

2<sup>nd</sup> Training School COST Action Cosmic Wispers (CA21106) Ljubljana, 10-14 June 2024



# SN ALPs coupled to nucleons shining into photons

Based on ArXive: 2405.00153, accepted on PRD







Physics Department of «Aldo Moro» University in Bari Istituto Nazionale di Fisica Nucleare



# **ALP nuclear couplings**



ChPT Lagrangian: [Ho & al., Phys. Rev. D 107 (2023)]

$$\mathcal{L}_{\text{int}} = g_a \frac{\partial_\mu a}{2m_N} \left[ \underbrace{C_{ap} \bar{p} \gamma^\mu \gamma_5 p + C_{an} \bar{n} \gamma^\mu \gamma_5 n}_{+ \frac{C_{a\pi N}}{f_\pi} (i\pi^+ \bar{p} \gamma^\mu n - i\pi^- \bar{n} \gamma^\mu p) + C_{aN\Delta} \left( \bar{p} \Delta^+_\mu + \overline{\Delta^+_\mu} p + \bar{n} \Delta^0_\mu + \overline{\Delta^0_\mu} n \right) \right]$$

- couplings to nucleons
- couplings to pions
- couplings to baryonic resonances

Alessandro Lella

COST Training School 2024

# **The UV theory**

Above  $\Lambda_{QCD} \simeq 200 \text{ MeV}$  interactions with quark and gluons

$$\mathcal{L}_{aQCD} = c_g \frac{g_s^2}{32\pi^2} \frac{a}{f_a} G^a_{\mu\nu} \tilde{G}^{a\mu\nu} + \sum_q c_q \frac{\partial_\mu a}{2f_a} \bar{q} \gamma^\mu \gamma_5 q + \frac{(m_{a,0})^2}{2} a^2$$

Then, at loop level [Bauer et al., JHEP 12 (2017)]

$$C_{\gamma}(c_g, c_u, c_d) = -1.92 c_g - \frac{m_a^2}{m_{\pi}^2 - m_a^2} \left[ c_g \frac{m_d - m_u}{m_d + m_u} + (c_u - c_d) \right]$$

Irreducible photon coupling related to nuclear couplings ( $C_n = 0, c_g = 1$ )

$$g_{a\gamma} \simeq -9.5 \times 10^{-4} \text{ GeV}^{-1} \left[ \frac{1.53}{c_d - 0.33} + \frac{c_d + 0.24}{c_d - 0.33} \frac{m_a^2}{m_\pi^2 - m_a^2} \right] g_{ap}$$

Alessandro Lella

COST Training School 2024

# **ALP production in SNe**

> Terminal phase of a massive star  $[M \ge 8 M_{\odot}]$ , undergoing gravitational collapse

Extreme conditions of temperature and density in the core

> Cooling via neutrino emission  $E_{cool} \sim 10^{53} \text{ erg}$ 



Alessandro Lella

COST Training School 2024

# **ALP production in SNe**



Alessandro Lella

COST Training School 2024

# **ALP decays**

After being produced in the core, massive ALPs could decay into photon pairs.



Alessandro Lella

COST Training School 2024

# **ALP decays**

After being produced in the core, massive ALPs could decay into photon pairs.



# **ALP decays**

After being produced in the core, massive ALPs could decay into photon pairs.



Alessandro Lella

COST Training School 2024

# **Energy deposition**

[Caputo et al., Phys. Rev. Lett. 128 (2022)]



Alessandro Lella

COST Training School 2024

# $\gamma$ -ray bursts from SNe

[Jaeckel et al., Phys. Rev. D 98 (2018)] [Hoof & Schulz, JCAP 03 (2023) 054] [Ravensburg et al., JCAP 07 (2023) 056]



Alessandro Lella

COST Training School 2024

#### **DSNALPB**

[Beacom et al., Ann. Rev. Nucl. Part. Sci. 60 (2010)] [Calore et al., Phys. Rev. D 102 (2020)]



### **Take-home messages**

> ALPs with masses  $m_a \sim 10 - 100$  MeV can be copiously produced in SN cores by means of their nuclear coulings

ALP-nucleon couplings must descend from a UV including couplings to QCD. This implies an natural coupling to photons

ALPs coupled to nucleons experience the phenomenology related to photon couplings, implying strong bounds on the parameter space.

# Thank you for your attention

# **Constraints from SN 1987A**

Observations of SN 1987A neutrino burst constrain the ALP parameter space



Alessandro Lella

COST Training School 2024

# **SN 1987A**



- From SN 1987A neutrino burst observations:
- Duration of the burst  $\sim 10$  s.
- $\langle E_{\nu} \rangle \approx 15$  MeV.

Confirmed standard picture from SN simulations

Recent re-analysis of SN 1987A neutrino burst with current SN simulations.

[Fiorillo et al., Phys. Rev. D 108 (2023)]

# **Axions and Axion-like particles**

The QCD axion is a hypothetical pseudoscalar particle postulated to solve the strong-CP problem of QCD [*Peccei & Quinn, Phys. Rev. Lett. 38 (1977]* [*Weinberg, Phys. Rev. Lett. 40 (1978)*] [*Wilzcek, Phys. Rev. Lett. 40 (1978)*].

The QCD axion acquires a small mass below  $\Lambda_{QCD}$  from its coupling to QCD

$$m_a f_a \approx f_\pi m_\pi$$



Axion-like particles (ALPs) emerge in UV completions of the Standard Model

No relation between their masses and couplings

COST Training School 2024

# **ALP emission spectra**

> If ALPs interact weakly with nuclear matter, they can *free-stream* through the SN volume

$$\frac{d^2 N_a}{dE_a \, dt} = \int_0^\infty 4\pi r^2 dr \frac{d^2 n_a}{dE_a \, dt}$$

In case of strongly coupled ALPs, they could enter the *Trapping regime* [Caputo & al., Phys. Rev. D 105 (2022)]

$$\frac{d^2 N_a}{dE_a \, dt} = \int_0^\infty 4\pi r^2 dr \left\langle e^{-\tau(E_a, r)} \right\rangle \, \frac{d^2 n_a}{dE_a \, dt}$$
$$\tau \sim \int_0^\infty dr \, \lambda_a^{-1} \text{ optical depth for nuclear processes}$$

Alessandro Lella

COST Training School 2024

### **ALP mean free path**

$$\lambda_a^{-1}(E_a) = \frac{1}{2|\mathbf{p}_a|} \frac{d^2 n_a(\chi E_a)}{d\Pi_a \, dt}$$



Alessandro Lella

COST Training School 2024

# **ALP emission spectra**



Alessandro Lella

**COST Training School 2024** 

# **The energy-loss argument**

Emission of exotic particles could cause an excessive energy-loss from SN, affecting the neutrino burst.



Alessandro Lella

COST Training School 2024

Ljubljana, 12/06/2024

 $g_{ap}$ 

# **Axion signal in Kamiokande II**

- In case of strong couplings the ALP flux would have produced a signal in Kamiokande II.
- Seminal idea by Engel, Seckel and Hayes: look for axion-induced excitation of oxygen nuclei [Engel et al., Phys. Rev. Let. 65 (1990)].

 $a+{}^{16}\mathrm{O} \rightarrow {}^{16}\mathrm{O}^* \rightarrow {}^{16}\mathrm{O} + \gamma$ 

- > The computation of the event rate requires:
  - SN explosion models
  - An adequate treatment of trapping regime
  - State-of-the-art nuclear models



Alessandro Lella

COST Training School 2024

#### **Events number in Kamiokande-II**

$$N_{\mathrm{ev}} = F_a \otimes \sigma \, \otimes \, \mathcal{R} \, \otimes \, \mathcal{E}$$



Alessandro Lella

COST Training School 2024

# **Uncertainties on SN Bounds**

Different SN models from same progenitors (~  $18 M_{\odot}$ ) show different temperature and density profiles.



Alessandro Lella

COST Training School 2024

# **Uncertainties over SN Bounds**

At very high couplings, escaping ALPs can be absorbed by heavy nuclei in the neutrino driven wind



# **Uncertainties on SN Bounds**

Strong interactions can enhance the pion fraction in the SN core

[Fore & Reddy, Phys.Rev.C 101 (2020) 3]



# **Different choice of parameters**



COST Training School 2024

# Photon coupling vs mass



Alessandro Lella

COST Training School 2024