution of multiple threads

▶ OpenMP directive: OpenMP line of code for compilers with OpenMP

▶ Construct: an OpenMP executable directive

▶ Clause: controls the scoping of the variables during execution

http://www.prace-ri.eu/

6 www.prace-ri.euOpenMP – Overview | soHPC | Ljubljana, Slovenia

OpenMP – Programming model

▶ Primarily designed for shared memory multiprocessors

P

0
P

1

P

2

P

n

Memory

A canonical message passing (non-
shared memory) architecture

P

0

P

1

P

2
P

n

Memory

M

0
M

1

M

2

M

n

A canonical shared memory architecture

All of the processors are
able to directly access all
of the memory in the
machine through a logically
direct connection

Each processor in the system
is only capable of directly

addressing memory (M0-Mn)
that is physically associated

with him

http://www.prace-ri.eu/

7 www.prace-ri.euOpenMP – Overview | soHPC | Ljubljana, Slovenia

OpenMP – Programming model

▶ Shared memory architecture

CPU

Memory

NUMA

CPU

Memory

UMA

CPU

CPU

CPU

Memory

Memory

Memory

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

Bus interconnection

Uniform Memory Access, SMP (Symmetric Multi

Processing)

The latency to access any address in the logical memory

space is the same for each CPU

Non-Uniform Memory Access

The latency to access any address in the logical memory

space is determined by the physical distance from the

CPU.

▶ NOTE: Cache-Coherency (cc) ▫ To ensure cache consistency

(i.e. local cache has the most up-to-date copy of a shared

memory resource), cache coherency protocols are implemented

on modern systems.

http://www.prace-ri.eu/

8 www.prace-ri.euOpenMP – Overview | soHPC | Ljubljana, Slovenia

OpenMP – Execution model

▶ Thread based parallelism

▶ Compiler directive based parallelism

▶ Explicit parallelism

▶ Fork-Join model

▶ Dynamic Threads

▶ Nested parallelism
F

O

R

K

J

O

I

N

Master thread

F

O

R

K

J

O

I

N

Parallel task 1 Parallel task 2

Thread team Thread team

http://www.prace-ri.eu/

9 www.prace-ri.euOpenMP – Overview | soHPC | Ljubljana, Slovenia

OpenMP – Execution model

▶ Thread based parallelism

Single threading Thread based parallelism

Task 1
Task 2
Task 3
Task 4

Execution time = σ𝑖=1
4 𝑇𝑎𝑠𝑘𝑖

Thread 1

Core 1

Task 1 Task 2 Task 3 Task 4

Thread 1 Thread 2 Thread 3 Thread 4

Core 1 Core 2 Core 3 Core 4

Execution time = 𝑀𝐴𝑋(𝑇𝑎𝑠𝑘𝑖)

http://www.prace-ri.eu/

10 www.prace-ri.euOpenMP – Overview | soHPC | Ljubljana, Slovenia

OpenMP – Memory model

▶ All threads have access to the same memory

▶ Threads can share data with other threads, but

also have private data

▶ Threads can be synchronized

▶ Threads cache their data

CPU Private data

Shared dataCPU Private data

CPU Private data

Thread 1

Thread 2

Thread 3

http://www.prace-ri.eu/

11 www.prace-ri.euOpenMP – Overview | soHPC | Ljubljana, Slovenia

OpenMP – Memory model

▶ Compiler directives and Clauses: appear as comments and execute when appropriate

OpenMP flag is specified

▶ Parallel construct

▶ Work-sharing constructs

▶ Synchronization constructs

▶ Data attribute clauses

▶ C/C++ OpenMP comment:

#pragma omp directive-name [clause[clause]…]

http://www.prace-ri.eu/

12 www.prace-ri.euOpenMP – Overview | soHPC | Ljubljana, Slovenia

OpenMP – Memory model

▶ Compiling

Compiler Flag

Intel

icc (C)

icpc (C++)

Ifort (Fortran)
-openmp

GNU

gcc (C)

g++ (C++)

g77/gfortran

(Fortran)

-fopenmp

PGI

pgcc (C)

pgCC (C++)

pg77/pgfortran

(Fortran)

-mp

▶ Notes for GCC compiler:

▶ From GCC 6.1, OpenMP 4.5 is fully

supported for C and C++.

▶ From GCC 7.1, OpenMP 4.5 is

partially supported for Fortran.

▶ From GCC 9.1, OpenMP 5.0 is

partially supported for C and C++

Note: For full list of vendors

and compilers refer to

https://www.openmp.org//res

ources/openmp-compilers-

tools/
▶ Example of command in terminal:

gcc –fopenmp –o executable foo.c

Compiler gcc compiles file foo.c with OpenMP flag into executable file named executable

http://www.prace-ri.eu/
https://www.openmp.org/resources/openmp-compilers-tools/

13 www.prace-ri.euOpenMP – Overview | soHPC | Ljubljana, Slovenia

OpenMP – Main terminology

▶ Purpose of runtime functions is to manage the parallel processes

▶ omp_set_num_threads(n) – set the desired number of threads

▶ omp_get_num_threads() – returns the current number of threads

▶ omp_get_thread_num() – returns the ID of this thread

▶ omp_in_parallel() – return .true. if inside parallel region

▶ Correct usage in code:

▶ For C/C++ add #include<omp.h> to the code

▶ For Fortran add use omp_lib

Note: For full list of OpenMP runtime functions refer to

https://docs.microsoft.com/en-us/cpp/parallel/openmp/reference/openmp-

functions?view=vs-2019

http://www.prace-ri.eu/
https://docs.microsoft.com/en-us/cpp/parallel/openmp/reference/openmp-functions?view=vs-2019

14 www.prace-ri.euOpenMP – Overview | soHPC | Ljubljana, Slovenia

OpenMP – Environment variables

▶ Purpose of environment variables is to control the execution of parallel program

at runtime. These variables are not specified in the code itself but in the

environment in which the parallel program is executed.

▶ OMP_NUM_THREADS – specifies the number of threads to use

▶ OMP_PLACES – specifies on which CPUs the threads should be placed

▶ OMP_DISPLAY_ENV – show OpenMP version and environment

▶ Correct usage in code:

▶ Environment csh/tcsh: setenv OMP_NUM_THREADS n

▶ Environment ksh/sh/bash: export OMP_NUM_THREADS=n

Note: For full list of OpenMP environment variables for GCC compiler refer to

https://gcc.gnu.org/onlinedocs/libgomp/Environment-Variables.html

http://www.prace-ri.eu/
https://gcc.gnu.org/onlinedocs/libgomp/Environment-Variables.html

15 www.prace-ri.euOpenMP – Overview | soHPC | Ljubljana, Slovenia

OpenMP – Parallel construct

▶ Parallel construct is the fundamental construct in OpenMP

▶ Every thread executes the same statements which

are inside the parallel region simultaneously

▶ At the end of the parallel region there is an implicit

barrier for synchronization

C/C++:

#pragma omp parallel

{

…

}

Fortran:

!$omp parallel

…

!$omp end parallel

Master thread executes serial portion of

the code

Master thread encounters

OMP construct, creates slave

threads

Master and slave threads

divide tasks

Implicit barrier: Wait for all

threads to finish execution

Master thread resumes

execution of the code and

slave threads disappear.

http://www.prace-ri.eu/

