Measurement of the cross section for inclusive B_{s} production in e^+e^- collisions at energies around 11 GeV

Ljubljana, Slovenia 9 October 2023

PhD thesis defence (demo-version)

Author: Valentina Zhukova

Supervisor: prof. Dr. Peter Križan

Goal of this dissertation $-\sigma(e^+e^- \rightarrow B_s\bar{B}_sX)$ and $\sigma(e^+e^- \rightarrow B\bar{B}X)$ at $E_{\rm cm}$ from 10.63 to 11.02 GeV

 B_s mesons — open-flavor, $m = (5366.92 \pm 0.10)$ MeV

 B^0 and B^+ mesons — open-flavor,

 $m = (5279.66 \pm 0.12) \text{ MeV}$

Bottomonia- hidden-flavor

Bottomonium states below $B\bar{B}$ threshold are well described by quark model

Bottomonium states above $B\bar{B}$ threshold demonstrate unexpected properties

- \rightarrow Z_{b} and Z'_{b} are charged (at least 4 quarks)
- Rates of hadronic transition to lower bottomonia are higher then expected for pure bb (violate OZI-rules)
- η transitions are not suppressed relative to dipion transitions (violate HQSS)

Bottomonium spectroscopy

Heavy quarkonium spectroscopy is an excellent laboratory to study non-perturbative QCD

Nature of bottomonia above threshold is not well understood yet!

10.7

10.Ö

10.9

Problems with the analysis of the individual cross sections

Parameters of the resonances extracted from different channels may differ $-\Upsilon(5S)$ peak position in $\Upsilon(nS)\pi^+\pi^-$ and $h_b(1,2P)\pi^+\pi^-$ are shifted from peak in $B_c^{(*)}\bar{B}_c^{(*)}$

Certain states may not be seen in some channels

— coupled-channel dynamic should be taken into account

 E_{cm} (GeV)

A sum of Breit-Wigner amplitudes violate unitarity — results are unreliable

10.7 10.75 10.8

Analysis of the individual cross sections

- $\Upsilon(10753)$ was observed in $\Upsilon(1,2,3S)\pi^+\pi^-$ final states and is not seen in total $\sigma(b\bar{b})$

 $\sigma(B\bar{B}), \sigma(B\bar{B}^*), \sigma(B^*\bar{B}^*)$ have complex shape with peaks and valleys/dips near thresholds

10.6

10.7

10.8

Global phenomenological analysis

 $B\overline{B}, B^*\overline{B}, B^*\overline{B}^*, B^*_S\overline{B}^*_S, \Upsilon(1S)\pi^+\pi^-,$ $\Upsilon(2S)\pi^{+}\pi^{-}, \Upsilon(3S)\pi^{+}\pi^{-}, h_{b}(1P)\pi^{+}\pi^{-}, h_{b}(1P)\pi^{+}\pi$ $h_b(2P)\pi^+\pi^-$, and $\sigma_{b\bar{b}}$

Poles for:

 $\Upsilon(4S), \Upsilon(10753), \Upsilon(5S), \Upsilon(6S)$

Various $\mathscr{B}'s$ and electronic widths

The uncertainties are still large

Channel $e^+e^- \rightarrow B_s^{(*)}\bar{B}_s^{(*)}$

$B_{s}^{(*)}\bar{B}_{s}^{(*)}$ channel — the current data doesn't constrain the fit function well

Need to improve the accuracy in $B_s^{(*)} \overline{B}_s^{(*)}$ channel

Summary of introduction

- Bottomonia above the open-bottom threshold are still puzzling
- Global combined analysis is promising approach to investigate the bottomonia nature
- Every additional channel is very important for the global analysis
- Improving accuracy in particular channels will allow better constrained fitting function

Goal:

More experimental data and new measurements are welcome!

Measuring $\sigma(e^+e^- \to B_c\bar{B}_cX)$ and $\sigma(e^+e^- \to B\bar{B}X)$ with high accuracy

Reconstruct inclusive D_s and D^0 at each energy scan point,

 $x_p = \frac{p}{m}$ is used to separate continuum and $b\bar{b}$ - events; p_{max}

Measured cross sections can be expressed as:

 $\sigma(D_s X)/2 = \mathscr{B}(B_s \to D_s X) \cdot \sigma(B_s \overline{B}_s X) + \mathscr{B}(B \to D_s X) \cdot \sigma(B\overline{B} X)$

 $\sigma(D^0 X)/2 = \mathscr{B}(B_s \to D^0 X) \cdot \sigma(B_s \overline{B}_s X) + \mathscr{B}(B \to D^0 X) \cdot \sigma(B \overline{B} X)$ model: $(8 \pm 7)\%$

Idea

- $(64.0 \pm 3.0)\%$

Explicite formulas for:

 $\sigma(B_{c}\bar{B}_{c}X)$ and $\sigma(B\bar{B}X)$

Reconstruct inclusive D_s and D^0 at each energy scan point,

 $\sigma(D^0 X)/2 = \mathscr{B}(B_s \to D^0 X) \cdot \sigma(B_s \bar{B}_s X) + \mathscr{B}(B \to D^0 X) \cdot \sigma(B\bar{B}X)$ model: $(8 \pm 7)\%$

Idea

 $(64.0 \pm 3.0)\%$

 $\sigma(B_{c}\bar{B}_{c}X)$ and $\sigma(B\bar{B}X)$

No B_s at energy point near $\Upsilon(4S)$:

At energy point near $\Upsilon(5S)$:

$$\begin{split} \sigma(D_s X) |_{\Upsilon(5S)} / 2 &= \mathscr{B}(B_s \to D_s X) \cdot \sigma(B_s \bar{B}_s X) |_{\Upsilon(5S)} + \mathscr{B}(B \to D_s X) \cdot \sigma(B \bar{B} X) |_{\Upsilon(5S)} \\ \sigma(D^0 X) |_{\Upsilon(5S)} / 2 &= \mathscr{B}(B_s \to D^0 X) \cdot \sigma(B_s \bar{B}_s X) |_{\Upsilon(5S)} + \mathscr{B}(B \to D^0 X) \cdot \sigma(B \bar{B} X) |_{\Upsilon(5S)} \\ C &= \frac{\mathscr{B}(B_s \to D^0 X)}{\mathscr{B}(B_s \to D_s X)} = \frac{\sigma(D^0 X) |_{\Upsilon(5S)} - \mathscr{B}(B \to D^0 X) \cdot \sigma(B \bar{B} X) |_{\Upsilon(5S)}}{\sigma(D_s^{\pm} X) |_{\Upsilon(5S)} - \mathscr{B}(B \to D_s X) \cdot \sigma(B \bar{B} X) |_{\Upsilon(5S)}} \\ \\ \hline \text{We can measure using } \Upsilon(5S) \text{ data} & \text{We can measure using } \Upsilon(4S) \text{ data} & \text{from JHEP 06 (2021) 137} \end{split}$$

At scan points:

$$\sigma(D_s X)/2 = \mathscr{B}(B_s \to D_s X) \cdot \sigma(B_s \bar{B}_s X) + \mathscr{B}(B \to D_s X) \cdot \sigma(B\bar{B}X)$$

$$\sigma(D^0 X)/2 = C \cdot \mathscr{B}(B_s \to D_s X) \cdot \sigma(B_s \bar{B}_s X) + \mathscr{B}(B \to D^0 X) \cdot \sigma(B\bar{B}X)$$

Solving eq's system:

Idea

Measure with high accuracy $\mathscr{B}(B \to D_s X)$, $\mathscr{B}(B \to D^0 X)$

energy dependence of the $\sigma(B_s \overline{B}_s X) \cdot \mathscr{B}(B_s \to D_s X)$ and $\sigma(B\overline{B}X)$

Data samples and selection criteria

Data used in this analysis:

data at $\Upsilon(4S)$ energy: data at $\Upsilon(5S)$ energy: data at $E_{cm} = 10.52$ GeV: (continuum data sample) 22 energy scan points: $E_{\rm cm}$ from 10.63 GeV to 11.02 GeV

 $\mathscr{L}_{4S} = 571 \text{ fb}^{-1}$ $\mathscr{L}_{5S} = 121 \text{ fb}^{-1}$ $\mathscr{L}_{cont} = 74 \text{ fb}^{-1}$

 $\mathscr{L}_i \approx 1 \text{ fb}^{-1}$

Charged tracks:

|dr| < 0.5 cm and |dz| < 2.0 cm $\mathscr{L}_{K/\pi} = \mathscr{L}_K / (\mathscr{L}_K + \mathscr{L}_\pi) > 0.6$ $\mathscr{L}_{\pi/K} = \mathscr{L}_{\pi}/(\mathscr{L}_{K} + \mathscr{L}_{\pi}) > 0.1$

 $D_{\rm s}^+ \to \phi \pi^+, \ \phi \to K^+ K^-$

$$|M_{inv}(K^-K^+) - m_{\phi}| < 19 \text{ MeV/c}^2$$

 $|\cos \theta_{hel}| > 0.25$
 $1.9 < M(D_s) < 2.02 \text{ GeV/c}^2$

 $\theta_{h\rho l}$ — the angle between K^+ and D_s^+ in ϕ rest frame

 $D^0 \rightarrow K^- \pi^+$

 $1.8 < M(D^0) < 1.932 \text{ GeV/c}^2$

Fit the D_s mass distributions in the different x_p bins at $\Upsilon(5S)$

x_p spectra of D_s at $\Upsilon(5S)$ and below $\Upsilon(4S)$

Due to the evolution of fragmentation with energy the shape of the continuum spectrum changes noticeably between $E_{cm} = 10.52$ GeV and the $\Upsilon(5S)$ energy

The continuum x_p spectra should be corrected

Belle II generators: KKMC — initial state radiation, Pythia 8.2 — c-quark fragmentation

x_p spectra at $\Upsilon(5S)$ and $\Upsilon(4S)$ data

Red points — on-resonance data

We fit the large x_p part of the on-resonance spectra to find the continuum contribution in the $b\bar{b}$ region

Fitting function — shape of the x_p spectra for the data below the $\Upsilon(4S)$

Blue hatched histograms —fit results Open dashed histograms extrapolation of the continuum component

We subtract the continuum component to obtain pure bb spectra

Continuum subtraction

Points in the high x_p region are consistent with zero, it means that continuum spectra shapes are correct

Apply efficiency correction to calculate $e^+e^- \rightarrow b\bar{b} \rightarrow DX$ cross sections

 $\sigma(e^+e^- \rightarrow DX)$ calculation

$$\sigma(e^+e^- \to b\bar{b} \to D_s X) = \sum_{i=1}^{i_{\max}} \frac{N_i(D_S) - k \cdot n_i(D_S)}{\mathscr{L} \cdot \mathscr{E}_i \cdot \mathscr{B}(D_S \to K^+K^-\pi) \cdot r_{\phi-cut}}$$

$$\sigma(e^+e^- \to b\bar{b} \to D^0 X) = \sum_{i=1}^{i_{\max}} \frac{N_i(D^0) - k \cdot n_i(D^0)}{\mathscr{L} \cdot \mathscr{E}_i \cdot \mathscr{B}(D^0 \to K^-\pi^+)}$$

$$\sigma(e^+e^- \to b\bar{b} \to D_s X)|_{\Upsilon(5S)} = (151.8 \pm 1.0 \pm 5.5) \text{ pb} \quad \sigma(e^+e^- \to b\bar{b} \to D^0 X)|_{\Upsilon(5S)} = (379.7 \pm 1.6 \pm 10)$$

 $\sigma(e^+e^- \to b\bar{b} \to D_s X)|_{\Upsilon(4S)} = (248.6 \pm 0.6 \pm 9.2) \text{ pb} \quad \sigma(e^+e^- \to b\bar{b} \to D^0 X)|_{\Upsilon(4S)} = (1468.5 \pm 0.9 \pm 36.6) \text{ pb}$

 N_i — number of *D* events from fit in i-bin of the x_p spectrum for on-resonance data

 n_i — number of *D* events from fit in i-bin of the x_p spectrum for continuum

k — scale factor for continuum spectrum normalisation

$$r_{\phi-cut} = 0.981 \pm 0.9$$

$$\mathscr{B}(B \to D^0 X) = \frac{\sigma(D^0 X)|_{\Upsilon(4S)}}{2 \cdot \sigma(e^+ e^- \to b\bar{b})|_{\Upsilon(4S)}} = (66.63 \pm 2 \cdot \sigma(e^+ e^- \to b\bar{b}))|_{\Upsilon(4S)}$$

$$C = \frac{\mathscr{B}(B_s \to D^0 X)}{\mathscr{B}(B_s \to D_s X)} = \frac{\sigma(e^+ e^- \to b\bar{b} \to L)}{\sigma(e^+ e^- \to b\bar{b} \to L)}$$

 $C = 0.416 \pm 0.018 \pm 0.092$

Results at $\Upsilon(4S)$ and $\Upsilon(5S)$

Fractions of $B_{s}\bar{B}_{s}X$ events produced at $\Upsilon(5S)$:

$$f_{\rm s} = \frac{\sigma(e^+e^- \to B_s \bar{B}_s X)|_{\Upsilon(5S)}}{\sigma(e^+e^- \to b\bar{(}b))|_{\Upsilon(5S)}} = (23$$

To improve accuracy we fit

 $f_{\rm s} = (23.0 \pm 0.2 \pm 2.8) \%$ $f_{B\bar{B}X} = (75.1 \pm 4.0)\%$ JHEP 06 (2021) 137 $f_{\varkappa}^{\text{known}} = (4.9 \pm 0.6)\%$ JHEP 06 (2021) 137

with one constraint

$$f_s + f_{B\bar{B}X} + f_{B} = 1$$

from the fit: $f_s = (22.0^{+2.0}_{-2.1})\%$

Result from the fit:

Source	Systematic uncertainty (?
$\sigma(e^+e^- \to b\bar{b} \to D_s^{\pm} X) _{\Upsilon(5S)}$	1.4
$\sigma(e^+e^- \to b\bar{b} \to D_s^{\pm} X) _{\Upsilon(4S)}$	0.7
$\sigma(e^+e^- \to B\bar{B}X) _{\Upsilon(5S)}$	1.4
$\mathcal{B}(B^0_s \to D^\pm_s X)$	10.5
$\sigma(e^+e^- ightarrow b\bar{b}) _{\Upsilon(5S)}$	4.5
Correlated contributions	
$-\operatorname{tracking}$	1.1
$-K/\pi$ identification	2.3
$-r_{\phi}$	0.6
$- {\cal B}(D^+_s o K^+ K^- \pi^+)$	1.9
Total	12.0

Belle

PRD 105 (2022) 1,012004

 $\underline{\mathscr{B}(B_s \to D_s X)} = (60.2 \pm 5.8 \pm 2.3)\%$

23 energy points from 10.63 to 11.02 GeV – repeat the procedure at each of them

Energy scan points

bb fit results

 $\sigma(e^+e^- \to b\bar{b} \to D_s^{\pm}X)$ and $\sigma(e^+e^- \to b\bar{b} \to D^0/\bar{D}^0X)$

From D to B

This work:

 $\mathscr{B}(B \to D^{\pm}X) = (11.28 \pm 0.03 \pm 0.43)\%$ $\mathscr{B}(B \to D^0 / \bar{D}^0 X) = (66.63 \pm 0.04 \pm 1.77) \%$ $C = \frac{\mathscr{B}(B_s \to D^0 X)}{\mathscr{B}(B_s \to D_s X)} = 0.416 \pm 0.018 \pm 0.092$

$$\sigma(e^+e^- \to B_s^0 \bar{B}_s^0 X) \cdot \mathscr{B} = 0.54 \cdot \sigma(e^+e^- \to \sigma(e^+e^- \to B\bar{B}X) = -0.34 \cdot \sigma(e^+e^- \to B\bar{B}X) = -0.34 \cdot \sigma(e^+e^- \to B\bar{B}X)$$

 $\sigma(e^+e^- \to b\bar{b} \to D_s^+X)/2 = \mathscr{B}(B_s^0 \to D_s^+X) \cdot \sigma(e^+e^- \to B_s\bar{B}_sX) + \mathscr{B}(B \to D_sX) \cdot \sigma(e^+e^- \to B\bar{B}X)$ $\sigma(e^+e^- \to b\bar{b} \to D^0X)/2 = C \cdot \mathscr{B}(B^0_s \to D^+_s X) \cdot \sigma(e^+e^- \to B^0_s \bar{B}^0_s X) + \mathscr{B}(B \to D^0X) \cdot \sigma(e^+e^- \to B\bar{B}X)$

$$\sigma(e^+e^- \to B_s \bar{B}_s X) = \sigma(e^+e^- \to B_s^{(*)} \bar{B}_s^{(*)})$$

up to $B_s \bar{B}_s \pi^0 \pi^0$ threshold (11.004 GeV

 $b\bar{b} \rightarrow D_{\rm s}^+ X) - 0.09 \cdot \sigma(e^+e^- \rightarrow b\bar{b} \rightarrow D^0 X),$ $\rightarrow b\bar{b} \rightarrow D_{s}^{+}X) + 0.81 \cdot \sigma(e^{+}e^{-} \rightarrow b\bar{b} \rightarrow D^{0}X)$

$\sigma(e^+e^- \to B_S\bar{B}_SX)$ and $\sigma(e^+e^- \to B\bar{B}X)$

\checkmark Cross sections $\sigma(e^+e^- \rightarrow b\bar{b} \rightarrow D_s^{\pm}X)$ and $\sigma(e^+e^- \rightarrow b\bar{b} \rightarrow D^0\bar{D}^0X)$ as well as $\sigma(e^+e^- \to B_c \bar{B}_c X)$ and $\sigma(e^+e^- \to B\bar{B}X)$ are measured from 10.63 to 11.02 GeV ✓ Inclusive $\mathscr{B}(B \to D^0 X)$ and $\mathscr{B}(B \to D_{c} X)$ are obtained \checkmark Ratio $\mathscr{B}(B_s \to D^0 X)/\mathscr{B}(B_s \to D_s X) = 0.416 \pm 0.018 \pm 0.092$ is determined \checkmark The fraction of B_s mesons at $\Upsilon(5S)$ is measured to be $f_s = (22.0^{+2.0}_{-2.1})\%$

Summary

Thank you very much for your attention!

Backup

Cross sections for open flavour channels

Total hadronic cross section has peaks at the $\Upsilon(4S), \Upsilon(5S)$ and $\Upsilon(6S)$, and dips near the open bottom thresholds

 $\Upsilon(5S)$ and $\Upsilon(6S)$ could provide an oscillatory behaviour of the corresponding exclusive cross sections

The individual cross sections contain considerably more information than their sum

$$e^+e^- \to \Upsilon(nS)\pi^+\pi^-, \ e^+e^- \to h_b\pi^+\pi^- \text{ and}$$

$$e^+e^- \to B^{(*)}\bar{B}^{(*)}(\pi) \text{ has been already measured}$$

$$0.4$$

$$0.2$$

 \mathbf{R}_{b}

Puzzling bottomonium states			η transitions ar	e not suppres
Mass solitting	σ is too large		Transition	Partial width
	5 15 000 10150	$\mathbf{\hat{c}}$	$\Upsilon(2S) \rightarrow$	
$M(\Upsilon(5S)) - M(\Upsilon(4S)) = 305$	5.8 MeV/c ² $\Delta = 81$	$.6 \text{ MeV/c}^2$	$\Upsilon(1S)\pi^+\pi^-$	5.7 ± 0
	A expected	40 N/ $37/2$	$\Upsilon(1S) \eta$	$(9.3 \pm 1.5) >$
M(I(4S)) - M(I(3S)) = 224	$L2 \text{ MeV/c}^2 \qquad \Delta_{b\bar{b}}^{-1}$	$\approx 40 \text{ MeV/c}^{-1}$	$\Upsilon(3S) ightarrow$	
	$(\cdot ()) + -$		$\Upsilon(1S)\pi^+\pi^-$	0.89 ± 0.01
Anomalous produ	iction of $I(nS)\pi'\pi$		$\Upsilon(1S)\eta$	$< 2 \times 10$
DDI $100, 110001(0000)$			$\Upsilon(2S) \pi^+ \pi^-$	0.57 ± 0
PRL100,112001(2008)	I, MeV		$\Upsilon(4S) \rightarrow$	
$\Upsilon(5S) \rightarrow \Upsilon(1S)\pi^+\pi^-$	0.59 + 0.04 + 0.09		$\Upsilon(1S) \pi^+ \pi^-$	1.7 ± 0
			$\Upsilon(1S) \eta$	4.0 ± 0
$\Upsilon(5S) \to \Upsilon(2S)\pi^+\pi^-$	0.85 + 0.07 + 0.16	10^{2}	$\Upsilon(2S) \pi^+ \pi^-$	1.8 ± 0
$\Upsilon(5S) \rightarrow \Upsilon(3S)\pi^+\pi^-$	$0.52\pm0.20\pm0.17\pm0.013$		$h_b(1P)\eta$	45 ± 7
$\mathbf{I}(\mathbf{J}\mathbf{S}) \neq \mathbf{I}(\mathbf{J}\mathbf{S})\mathbf{\mathcal{I}} \mathbf{\mathcal{I}}$	$0.32 \pm 0.20 \pm 0.17 \pm 0.013$		$\Upsilon(5S) \rightarrow$	
$\Upsilon(2S) \to \Upsilon(1S)\pi^+\pi^-$	0.0060		$\Upsilon(1S) \pi^+ \pi^-$	238 ± 4
$\mathbf{Y}(2 \mathbf{G}) = \mathbf{Y}(1 \mathbf{G}) + -$	0.0000		$\Upsilon(1S) \eta$	39 ± 1
$I(3S) \rightarrow I(1S)\pi^{T}\pi^{T}$	0.0009		$\Upsilon(1S) K^+K^-$	33 ± 1
$\Upsilon(4S) \rightarrow \Upsilon(1S)\pi^+\pi^-$	0.0019		$1(2S) \pi^{+}\pi^{-}$	428 ± 8
			$1(2S)\eta$	204 ± 4

Rescattering $\Upsilon(5S) \rightarrow B^{(*)}B^{(*)} \rightarrow \Upsilon(nS)\pi\pi$? $\Upsilon(5S)$

Conclusion: states above threshold are not pure $b\bar{b}$

 B^*

 $ar{B}^*$

Data samples for the analysis

 $D_{(s)}$

 $ar{B}^{(*)}_{(s)}$

Data used in this analysis: data at $\Upsilon(4S)$ energy: $\mathscr{L}_{4S} = 571 \text{ fb}^{-1}$ data at $\Upsilon(5S)$ energy: $\mathscr{L}_{5S} = 121 \text{ fb}^{-1}$ data at $E_{cm} = 10.52 \text{ GeV}$ (continuum data sample): $\mathscr{L}_{cont} = 74 \text{ fb}^{-1}$ 22 energy scan points $(E_{cm} \text{ from 10.63 GeV to 11.02 GeV}):$ $\mathscr{L}_i \approx 1 \text{ fb}^{-1}$

 $B^{(*)}_{(s)}$

Belle detector

Charged particles: e^{\pm} , μ^{\pm} , π^{\pm} , K^{\pm} , p^{\pm} Neutral particles: γ , K_L

Decay vertices - SVD

Charged particle tracking – CDC

Particle ID
$$-\frac{dE}{dx}$$
 in CDC (p<1 GeV),
ACC (1.2 TOF (p < 1.2 GeV)

CsI(Tl)

8 GeV @

Electromagnetic showers – ECL

 μ and K_L – KLM system

Belle detector

		Performance parameters expected (or achieved) for the Belle detector				
		Detector	Туре	Configuration	Readout	Performance
		Beam pipe	Beryllium double wall	Cylindrical, $r = 20 \text{ mm}$ 0.5/2.5/0.5 (mm) = Be/He/Be		He gas cooled
		EFC	Bi ₄ Ge ₃ O ₁₂	Photodiode readout segmentation: 32 in ϕ ; 5 in θ	160 × 2	RMS energy resolution: 7.3 % at 8 GeV 5.8% at 3.5 GeV
		SVD	Double-sided Si strip	Chip size: $57.5 \times 33.5 \text{ mm}^2$ Strip pitch: 25 (p)/50 (n) µm 3 layers: 8/10/14 ladders	φ: 40.96k z: 40.96k	$\sigma_{\Delta_z} \sim 80 \ \mu m$
		CDC	Small cell drift chamber	Anode: 50 layers Cathode: 3 layers r = 8.3-86.3 cm $-77 \le z \le 160$ cm	<i>A</i> : 8.4k <i>C</i> : 1.8k	$\sigma_{r\phi} = 130 \ \mu m$ $\sigma_z = 200 - 1400 \ \mu m$ $\sigma_{p_t}/p_t = 0.3\% \sqrt{p_t^2 + 1}$ $\sigma_{dE/dx} = 6\%$
		ACC	Silica aerogel	960 barrel/228 end-cap FM-PMT readout		$N_{\text{p.e.}} \ge 6$ K/ π separation: 1.2 < p < 3.5 GeV/ c
		TOF TSC	Scintillator	128 ϕ segmentation r = 120 cm, 3-m long 64 ϕ segmentation	128 × 2 64	$\sigma_t = 100 \text{ ps}$ K/ π separation: up to 1.2 GeV/ c
dE/dx (CDC) TOF (only Barrel)	Δ dE/dX \sim 5 % Δ T \sim 100 ps (r = 125cm)	ECL	CsI (towered structure)	Barrel: $r = 125-162$ cm End-cap: $z = -102$ cm and $+196$ cm	6624 1152 (F) 960 (B)	$\sigma_E/E = 1.3\%/\sqrt{E}$ $\sigma_{\rm pos} = 0.5 \text{ cm}/\sqrt{E}$ (E in GeV)
Barrel ACC Endcap ACC	$n = 1.010 \sim 1.028$ n = 1.030 + 1 2 3 4	KLM	Resistive plate counters	14 layers(5 cm Fe + 4 cm gap)2 RPCs in each gap	θ: 16k φ: 16k	$\Delta \phi = \Delta \theta = 30 \text{ mr}$ for K _L ~1% hadron fake
	p (GeV/c)	Magnet	Supercon.	Inner radius = 170 cm		B = 1.5 T

Fit the D_S mass distributions in the different x_p bins at $\Upsilon(4S)$

Shift for 4S

Fudge factor for 4S

Fit the D^0 mass distributions in the different x_p bins at $\Upsilon(4S)$

Shift for 5S

Fudge factor for 5S

$$M_{inv}(K^-K^+) - m_{\phi}| < 19 \text{ MeV/c}^2, |\cos \theta_{hel}| > 0$$

 $\sigma(e^+e^- \to c\bar{c} \to D_s X)$ and $\sigma(e^+e^- \to c\bar{c} \to D^0 X)$

x_p spectra of D_S in bb MC at $\Upsilon(5S)$

Continuum spectrum subtraction for D^0 **at** $\Upsilon(5S)$

Хр

x_p spectra of D_S in bb MC at $\Upsilon(4S)$

Yield N_{D_s} from charged and mixed MC

x_p spectra of D^0 in bb MC at $\Upsilon(4S)$

D_s efficiency as function x_p Efficiency, % 15 10 at $\Upsilon(4S)$ energy 5 at $\Upsilon(5S)$ energy 0.2 0.4 x_p

Systematic uncertainties in $\sigma(e^+e^- \rightarrow DX)$							
Source	Ds at Y(5S)	D ⁰ at Y(5S)	Ds at Y(4S)	D ⁰ at Y(4S)			
Fit model	0.6	0.3	1.0	1.1			
Continuum xp spectrum statistical error	0.6	0.4	0.4	0.1			
Continuum xp spectrum correction	0.3	1.3	_	_			
MC statistical error	0.2	0.1	0.1	0.0			
rφ	0.6	_	0.6	_			
Tracking	1.1	0.7	1.1	0.7			
K/ π identification	2.3	1.4	2.3	1.4			
Luminosity	1.4	1.4	1.4	1.4			
Branching fraction	1.9	0.8	1.9	0.8			
Total	3.6	2.6	3.7	2.5			

Continuum xp spectrum statistical error:

$$\frac{1}{\sigma} \sqrt{\sum_{i=1}^{i_{\max}} \left(\sigma_i \frac{\Delta n_i k}{N_i - k n_i} \right)^2}$$

MC statistical error:

$$\frac{1}{\sigma} \sqrt{\sum_{i=1}^{i_{\max}} \left(\sigma_i \frac{\Delta \mathscr{E}_i}{\mathscr{E}_i}\right)^2}$$

