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Motivation

MLhad: A ML based Simulation for Hadronization6

Pythia

Herwig

N. Fischer and T. Sj¨ostrand,
JHEP 01, 140 (2017), 1610.09818.

When is a hadronization model successful?

The performance is judged by their description of 
experimental measurements!

Phenomenological Models (String, Cluster) are currently state of art 
and are overall very successful, however:

comparison of data from proton-proton and ion-ion collision with Pythia

discrepancies at the level of O(20%) to O(50%)

recovering collective effects can be challenging, for instance, heavy baryon 
production at high event multiplicities Alice Collaboration, arXiv: 1807.11321

no efficient estimation of Uncertainties
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Big Picture

MLhad: A ML based Simulation for Hadronization9

A series of progressive steps needs to be done before 
practically useful in Pythia simulations 

→ ML architecture that mimics a simplified Lund string 
hadronization model

→ Train on truth level Pythia output (not obs. In exp)

→ Develop a framework to propagate errors

→ Improved ML architecture with full hadron flavor selector

→ Train on mock data (i.e., just observable information)

→ Train on real data (i.e., just already measured information)

→ Replace Pythia string model

We are 
here

Partial 
results 
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Outline

Hadronization Models

Which Generative Model should we use?

Uncertainties

Further Directions
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Hadronization Models

Two primary hadronization models are used

h1  h1

h2  h2

step 1

step 2

string

11

cluster

String model:

Iteratively split parton connected by QCD 

color strings with linear potential

Cluster model:

pre-confine partons into proto-

clusters, then split by two-body decays

MLhad: A ML based Simulation for Hadronization youssead@ucmail.uc.edu

Pythia Herwig

MLhad: Ilten, Menzo,Youssef, JZ, 2203.04983, 
https://gitlab.com/uchep/mlhad 

HadML: (Chan, Ghosh,) 
Ju, (Kania), Nachman, 
(Sangli,) Siodmok, 
2203.12660, 2305.17169

mailto:youssead@ucmail.uc.edu


MLHAD Pipeline

12 youssead@ucmail.uc.edu

We need a generative model!

Sample hadron kinematics:
Train on {𝒑𝒛, 𝒑𝑻}

Emission of different Mesons:
Condition on mass (𝒎) and energy (𝑬)

MLhad: A ML based Simulation for Hadronization
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Generative Models

Source: generative models

13

⇒ Task: Learn the probability distribution p(x ) of the data

Which generative model should we choose?

MLhad: A ML based Simulation for Hadronization youssead@ucmail.uc.edu

Do we have access to

the exact probability 
distribution?

Is it able to learn 
complex 

distributions?

https://openai.com/research/generative-models

https://openai.com/research/generative-models
mailto:youssead@ucmail.uc.edu


Vanilla VAE

VAE latent space
arXiv: 1804.01947

Generative Models

Variational Autoencoder (VAE)

KL-divergence limits the 
latent space to a simple 

analytic distribution
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Kingma et al, arXiv:1312.6114
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Kingma et al, arXiv:1312.6114

𝒑𝒛, 𝒑𝑻

Samples 

Latent 
Distribution

𝒛 ~ 𝑝(𝑧) 

Inference
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Vanilla VAE

VAE latent space
arXiv: 1804.01947

Generative Models

Variational Autoencoder (VAE)

16 MLhad: A ML based Simulation for Hadronization
youssead@ucmail.uc.edu

Complex input data Simple latent space

⇒ Complex distribution are hard to learn!

Kingma et al, arXiv:1312.6114

KL-divergence limits the 
latent space to a simple 

analytic distribution
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Complex input data Simple latent space

⇒ Complex distribution are hard to learn!

Kingma et al, arXiv:1312.6114

KL-divergence limits the 
latent space to a simple 

analytic distribution

How can we make 
VAEs learn more 

complex distribution?

youssead@ucmail.uc.edu
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Generative Models

Use Sliced Wasserstein Distance as latent loss 
function!
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Generative Models
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Wasserstein distance (WD)
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Generative Models

Use Sliced Wasserstein Distance as latent loss 
function!
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Wasserstein distance (WD)

Sliced Wasserstein distance

Projects high dimensional data into one 
dimensional “slices”

WD in 1D has a closed form solution

Sorted Difference of the two samples

mailto:youssead@ucmail.uc.edu


cSWAE architecture
(Architecture used in SciPost Phys. 14, 027 (2023) )

SWAE latent space
(arXiv: 1804.01947 )

Generative Models

Conditional Sliced Wasserstein (SW) Autoencoder (cSWAE)

⇒ Can learn complex distributions!

SciPost Phys. 14, 027 (2023)

VAE

Restricted to 
Pion emissions

21 MLhad: A ML based Simulation for Hadronization youssead@ucmail.uc.edu

SW distance enables
learning any sampleable

latent distribution

https://scipost.org/SciPostPhys.14.3.027
https://scipost.org/SciPostPhys.14.3.027
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cSWAE architecture
(Architecture used in SciPost Phys. 14, 027 (2023) )

SWAE latent space
(arXiv: 1804.01947 )

Generative Models

Conditional Sliced Wasserstein (SW) Autoencoder (cSWAE)

⇒ Can learn complex distributions!

𝒑𝒛, 𝒑𝑻

Samples 

⇒ No access to the probability distribution

SciPost Phys. 14, 027 (2023)

VAE

Latent 
Distribution

Restricted to 
Pion emissions
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𝒛 ~ 𝑝(𝑧) 

SW distance enables
learning any sampleable

latent distribution

Decoder “just” generates samples

https://scipost.org/SciPostPhys.14.3.027
https://scipost.org/SciPostPhys.14.3.027
mailto:youssead@ucmail.uc.edu


 

Z0- random vector 
sampled from a 

Gaussian 𝑝0 𝑧0

Fi – invertible NN that 

transforms 𝑝0 𝑧0 to 𝑝𝑖 𝑧𝑖  
by change of variables

Complex target distribution 

𝑝𝑘 𝑧𝑘  is learned 

⇒ Can learn complex distributions!

⇒ Access to the exact probability distribution

𝑝𝑘 𝑧𝑘 = 𝑝0 𝑧0 ෑ

𝑖=1

𝐾

|det
𝜕𝑓𝑖(𝑧𝑖−1)

𝜕𝑧𝑖−1
 ቚ

−1

Normalizing Flows

Exact probability distribution is 
obtained by change of variables

Removed pion 
emission restriction

23 MLhad: A ML based Simulation for Hadronization youssead@ucmail.uc.edu

hHps://github.com/janosh/awe
some-normalizing-flows
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Back to Physics

∗Preliminary

NFs, conditioned on different masses and energies, learn the correlation between 𝒑𝒛 and 𝒑𝑻

24 MLhad: A ML based Simulation for Hadronization youssead@ucmail.uc.edu
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Back to Physics

Implement NF in the fragmentation chain to obtain physical observables

NF NF

⇒ Multiplicity obtained by MLHad agrees with Pythia!
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Uncertainty Quantification
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Uncertainty estimation is crucial for event generator 
predictions! 

26
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Uncertainty Quantification
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Uncertainty estimation is crucial for event generator 
predictions! 

Efficient solutions exist!

perturbative calculations depend on choices of scale, 
values of gauge and other couplings, particle masses, 

and nonperturbative inputs
Giele et al, Phys. Rev. D84, 054003 (2011)

Hard matrix element

P a r t o n  sh o w e r

S. Mrenna and P. Skands, Phys. Rev. D94(7), 074005 (2016)

27
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Reweighting Hadronized Pythia Events

MLhad: A ML based Simulation for Hadronization30

Small Detour:
No ML, only Had

Ilten et al, 2308.nnnnn
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Reweighting Hadronized Pythia Events

MLhad: A ML based Simulation for Hadronization31

Event generation is time consuming

We want to reweight events without 
regenerating

Use a modified veto algorithm

New event weights for different 
hadronization param are book kept

We calculate event weights for different 
hadronization options in a single 

event generation!

youssead@ucmail.uc.edu
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Reweighting Hadronized Pythia Events

MLhad: A ML based Simulation for Hadronization32

reweighted

exact calc.

𝒆+𝒆− → 𝒁 → 𝒋𝒆𝒕𝒔

youssead@ucmail.uc.edu
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Reweighting Hadronized Pythia Events

MLhad: A ML based Simulation for Hadronization33

Generate 100 samples 
with different variations 

of aLund

Each sample has 1000 
events

For 10 alternative 
values we have a speed 

up by a factor ~4

youssead@ucmail.uc.edu
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Uncertainty Quantification

Correlated 
Uncertainties

Statistical and 
Training Uncertainties
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Back to ML
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Correlated Uncertainties

Recall:

𝑝𝑘 𝑧𝑘 = 𝑝0 𝑧0 ෑ

𝑖=1

𝐾

|det
𝜕𝑓𝑖(𝑧𝑖−1)

𝜕𝑧𝑖−1
 ቚ

−1
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→ Can learn complex distributions

→ Access to the exact probability distribution
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Correlated Uncertainties

Recall:

Mimic correlated uncertainty:

Generate multiple datasets with varied 
Pythia parameters with their standard 

deviation as error band

We can reweight between error bands by 
reweighting:

𝑤 = ෑ

𝑖

𝑝𝑛𝑜𝑚
𝑖

(𝑧)

𝑝𝑝𝑒𝑟𝑡
𝑖

(𝑧)

𝑝𝑘 𝑧𝑘 = 𝑝0 𝑧0 ෑ

𝑖=1

𝐾

|det
𝜕𝑓𝑖(𝑧𝑖−1)

𝜕𝑧𝑖−1
 ቚ

−1
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→ Can learn complex distributions

→ Access to the exact probability distribution
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Reweighting with NFs

∗Preliminary

Nominal: b = 0.98
Perturbed: b= 0.80

b is a free parameter in the Lund function used 
in Pythia: StringZ:bLund

Train perturbed NF
→ Get likelihood

Train nominal NF
→ Get likelihood

→ Reweight nominal output using ratio of 
likelihoods:

𝑤 = ς𝑖
𝑝𝑛𝑜𝑚

𝑖
(𝑧)

𝑝𝑝𝑒𝑟𝑡
𝑖

(𝑧)
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How can we capture 
Uncertainties?
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Statistical (and Training) Uncertainties
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Statistical (and Training) Uncertainties

(Image source: The very Basics of Bayesian Neural Networks )

„Classical“ Neural Networks

Weights have a fixed value
→Weight values are updated in each epoch
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Statistical (and Training) Uncertainties

Bayesian Neural Networks (BNN)

(Image source: The very Basics of Bayesian Neural Networks )

„Classical“ Neural Networks

Weights have a fixed value
→Weight values are updated in each epoch

Weights are sampled from a distribution
→ Distribution parameter are updated in 

each epoch

→ BNN are easy to implement: Add additional loss function for weight distribution

→ Capture statistical and training uncertainties
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Bayesian NF Results

∗Preliminary

Pythia Sample:
One sample with errors 

corresponding to 𝑁𝑏𝑖𝑛

Mean BNF:
5 × 105 samples with 

errors corresponding to 
the standard deviation

BNF capture the statistical 
and training uncertainties

42 MLhad: A ML based Simulation for Hadronization youssead@ucmail.uc.edu

Sample size = 4 × 105
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Further Directions

Model
Kinematics

Flavor Observables
ML-

Based

First Step:
Train on “pseudo” data 

from Pythia

Not 
Observed!

Observables

Simulated

Experiment

V
a

li
d

a
te

Sample

MLhadPipeline

We developed a pipeline for Hadronization 
based on the Lund model 

44 MLhad: A ML based Simulation for Hadronization youssead@ucmail.uc.edu
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Further Directions

Model
Kinematics

Flavor Observables
Lund 

Function

Not 
Observed!

Observables

Simulated

Experiment

V
a

li
d

a
te

TunerModel 
Parameter

Tune

Sample

Pythia 
Tuner

Pythia Pipeline

Lund 
Parameters

Limited by its functional 
form!!
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Further Directions

Model
Kinematics

Flavor Observables
ML-

Based

Not 
Observed!

Observables

Simulated

Experiment

V
a

li
d

a
te

TunerModel 
Parameter

Tune

Sample

Hyper 
Networks

MLhad Pipeline

Weights 
of NN

Not restricted to an analytic 
function!!
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∗Preliminary
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Further Directions

MLhad: A ML based Simulation for Hadronization47

Ilten et al, 2308.xxxxx

Propagation of errors

ML architecture with Bayesian Normalizing Flows (presented in part)

Train on observables only

Two part reweighter (not part of the talk)

Train on global observables with HN (results not shown in this talk)

To train on experimental data

Want fast evaluation of parameter dependency

Use reweighting method

First implementation in Pythia for Lund string model (to be released 
soon in Pythia) Ilten et al, 2308.nnnnn

youssead@ucmail.uc.edu
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Big Picture

MLhad: A ML based Simulation for Hadronization48

A series of progressive steps needs to be done before 
practically useful in Pythia simulations 

→ ML architecture that mimicks a simplified Lund string 
hadronization model

→ Train on truth level Pythia output (not obs. In exp)

→ Develop a framework to propagate errors

→ Improved ML architecture with full hadron flavor selector

→ Train on mock data (i.e., just observable information)

→ Train on real data (i.e., just already measured information)

→ Replace Pythia string model

We are 
here

Partial results 
(shown 
by part)

youssead@ucmail.uc.edu
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Conclusion and Outlook

youssead@ucmail.uc.edu

• First MLHAD pipeline based on cSWAE was published in SciPost Phys. 14, 027 (2023)

• NFs overcome the limitations of cSWAE - can emit in principle any meson and have access to pdf

• NFs allow us to reweight events and capture uncertainties

Work in progress

• Finalize normalizing flows architecture (include model uncertainty)

• PYTHIA reweighting (Release as part of Pythia)

• Flavor Selector

• Performing training on physically accessible observables to train MLHAD on experimental data

49 MLhad: A ML based Simulation for Hadronization youssead@ucmail.uc.edu
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Back up
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Training Results cNF

∗Preliminary
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