
Luka Leskovec, UL FMF 4. 7. 2023

Introduction to  
High-Throughput-Computing: 

SnakeMake

2

• HPC - high-performance-computing 
(one process distributed over large amount of cores)

• HTC - high-throughput-computing 

(large number of processes running on a large amount of cores)

• Grid computing 

(sharing of smaller size clusters amongst geographically disperse
locations)

• Cloud computing (*)

• Quantum computing (**)

Types of SuperComputing

3

 (mostly) independent processes, little communication

 each running on 1 (or a few) cores

 individual tasks do not require extensive computational
resources

 large number of tasks

 massive amounts of data

 exploiting (simple) parallelism and distributing the
workload across multiple computing resources

 scientific research, data analysis, simulations, …

High-Throughput-Computing (HTC)

4

High-Throughput-Computing
Identification and Breakdown 

(preparing your code)

Submission 
(preparing for the runs)

Execution 
(doing the runs)

Postprocessing 
(using the final data)

SnakeMake

5

PROBLEM:

a) Write a python program, that
takes 3s to generate a random
number between 0 and 99.

b) generate 10 random numbers

Example I: random numbers

6

Solution I: random numbers

random_print.py

simple solution, takes 30s, uses a single core

7

Solution II: random numbers

app.py

script.sh

8

Solution III: random numbers

app.py

Snakefile
…

9

Solutions: overview

 simple python code

 ran directly from terminal

 runtime: 30s

 parallelisation potential:

 threads in python

 mpi4py

 trivial parallelisation

solution I solution II

 simple python code

 ran within a script

 runtime: 30s

solution III

 simple python code

 Snakemake

 runtime: 3s

10

The basics of Snakemake
paralelizing something simple

11

• a python variant of Make

• make rules + python = snakemake

• can define a workflow, i.e. do one

thing, then another etc.

• dependencies between rules are

implicit through input/output
parts of rules

• can run shell code or python code

what is Snakemake

12

• {sample} is a wildcard!

• here is how they work:

1. input wildcard: {sample}

◦ The input section specifies the input files using the "data/
{sample}.txt" pattern.

◦ The {sample} wildcard matches any value and represents a variable
part of the file name. For example, if you have input files named
data/A.txt and data/B.txt, the {sample} wildcard will
match A and B respectively. 
 

2. output wildcard: {sample}

◦ The output section specifies the output files using the "results/
{sample}_result.txt" pattern.

◦ Similar to the input wildcard, the {sample} wildcard in the
output file pattern matches the same value as the input file wildcard.
This ensures that the output file name is generated based on the value
of {sample} from the corresponding input file.

Snakemake wildcards

For example, if you have input files named data/A.txt and  
data/B.txt, Snakemake will generate the following input and output
file combinations:

• 1.st execution:
◦ Input: "data/A.txt"
◦ Output: "results/A_result.txt"

• 2.nd execution:
◦ Input: "data/B.txt"
◦ Output: "results/B_result.txt"

13

• usually means, we have a set of
input files, which we want to run
through a program to get a set of
output files

• e.g. our example I

• app.py does not have an input file,

but it doesn’t really matter

snakemake: example I

app.py

14

snakemake: example I
Snakefile

generic name of our output file 
{i} is the wildcard

here we generate a list of all the output files

a rule, that requires some input, but doesn’t do
anything with it is a handy way to collect all final
results we want

the rule, where all the work is done. no input
needed, but it needs all the output_{i}.txt files

how does it figure out how much the wildcard {i}
is? from the all_results rule, which has the list of
output_{i}.txt files as input.

above, we have a dependency -

“all” depends on “run_app”, and

can be used as a result collector!

15

basics of Snakemake
setting up snakemake

16

• DEFINE THE OBJECTIVE:

• identify the problem you are trying to solve

• define the purpose and end goal of the workflow

• IDENTIFY THE TASKS:

• break down the overall objective into smaller, manageable tasks

• list the individual steps required to achieve the desired outcome

• each task needs to be specific and well-defined

• DETERMINE THE TASK SEQUENCE:

• determine the logical order of task execution

• identify dependencies between tasks

Workflow design: how-to
7 important steps when designing a workflow

• DESIGN TASK INTERFACES:

• determine the flow of data (or outputs) between tasks

• specify the inputs and outputs for each task

• WORKFLOW DIAGRAM:

• visualize the workflow by creating a flowchart or diagram

• TEST AND ITERATE:

• once the workflow is designed, run through it on a small scale

• identify any issues or inefficiencies

• refine the workflow based on above two points

• RUN:

• keep the computer busy

17

• science based example (determining the mass and
speed of composite particle)

• data:

• “correlation functions”: 

• fitting data to determine 

• dispersion relation 

  

to determine ,

C(⃗p, t) = ∑
n

cne−Ent

En(⃗p)

En(⃗p) = m2 + ξ2 ⃗p ⋅ ⃗p
m ξ

Workflow Design: Example

ln [C(⃗p, t)
C(⃗p, t + 1)]

t

18

questions for ourselves:

1. what do want to achieve?

2. what are we solving?

3. what do we want at the

end?

Workflow design: define the objective

1. we want to determine the mass
and speed of a composite particle

2. we are extracting the mass and
speed from a set of numerical data 

3. two parameters, and , and the

plot of

m ξ

En(⃗p) = m2 + ξ2 ⃗p ⋅ ⃗p

19

• DEFINE THE OBJECTIVE:

• identify the problem you are trying to solve

• define the purpose and end goal of the workflow

• IDENTIFY THE TASKS:

• break down the overall objective into smaller, manageable tasks

• list the individual steps required to achieve the desired outcome

• each task needs to be specific and well-defined

• DETERMINE THE TASK SEQUENCE:

• determine the logical order of task execution

• identify dependencies between tasks

Workflow design: how-to
7 important steps when designing a workflow

• DESIGN TASK INTERFACES:

• determine the flow of data (or outputs) between tasks

• specify the inputs and outputs for each task

• WORKFLOW DIAGRAM:

• visualize the workflow by creating a flowchart or diagram

• TEST AND ITERATE:

• once the workflow is designed, run through it on a small scale

• identify any issues or inefficiencies

• refine the workflow based on above two points

• RUN:

• keep the computer busy

20

task 1: fit the correlators with varying models and ranges,
determine the energies at each

task 2: out of all the fits, pick the one with the smallest

task 3: fit the set of with

En ⃗p

χ2

dof

En(⃗p) En(⃗p) = m2 + ξ2 ⃗p ⋅ ⃗p

Workflow design: identify the tasks

21

• DEFINE THE OBJECTIVE:

• identify the problem you are trying to solve

• define the purpose and end goal of the workflow

• IDENTIFY THE TASKS:

• break down the overall objective into smaller, manageable tasks

• list the individual steps required to achieve the desired outcome

• each task needs to be specific and well-defined

• DETERMINE THE TASK SEQUENCE:

• determine the logical order of task execution

• identify dependencies between tasks

Workflow design: how-to
7 important steps when designing a workflow

• DESIGN TASK INTERFACES:

• determine the flow of data (or outputs) between tasks

• specify the inputs and outputs for each task

• WORKFLOW DIAGRAM:

• visualize the workflow by creating a flowchart or diagram

• TEST AND ITERATE:

• once the workflow is designed, run through it on a small scale

• identify any issues or inefficiencies

• refine the workflow based on above two points

• RUN:

• keep the computer busy

22

• first task: task 1

• input: raw data, fit model, fit range

• output:  
(with fit model type and fit range)

• procedure: read raw data for each ,
construct function, minimize , save

• note: can run in parallel

En

⃗p
χ2 χ2

En(⃗p)

Workflow design:  
task sequence & interfaces

23

• second task: task 2

• input: list of at various

• output: with smallest

• procedure: read all , chose one
based on some criterion (smallest)

• depends on task 1

En ⃗p

En
χ2

dof

En(⃗p)
χ2

dof

Workflow design:  
task sequence & interfaces

24

Workflow design:  
task sequence & interfaces

• third task: task 3

• input: for each

• output: , , and a plot

• procedure: read all , fit dispersion
relation, determine , and construct
plot

• depends on task 2

En ⃗p

m ξ

En(⃗p)
m ξ

25

• first task: task 1

• program: fit_correlator.py

• second task: task 2

• program: combine_fits.py

• third task: task 3

• program: fit_dispersion.py

Workflow design:  
task sequence & interfaces

26

• DEFINE THE OBJECTIVE:

• identify the problem you are trying to solve

• define the purpose and end goal of the workflow

• IDENTIFY THE TASKS:

• break down the overall objective into smaller, manageable tasks

• list the individual steps required to achieve the desired outcome

• each task needs to be specific and well-defined

• DETERMINE THE TASK SEQUENCE:

• determine the logical order of task execution

• identify dependencies between tasks

Workflow design: how-to
7 important steps when designing a workflow

• DESIGN TASK INTERFACES:

• determine the flow of data (or outputs) between tasks

• specify the inputs and outputs for each task

• WORKFLOW DIAGRAM:

• visualize the workflow by creating a flowchart or diagram

• TEST AND ITERATE:

• once the workflow is designed, run through it on a small scale

• identify any issues or inefficiencies

• refine the workflow based on above two points

• RUN:

• keep the computer busy

27

Workflow design: diagram

raw data

task 1

task 1

task 1

task 1

task 1

task 1

…

task 2 task 3

28

• DEFINE THE OBJECTIVE:

• identify the problem you are trying to solve

• define the purpose and end goal of the workflow

• IDENTIFY THE TASKS:

• break down the overall objective into smaller, manageable tasks

• list the individual steps required to achieve the desired outcome

• each task needs to be specific and well-defined

• DETERMINE THE TASK SEQUENCE:

• determine the logical order of task execution

• identify dependencies between tasks

Workflow design: diagram
7 important steps when designing a workflow

• DESIGN TASK INTERFACES:

• determine the flow of data (or outputs) between tasks

• specify the inputs and outputs for each task

• WORKFLOW DIAGRAM:

• visualize the workflow by creating a flowchart or diagram

• TEST AND ITERATE:

• once the workflow is designed, run through it on a small scale

• identify any issues or inefficiencies

• refine the workflow based on above two points

• RUN:

• keep the computer busy

29

• rule

• 3 components

• shell: here goes the command we want to execute

• input: these is the input the shell command needs to run

• output: this is the output the shell command produces

• it’s like in Makefile (if you are familiar)

• the quantities from the input component are accessed in the shell
command through {input}

• the quantities from the output component are accessed in the shell
command through {output}

the basic building blocks of Snakemake

30

• generic python code

• can be anything: e.g. list generation

the basic building blocks of Snakemake

31

• example Snakefile:

• put python code anywhere - for legibility it’s best if it’s up top
(FORTRAN logic)

• several rules, but always try to have two:

• rule all - as input you want all the outputs of the last last task
you wish to automate

• rule clean - to cleanup all the other stuff you have

• rule fit_correlator - here is where all the hard work is done

the basic building blocks of Snakemake

32

• example Snakefile:

• first thing we do is generate a list of ini files located in the inis subdirectory
(to keep the dir structure neat)

• in rule all: we say that we want a file, called tag/input_{x}.tag generated for
each file in the inis_file 
 
Snakemake needs to know how many things it runs. There are options how to
do this:

• hardcode

• generate with python code (we use this one)

• we used wildcards, so that each of these files in the inis directory can be run
in parallel

• the {x} between rule all and rule fit_correlator need not be named the same
thing, but it’s neat if we do so

• run_fit.sh is a wrapper script, which we invoke so that we can add logging
options into it without messing with the Snakefile (if we wish to do so)

the basic building blocks of Snakemake

33

• can use Snakefile to invoke other Snakefile

• useful to split tasks into directories, set up the workflow for each separetely
and then tie them together with a global Snakefile which invokes the others

• here run_correlator will use up to 8 cores (our hardcode choice)

• run_combine and run_dispersion will each use 1 core

• dependencies tell us that run_correlator can start without any input (no input
specified), run_combine will only start when run_correlator is done and
run_dispersion will only start when run_combine is done

• in rule all we just invoke snakemake (using the Makefile option of -j instead of
-c)

the basic building blocks of Snakemake

34

The basics of Snakemake
paralelizing something simple

35

• install mamba

• wget https://github.com/conda-forge/

miniforge/releases/latest/download/
Mambaforge-Linux-x86_64.sh

• chmod +x ./Mambaforge-Linux-x86_64.sh

• ./Mambaforge-Linux-x86_64.sh

• click yes to all the prompts, when asked

whether to initialize by runnind conda init
respond yes

• relog

• create a new environment

• # mamba create -n snakemake python=3.11

setting up Snakemake

• activate

• mamba activate snakemake

• install prerequisites:

• mamba install numpy
matplotlib iminuit h5py
scipy

• install snakemake:

• pip install snakemake

https://github.com/conda-forge/miniforge/releases/latest/download/Mambaforge-Linux-x86_64.sh
https://github.com/conda-forge/miniforge/releases/latest/download/Mambaforge-Linux-x86_64.sh
https://github.com/conda-forge/miniforge/releases/latest/download/Mambaforge-Linux-x86_64.sh
https://github.com/conda-forge/miniforge/releases/latest/download/Mambaforge-Linux-x86_64.sh

36

• example I: git@github.com:leskovec/SnakeMake.intro.git

• example II: git@github.com:leskovec/SnakeMake.main.git

examples

37

submitting a job - batch

submit.sh

38

• in this way, we request a node from
SLURM and then make use of all the cores
we have available

• pros:

• no stress to SLURM

• better utilization (now waiting in

between)

• cons:

• limited to number of cores on the
node

running in batch mode

39

• snakemake --slurm --default-resources slurm_account=leskovecl —
jobs=10

• for our reservation: --cluster "sbatch --reservation=fri"

•

submitting multiple jobs - cluster

40

• in this way, we let Snakemake call slurm
directly and submit jobs for us

• pros:

• bigger jobs

• easier life

• no limits

• cons:

• stresses SLURM, can make admins mad :)

• lazy way of setting up slurm array jobs :)

running in cluster mode

that’s the basics folks — play around and enjoy!
some additional online resources:

• https://docs.nersc.gov/jobs/workflow/snakemake/

• https://vincebuffalo.com/blog/2020/03/04/understanding-snakemake.html

• https://training.galaxyproject.org/training-material/topics/data-science/tutorials/snakemake/tutorial.html

https://docs.nersc.gov/jobs/workflow/snakemake/
https://vincebuffalo.com/blog/2020/03/04/understanding-snakemake.html
https://training.galaxyproject.org/training-material/topics/data-science/tutorials/snakemake/tutorial.html

Introduction to  
High-Throughput-Computing: 

SnakeMake

Introduction to  
High-Throughput-Computing: 

SnakeMake

Introduction to  
High-Throughput-Computing: 

SnakeMake

