Introduction to SLIEEG

High-Throughput-Computing:
SnakeMake

Luka Leskovec, UL FMF 4.7.2023

e« HPC - high-performance-computing
(one process distributed over large amount of cores)

e HTC - high-throughput-computing
(large number of processes running on a large amount of cores)

e Grid computing
(sharing of smaller size clusters amongst geographically disperse
locations)

 Cloud computing (*)

« Quantum computing (**)

~ (mostly) independent processes, little communication
= each running on 1 (or a few) cores

© individual tasks do not require extensive computational
resources

~ large number of tasks
© massive amounts of data

- exploiting (simple) parallelism and distributing the
workload across multiple computing resources

o~ scientific research, data analysis, simulations, ...

SLIMNG

Identification and Breakdown
(preparing your code)

Submission
(preparing for the runs)

ﬂ SnakeMake

Execution
(doing the runs)

Postprocessing
(using the final data)

PROBLEM:

a) Write a python program, that
takes 3s to generate a random
number between 0 and 99.

b) generate 10 random numbers

random_print.py

import time
import random

for i in range(10):
time.sleep(3)
random_number = random.randint(®, 99)
print("result:", random_number)

simple solution, takes 30s, uses a single core

time python3 ./random_print.py
result: 99
result: 92
result: 26
result: 69
result: 57

result: 56

result: 3

result: 28

result: 90

result: 60

python3 ./random_print.py 0.02s user 0.02s system 0% cpu 30.106 total

: random numbers

app.py
import time
import random

time.sleep(3)

random_number = random.randint(@, 99)

./script.sh
print("result:", random_number)

result: 47
result: 27
script.sh result: 27
result: 74
result: 82

result: 20

result: 12

result: 7

result: 42

result: 42

./script.sh 0.20s user 0.08s system 0% cpu 30.384 total

for 1 in {1..10};
do

python3 ../app.py
done

import time
import random

time.sleep(3)

random_number = random.randint(@, 99)

print("result:", random_number)

Snakefile
results = "output_{i}.txt"

all_results = expand(results, i = [x for x in range(10)]) snakemake -c 10 0.37s user 0.20s system 16% cpu 3.542 total

result: 24

result: 67

ru¥e all: result: 31
input: result: 5

all_results result: 36

result: 38

rule run_app: result: 11
result: 0

result: 40
result: 99

input:
output:
"output_{i}.txt"
shell:
"python3 ../app.py > {output}"

<

: overview

solution | solution Il solution 11l
© simple python code < simple python code © simple python code
© ran directly from terminal © ran within a script © Snakemake
o runtime: 30s © runtime: 30s o runtime: 3s

o parallelisation potential:

© threads in python

© mpidpy

S

o trivial parallelisation

The basics of Snakemake

paralelizing something simple

10

« a python variant of Make
e make rules + python = snakemake

e can define a workflow, i.e. do one
thing, then another etc.

« dependencies between rules are
implicit through input/output —

s

rule NAME:
input:
"path/to/inputfile", "path/to/other/inputfile"
output:
"path/to/outputfile", "path/to/another/outputfile"
shell:
"somecommand {input} {output}"

rule NAME:
input:
"path/to/inputfile",

parts of rules

e can run shell code or python code

"path/to/other/inputfile"

output:
"path/to/outputfile”,
"path/to/another/outputfile"

run:
import shutil
shutil.copyfile(input[@], output[0])

with open(input[1], "r") as file:
data = file.read()

with open(output[1], "w") as file:
file.write(data.upper())

e wildcards

e {sample} isa wildcard!

* here is how they work:

1. input wildcard: {sample}

O

The input section specifies the input files using the "data/
{sample}.txt" pattern.

The {sample} wildcard matches any value and represents a variable
part of the file name. For example, if you have input files named
data/A.txt and data/B.txt,the {sample} wildcard will

match A and B respectively.

2. output wildcard: {sample}

O

The output section specifies the output files using the "results/
{sample} result.txt" pattern.

Similar to the input wildcard, the {sample} wildcard in the
output file pattern matches the same value as the input file wildcard.
This ensures that the output file name is generated based on the value

of {sample} from the corresponding input file.

rule example_rule:
input:
"data/{sample}. txt"
output:

"results/{sample}_result.txt"
shell:

"cat {input} | tr '[:lower:]' '[:upper:]' > {output}"

For example, if you have input files named data/A. txt and

data/B.txt, Snakemake will generate the following input and output
file combinations:

J 1.st execution:

o Input: "data/A.txt"

o Output: "results/A result.txt"
e 2.nd execution:

o Input: "data/B.txt"

o Output: "results/B result.txt"

12

« usually means, we have a set of
input files, which we want to run
through a program to get a set of
output files

e .2. our example |

« app.py does not have an input file,
but it doesn’t really matter

app.py
import time
import random

time.sleep(3)

random_number = random.randint(@, 99)
print("result:", random_number)

13

| 4

Snakefile
results = "output_{i}.txt"

all_results = expand(results, i = [x for x in range(10)])

rule all:
input:
all_results

rule run_app:
input:
output:
"output_{i}.txt"
shell:
"python3 ../app.py > {output}"

above, we have a dependency -
“all” depends on “run_app”, and
can be used as a result collector!

generic name of our output file
{i} is the wildcard

here we generate a list of all the output files

a rule, that requires some input, but doesn’t do

anything with it is a handy way to collect all final
results we want

the rule, where all the work is done. no input
needed, but it needs all the output_{i}.txt files

how does it figure out how much the wildcard {i}
is? from the all_results rule, which has the list of
output_{i}.txt files as input.

14

basics of Snakemake

setting up snakemake

15

7 important steps when designing a workflow

* DEFINE THE OBJECTIVE: * DESIGN TASK INTERFACES:

« identify the problem you are trying to solve * determine the flow of data (or outputs) between tasks

* define the purpose and end goal of the workflow * specify the inputs and outputs for each task

o IDENTIFY THE TASKS: * WORKFLOW DIAGRAM:

o * visualize the workflow by creating a flowchart or diagram
* break down the overall objective into smaller, manageable tasks

* TEST AND ITERATE:
* list the individual steps required to achieve the desired outcome
* once the workflow is designed, run through it on a small scale
* each task needs to be specific and well-defined
* identify any issues or inefficiencies

* DETERMINE THE TASK SEQUENCE: ,
* refine the workflow based on above two points

. ine the logical f task i
determine the logical order of task execution « RUN:

* identify dependencies between tasks e keep the computer busy

16

v Design: Example

« science based example (determining the mass and

speed of composite particle) | Iy
e data: In [C;(ﬁ’) "
« “correlation functions”: Cpr+ D) 0.3 T *_.;i-
CB.D =Y e y o
n
« fitting data to determine 0 5 10 15 20 25
E(p) !

 dispersion relation

E(B)=/m*+ &5
to determine m, &

17

'esign: define the objective ™3

EURO

guestions for ourselves: 1. we want to determine the mass

1. what do want to achieve? and speed of a composite particle

inoc?
2. what are we solving: 2. we are extracting the mass and

3. what do we want at the speed from a set of numerical data
end?

3. two parameters, m and &, and the

plotof E (p) = \/m2 +E°p-p

18

L design: how-to

7 important steps when designing a workflow

* DEFINE THE OBJECTIVE:
* identify the problem you are trying to solve

* define the purpose and end goal of the workflow

19

"design: identify the tasks ™

EURO

task 1: fit the correlators with varying models and ranges,
determine the energies E, at each p

2

task 2: out of all the fits, pick the one with the smallest %
0

-

task 3: fit the set of En(ﬁ) with En(ﬁ) = \/m2 + 52]_5 37

20

L design: how-to

7 important steps when designing a workflow

e IDENTIFY THE TASKS:
* break down the overall objective into smaller, manageable tasks
* list the individual steps required to achieve the desired outcome

* each task needs to be specific and well-defined

21

e first task: task 1

input: raw data, fit model, fit range

output: E,
(with fit model type and fit range)

procedure: read raw data for each p,

construct)(2 function, minimize)(z, save
E,(p)

note: can run in parallel

22

e second task: task 2

input: list of E, at various p

output: E, with smallest Yl

dof
procedure: read all E, (p), chose one

. . 2
based on some criterion (smallest %)
(0]

depends on task 1

23

e third task: task 3

. input: E_ for each p

« output: m, & and a plot

« procedure: read all En(ﬁ), fit dispersion

relation, determine m, £ and construct
plot

« depends on task 2

24

e first task: task 1

o program: fit_correlator.py

e second task: task 2

e program: combine_fits.py

e third task: task 3

o program: fit_dispersion.py

25

{ design: how-to

7 important steps when designing a workflow

 DETERMINE THE TASK SEQUENCE:
* determine the logical order of task execution

* identify dependencies between tasks

e DESIGN TASK INTERFACES:
* determine the flow of data (or outputs) between tasks

* specify the inputs and outputs for each task

26

oW design: diagram

task 1
task 1
task 1

SLIMNG

raw data task 1 task 2 task 3

task 1

task 1

27

7 important steps when designing a workflow

* WORKFLOW DIAGRAM:

* visualize the workflow by creating a flowchart or diagram

28

uilding blocks of Snakemake

EURO

rule RULE: * rule
input: * 3 components
"inis/input_1.ini"
. * shell: here goes the command we want to execute
output:
"tag/input_1.tag" * input: these is the input the shell command needs to run

shell:
", /run_fit.sh {input} {output}"

e output: this is the output the shell command produces

it’s like in Makefile (if you are familiar)

the quantities from the input component are accessed in the shell
command through {input}

the quantities from the output component are accessed in the shell
command through {output}

29

yuilding blocks of Snakemake _

import os
import glob

ini_files = glob.glob("inis/*.ini")
print(ini_files)

* generic python code

 can be anything: e.g. list generation

EURO

30

.ildin‘g blocks of Snakemake P

EURO

e example Snakefile:

inport os e put python code anywhere - for legibility it’s best if it’s up top
Jrrort atep (FORTRAN logic)

ini_files = glob.glob("inis/*.ini")
print(ini_files)

* several rules, but always try to have two:

e e rule all - as input you want all the outputs of the last last task

input:
expand("tag/input_{x}.tag", x=range(®, len(ini_files))) :

output: you wish to automate
"correlators.done"

T roueh foutauty * rule clean - to cleanup all the other stuff you have

rule fit_correlator:

input:
. i:i:"i"is/i"put—{x}-ini“ e rule fit_correlator - here is where all the hard work is done
output:
tag="tag/input_{x}.tag"
shell:
"./run_fit.sh {input.ini} {output.tag}"

rule clean:
shell:
"rm -f tag/*.tag correlators.done"

31

.ildin‘g blocks of Snakemake P

EURO

* example Snakefile:

N * first thing we do is generate a list of ini files located in the inis subdirectory
import glob (to keep the dir structure neat)

ini_files = glob.glob("inis/*.ini") . .
print(ini_files) * in rule all: we say that we want a file, called tag/input_{x}.tag generated for

each file in the inis_file

rule all:
input:

Dy Y P Snakemake needs to know how many things it runs. There are options how to
output: do this:

"correlators.done"
shell:
"touch {output}" ¢ hardcode

» generate with python code (we use this one)

rule fit_correlator:

input:

. i't‘i:"i"iS/ input_{xk.ini* » we used wildcards, so that each of these files in the inis directory can be run
output:

tag="tag/input_{x}.tag" in parallel
shell:
Byq fit.sh {i t.ini tput.t =
ARSI Y HEA (i) e the {x} between rule all and rule fit_correlator need not be named the same

thing, but it’s neat if we do so

rule clean:
shell: . . N N .
"rm —f tag/x.tag correlators.done" e run_fit.sh is a wrapper script, which we invoke so that we can add logging

options into it without messing with the Snakefile (if we wish to do so)

32

rule run_correlator:
output:
"correlators/correlators.done"
shell:
"cd correlators & snakemake —-c 8"

rule run_combine:
input:
"correlators/correlators.done"
output:
"energies/energies.done"
shell:
"cd energies && snakemake -c 1"

rule run_dispersion:

input:
"energies/energies.done"
output:
"dispersion/dispersion_pion.pdf"
shell:
"cd dispersion && snakemake -c 1"

rule all:
shell:

.ildin‘g blocks of Snakemake P

"snakemake -j 8 run_correlator run_combine run_dispersion"

rule clean:
shell:
"cd correlators &% snakemake -c 1 clean && cd
dispersion && snakemake -c 1 clean"

../energies & snakemake -c 1 clean && cd .

o/

EURO

can use Snakefile to invoke other Snakefile

useful to split tasks into directories, set up the workflow for each separetely
and then tie them together with a global Snakefile which invokes the others

here run_correlator will use up to 8 cores (our hardcode choice)

run_combine and run_dispersion will each use 1 core

dependencies tell us that run_correlator can start without any input (no input
specified), run_combine will only start when run_correlator is done and
run_dispersion will only start when run_combine is done

in rule all we just invoke snakemake (using the Makefile option of -j instead of

-C)

33

The basics of Snakemake

paralelizing something simple

34

e install mamba

. wget https://github.com/conda-forge/
miniforge/releases/latest/download/
Mambaforge-Linux-x86 64.sh

« chmod +x ./Mambaforge-Linux-x86_64.sh
« ./Mambaforge-Linux-x86_64.sh

o click yes to all the prompts, when asked
whether to initialize by runnind conda init
respond yes

« relog

o create a new environment
o # mamba create -n snakemake python=3.11

e activate

e mamba activate snakemake

o install prerequisites:

e« mamba install numpy
matplotlib iminuit h5py

Sscipy

e install snakemake:

e pip install snakemake

35

https://github.com/conda-forge/miniforge/releases/latest/download/Mambaforge-Linux-x86_64.sh
https://github.com/conda-forge/miniforge/releases/latest/download/Mambaforge-Linux-x86_64.sh
https://github.com/conda-forge/miniforge/releases/latest/download/Mambaforge-Linux-x86_64.sh
https://github.com/conda-forge/miniforge/releases/latest/download/Mambaforge-Linux-x86_64.sh

« example I: git@github.com:leskovec/SnakeMake.intro.git

« example II: git@github.com:leskovec/SnakeMake.main.git

36

submit.sh

#!/usr/bin/bash -1
#SBATCH -J snake

#SBATCH -0 snake. 0%]j
#SBATCH -t 00:30:00
#SBATCH ——ntasks=10
#SBATCH —--nodes=1

#SBATCH ——mem=500

#SBATCH —-reservation=fri

source ~/.bashrc

mamba activate snakemake

snakemake -c 10 all

37

« in this way, we request a node from
SLURM and then make use of all the cores
we have available

e Pros:
e NO stress to SLURM

« better utilization (now waiting in
between)

e CONS.

e limited to number of cores on the
node

38

e snakemake --slurm --default-resources slurm_account=Ileskovecl —
jobs=10

e for our reservation: --cluster "sbatch --reservation=fri"

39

)

n cluster mode

e in this way, we let Snakemake call slurm
directly and submit jobs for us

e Pros:
 bigger jobs
e easier life
e no limits

e CONS:
o stresses SLURM, can make admins mad :)
o lazy way of setting up slurm array jobs :)

40

(&

EURO

SLIEG

that’s the basics folks — play around and enjoy!

some additional online resources:
e https://docs.nersc.gov/jobs/workflow/snakemake/
e https://vincebuffalo.com/blog/2020/03/04/understanding-snakemake.html
e https://training.galaxyproject.org/training-material/topics/data-science/tutorials/snakemake/tutorial.html

https://docs.nersc.gov/jobs/workflow/snakemake/
https://vincebuffalo.com/blog/2020/03/04/understanding-snakemake.html
https://training.galaxyproject.org/training-material/topics/data-science/tutorials/snakemake/tutorial.html

.
a ntrductlon to
Jigh-Throughput-Computing: o

SnakeMake @

SLIEG

.
a ntrductlon to
Jigh-Throughput-Computing: o

SnakeMake @

SLIEG

.
a ntrductlon to
Jigh-Throughput-Computing: o

SnakeMake @

SLIEG

