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▶ Small introduction into PDEs

▶ Solution methods

▶ Mesh description
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The mathematical modelling of real systems is in most cases narrowed down to the
mathematical model described by Partial Differential Equations (PDE).

Example: PDE describing waves motion on a free surface

∂2u
∂t2 = c2

(
∂2u
∂x2 +

∂2u
∂y2

)
= c2∆u,

where the wave height is

u = u(t, x), x ∈ Ω, Ω ⊆ R2,

in the direction z, where z ⊥ Ω.
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In general we solve two types of problems

▶ Initial Value problem (IVP):
time t in independent variable of the problem, we solve time-dependant
problem, so we need
inital condition: u0 = u(t = t0, x), where x ∈ Ω ⊆ Rn

▶ Boundary Value Problem (BVP):
time t is not part of the problem, we solve time-independent problem, so we
need
boundary condition: u0 = u(x), where x ∈ Γ ⊆ Rn−1 (Γ = ∂Ω),
where Γ is boundary of the computational domain. Many times you may see
∂Ω.

IVP condition is obtained with the solution of BVP (start BVP with intuitive
initialization)!
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PDE can be solved in different ways

▶ analytical methods: mostly solving linear problems, or problems involving
small parameter ϵ. Methods used are: separation of variables, series expansion,
Perturbation methods, Laplace transform, Complex analysis methods, . . .

▶ numerical methods: solve problems that is not possible to solve with
analytical methods. In general we distinguish:
▶ finite difference method (FDM) - solving strong form
▶ finite volume method (FVM) - solving weak form
▶ finite element method (FEM) - solving weak form

▶ special numerical approaches: use of FDM, FVM and FEM in different
combinations
▶ Immersed Boundary Method - IBM
▶ Smothed Particle Hydrodynamics - SPH (mesh less method)
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All numerical methods, except SPH, need the mesh. Mesh divides computational
domain onto cells/elements

Structured grid

better convergence

Unstructured grid

worse convergence

Very often we have a combination of both types! (next pages)



Numerical method - Mesh 7/36UL
FPP

Ω



Mesh Cells/elements 8/36UL
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2D mesh 3D mesh
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Some numerical solutions are only possible with mesh refinement!

formation of shock waves - space entry simulation
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external flow – foil geometry



Boundary Layer Mesh – 3D 11/36UL
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external flow – raptor geometry
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Skewness can be determined in many different ways, but always determines ratio
of inner cell sides/angles!

skewness = optimal cell size − cell size
optimal cell size

It measures the deviation from optimal geometry (equidistant triangle)!
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Smoothness measures the speed of cell size transition.
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Aspect ratio measures the ratio of longest to the shortest side in a cell. Ideally it
should be equal to 1 to ensure best results.
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In mesh-less methods, we use particles that fill the space. They’re mainly used
where the shape of the surface changes over time, e.g. waves, continuous casting,
solidification, etc.



Finite volume method
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There are two types of reference frame describing the flow field
Lagrange frame of reference (moving frame with flow – material volume - MV)
The Lagrangian specification of the flow field is a way of looking at fluid motion
where the observer follows an individual fluid parcel as it moves through space and
time.
This can be visualized as sitting in a boat and drifting down a river.
Euler frame of reference (fixed frame – control volume - CV)
The Eulerian specification of the flow field is a way of looking at fluid motion that
focuses on specific locations in the space through which the fluid flows as time
passes.
This can be visualized by sitting on the bank of a river and watching the water
pass the fixed location.
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Motion in material volume (MV) is described by the mapping x(t, x0), that maps
particle x0 from initial position in time t0 to future position in time t

x(t, x0) : (t0, x0) → (t, x0)

describing the particle x0 path
in time t (path line).

Flow velocity can be founds as

v(t, x(t, x0)) =
∂

∂tx(t, x0)

Relation between the motion in Lagrange and Euler reference frame.
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The derivative (rate of change) of a field variable ϕ(t, x(t))

with respect to fixed position

∂

∂tϕ(t, x(t))

is called Euler derivative.

the derivative following a moving
fluid parcel

D
Dtϕ(t, x(t)) =

(
∂

∂t + (v · ∇)

)
ϕ

is called Lagrange derivative.
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Term I = d
dt

[∫
Ω(t)

(ρϕ) dV
]

=

∫
Ω

[
∂

∂t(ρϕ) +∇ · (ρ vϕ)
]

dV =

∫
Ω

[
D
Dt(ρϕ) + ρϕ∇ · v

]
dV

where Ω(t) is material volume and Ω is control volume and v is fluid velocity.

Change of the ϕ
over time ∆t within
the material volume

Term I

=

Surface flux of the ϕ
over time ∆t across
the control volume

Term II

+

Source/Sink of ϕ
over time ∆t within
the control volume

Term III
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The most general PDE (scalar or vector) encountered in fluid flow is

∂ϕ

∂t +∇ · F(ϕ) = Q(ϕ)

▶ fluxes: F(ϕ)
▶ sources: Q(ϕ)

showing conservation law. It will be used to demonstrate the FVM
discretization process!

Fluxes are normally two

▶ advection: FA(ϕ) = vϕ
▶ diffusion: FD(ϕ) = −D(ϕ)∇ϕ
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Change of the ϕ
over time ∆t within
the material volume

Term I

=

Surface flux of the ϕ
over time ∆t across
the control volume

Term II

+

Source/Sink of ϕ
over time ∆t within
the control volume

Term III

∫
Ω

[
∂ϕ

∂t

]
dV =

∫
Ω
[∇ · F(ϕ)] dV +

∫
Ω

Q(ϕ) dV

The conservation equation for ADS PDE in fluid flow can be expressed as∫
Ω

[
∂ϕ

∂t +∇ · (ϕ v)
]

dV =

∫
Ω
∇ · (D(ϕ)∇ϕ) dV +

∫
Ω

Q(ϕ) dV
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ϕ(x) = ϕ(xc) +∇ϕ(xc) (x − xc) +∇∇ϕ(xc) : (x − xc)⊗ (x − xc) +O(∥x − xc∥3)
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Expressing volume average over Ωc introduces averaged variable ϕc over Ωc at the
point xc, which are constant over cell Ωc

ϕc =ϕ(xc)

+
1

|Ωc|
∇ϕ(xc)

∫
Ωc

(x − xc) dV

+
1

|Ωc|
∇∇ϕ(xc) :

∫
Ωc

(x − xc)⊗ (x − xc) dV + . . .

by the definition of xc to be the cell centre it follows∫
Ωc

(x − xc) dV = 0.

The average value of ϕ over the finite volume Ωc is exactly equal to the value of
ϕ at the centroid xc of Ωc for a linear ϕ (method is at least 2nd order).
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ϕc ≈ 1
|Ωc|

∫
Ωc

ϕlinear(xc) dV +O(∥x − xc∥2)

Cell–centered FVM is at least 2nd order method
The domain discretization of the unstructured FVM that assigns cell- average
values ϕc of ϕ at centroids xc of the cells Ωc is second-order accurate.

The average value of ϕ over the finite volume Ωc is exactly equal to the value of ϕ
at the centroid xc of Ωc for a linear ϕ, because for a linear ϕ the higher-order
derivatives are zero. In other words, the cell-average (cell-centered) value at the
centroid of finite volumes recovers values of linear fields exactly. A method that
exactly recovers values of linear functions is at least second-order accurate.
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∫
Ωc

∂ϕ

∂t dV =

(
∂ϕ

∂t

)
c
|Ωc|+O(∥x − xc∥2)

we use finite difference to approximate temporal term

backward Euler:
(
∂ϕ

∂t

)n+1

c
=

ϕn+1
c − ϕn

c
δt +O(δt)

BDS2:
(
∂ϕ

∂t

)n+1

c
=

3ϕn+1
c − 4ϕn

c + ϕn−1
c

2δt +O(δt2)

where n+ 1 is new time step, n is current time step and n− 1 is previous time step.
Temporal term is discretized with special FD scheme (e.g. BDS2)!
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Convert volume integral to surface integral, using divergence theorem∫
Ωc

∇ · (ϕ v) dV =

∫
∂Ωc

ϕ v · n dS.

In the case if many surfaces enclose the volume Ωc and forms surface enclosure ∂Ωc
we can write

∂Ωc =
∪

f∈Fs

Sf,

where Fc is the index set of the faces Sf of the cell Ωc. The integral can be
transformed into a sum over all cell surfaces Sf∫

∂Ωc

ϕ v · n dS =
∑
f∈Fc

∫
Sf

ϕ v · n dS.
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∂Ωc

ϕ v · n dS =
∑
f∈Fc

∫
Sf

ϕ v · n dS.

Averaging ϕ over surface Sf in face centre xf we obtain

ϕf =
1
|Sf|

∫
Sf

ϕ dS +O(∥x − xc∥2),

where ϕf = ϕ(xf). The advection term discretization reduces to∫
∂Ωc

ϕ v · n dS =
∑
f∈Fc

ϕf vf · Sf +O(∥x − xc∥2)

The rest of terms is discretized in a similar way!
(Look in the free book The OpenFOAM – Technology Primer)



Introduction to OpenFOAM
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▶ OpenFOAM folder structure

▶ Literature and Basic details

▶ Introductory example



Top level OF structure 29/36UL
FPP

Ω

Directory structure of OpenFOAM system as donwloaded from a GIT repository

OF system folder
applications -- source code for solvers
bin -- bash scripts
doc -- documentation
etc -- compile & runtime controls
platforms -- platform specific compiled binaries
src -- source codes ot the system
tutorials -- pre-configured cases
wmake -- compile script system
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Files containing initial condition for all dependant variables

0
U -- velocity
p -- pressure
k -- turbulent
epsilon -- turbulent
T -- scalar transport
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Folder containing files with constant data and mesh

constant
turbulenceProperties -- turbulent model properties
physicalProperties -- viscosity model & flow type
polyMesh -- computational mesh

boundary
points
faces
owner
neighbour



OF case structure - System definitions 32/36UL
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Folder containing system files

system
controlDict -- simulation controls
fvSchemes -- discretization schemes
fvSolution -- solution procedures
decomposeParDict -- domain decomposition & parallelization
residuals -- simulation residuals for post-process
. . .
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link to the book link to the book

https://link.springer.com/book/10.1007/978-3-319-16874-6
https://doc.cfd.direct/notes/cfd-general-principles/
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Dimensions in OF are set in a list

Example: kinematic viscosity ν [m2/s]
- value is set in a file constants/transportProperties

nu [0 2 -1 0 0 0 0] 0.01;
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OF diversity
▶ many turbulent flows (k-ε, k-ω, k-ω-SST,...)
▶ many boundary conditions
▶ multi phase flows models
▶ internal combustion models
▶ DNS
▶ stress analysis + FSI
▶ and many more . . .

▶ look into www.openfoam.org - User Guide

https://cfd.direct/openfoam/user-guide/
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Example of a simple case in OF – Cavity flow

1. create mesh: blockMesh (internal OF command)
2. check mesh quality: checkMesh (internal OF command)
3. run solver: icoFoam (internal OF command)
4. preview results: paraFoam (internal OF command)

Show and try in HPC@FS system!
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