RADIATION FROM GLOBAL AXION STRINGS

Mathieu Kaltschmidt mkaltschmidt@unizar.es

based on 2401.17253 with K. Saikawa, J. Redondo & A. Vaquero and work in progress with J. Redondo, I. Y. Rybak & A. Drew

..... 1542

Departamento de Física Teórica **Universidad** Zaragoza

Centro de Astropartículas y Física de Altas Energías **Universidad** Zaragoza

2nd Cosmic WISPers School Ljubljana, June 12th 2024

- The QCD Axion
 - Pseudo Nambu-Goldstone boson associated with the spontaneous breaking of the global Peccei-Quinn (PQ) U(1) symmetry at the scale f_a .
 - Dynamical solution to the strong-CP problem.
 - Suitable candidate for Cold Dark Matter.
- Acquires a mass below the QCD scale.
- * Throughout this talk, when we refer to the axion, we implicitly mean the **QCD axion** (i.e. solves the strong CP problem)

2nd Cosmic WISPers School @ Ljubljana, 12.06.24

Pre-vs. Post-Inflationary Scenario

Pre-Inflationary Scenario

PQ broken **before** and **during** inflation

2nd Cosmic WISPers School @ Ljubljana, 12.06.24

Post-Inflationary Scenario

PQ broken after inflation

Pre-vs. Post-Inflationary Scenario

Pre-Inflationary Scenario

PQ broken **before** and **during** inflation

2nd Cosmic WISPers School @ Ljubljana, 12.06.24

PQ broken after inflation

2nd Cosmic WISPers School @ Ljubljana, 12.06.24

String

Post-Infl. PQ brok

- Allows in principle for precise axion mass prediction
 - $\Omega_a h^2 = 0.12 \quad \Rightarrow \quad m_a = ??! \mu \mathrm{eV}$
- Subtlety: Formation of Strings (+ Domain Walls)
 String

O'Hare [2403.17697]

Peccei-Quinn scale, f_a [GeV]

	10 ⁻³	10 ⁻²
	Pre-inflation	
Black hole spin	spin	Models:
	k hole	Lattice/ $\chi(T)$: Petreczky, 20
	Post-inflation	Strings:
	2	Strings+Walls:
		N _{DW} > 1: Kawasaki, 2014 Gorghetto, 2020
2 10	$^{-11}$ 10 ⁻¹⁰ 10 ⁻⁹	10^{-8} 10^{-7} 10^{-6} 10^{-4} 10^{-3} 10^{-2} 10^{-2}
	Ç	CD axion mas, ma [eV]

Cosmological Evolution in the Post-Inflationary Scenario

2nd Cosmic WISPers School @ Ljubljana, 12.06.24

O'Hare+ [2110.11014]

Mathieu Kaltschmidt (CAPA & U. Zaragoza)

6

How to simulate Axion Strings?

discretised on a lattice:

$$\partial_{\tau}^2 \phi - \nabla^2 \phi + \lambda \phi \left(|\phi|^2 - \tau^2 \right) = 0$$

- - String core radius

$$\sim m_r^{-1} \sim f_a^{-1}$$
 (m_r = radial matrix

• Hubble radius

 $\sim H^{-1}$

• Realistic value: $f_a/H_{\rm OCD} \sim 10^{30}$

2nd Cosmic WISPers School @ Ljubljana, 12.06.24

• Solve the classical EOM for a complex scalar field in comoving coordinates,

• **Tricky:** Simulations require proper resolution of two very different length scales.

ass)

$$\rightarrow \log(m_r/H) \sim 70$$

Mathieu Kaltschmidt (CAPA & U. Zaragoza)

7

Jaxions Code

- the axion dark matter field in the early Universe.
- Available on Github: <u>https://github.com/veintemillas/jaxions</u>.

jaxions v0

Mathieu Kaltschmidt,^a Giovanni Pierobon,^b Javier Redondo,^{a,c} Kenichi Saikawa,^{c,d} Alejandro Vaquero^a

^aUniversity of Zaragoza, P. Cerbuna 12, 50009 Zaragoza, Spain

^bSchool of Physics, The University of New South Wales, NSW 2052 Kensington, Sydney, Australia

^cMax-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805 München, Germany

^dInstitute for Theoretical Physics, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan

E-mail: jredondo@unizar.es

Abstract. We describe the jaxions numerical code to simulate the evolution and properties of the axion dark matter field.

2nd Cosmic WISPers School @ Ljubljana, 12.06.24

• State-of-the-art, highly parallelised C++ code to simulate the evolution of

Jaxions-docs	Q Search Jaxions-docs	View on GitHub
HomeInstallationRunning the codePhysicsPython tools		
	Jaxions A grid-based massively parallel code to study the A	Axion field evolution
	View it on GitHub	
	 Overview Axion string simulations to calculate emission spectra String-Wall network simulations with N_{DW} = 1, N_{DW} = 2 Generalisation to axion-like-particles Interface with <u>AxionNyx</u> and <u>gagdet-4</u> Details on the physics of jaxions are found here. 	
	Obtain the code To download the source code from the public repository use:	
	git clone https://github.com/veintemillas/jaxions.git	

The Issue of large log(m, H)

• Evolution of the string density suggests that the energy density of the system is of order

$ho\sim 8\pi\xi\log(m_r/H)H^2f_a^2$

to the typical density $H^2 f_a^2$ at QCD temperatures.

- Does this imply an enhancement of the axion abundance (and therefore of the dark matter mass)?
- We need to know how this energy is partitioned into radiated axions (i.e. the axion spectrum).

This leads to an enhancement by a factor of $\sim \xi \log(m_r/H)$ in comparison

Axion Radiation from Strings

• Differential energy transfer rate:

• Slope is important! Gorghetto+ [1806.04677], Buschmann+ [2108.05368], Saikawa, MK+ [2401.17253]

2nd Cosmic WISPers School @ Ljubljana, 12.06.24

$$\frac{1}{\left(f_{a}H\right)^{2}}\frac{1}{R^{3}}\frac{\partial}{\partial t}\left(R^{4}\frac{\partial\rho_{a}}{\partial k}\right)$$

(*R*: scale factor)

Axion Radiation from Strings

2nd Cosmic WISPers School @ Ljubljana, 12.06.24

What can bias the Results?

- There are several systematic effects, that could explain discrepancies in the literature:
 - Initial conditions
 - Axion field oscillations
 - Discretisation effects

Saikawa, Redondo, Vaquero, MK [2401.17253]

Axion Production: Strings vs. Misalignment

2nd Cosmic WISPers School @ Ljubljana, 12.06.24

Known for "standard" angleaveraged misalignment:

$$\Omega_a h^2 = K \Omega_a^{
m mis} h^2$$

Production Efficiency vs. Axion Mass

2nd Cosmic WISPers School @ Ljubljana, 12.06.24

Axion Dark Matter Mass Prediction

2nd Cosmic WISPers School @ Ljubljana, 12.06.24

Challenging

MADMAX, ALPHA, ORGAN

Summary Part I

- Understanding of the global string dynamics is very important for a precise prediction of the axion dark matter mass in the post-inflationary scenario.
- Our simulations predict 95 $\mu eV \leq m_a \leq 450 \mu eV$.
- Fast developments in recent simulations allow us to have a better understanding, albeit serious discrepancies.
- There are several systematic effects that could bias the result, that could explain these discrepancies:
 - Initial conditions
 - Axion field oscillations
 - Discretisation effects
- Further improvement in the dynamical range would be helpful to be sure of the extrapolation.

2nd Cosmic WISPers School @ Ljubljana, 12.06.24

Towards the Continuum Limit of Global Loop Decays

Departamento de Física Teórica **Universidad** Zaragoza

Centro de Astropartículas y Física de Altas Energías Universidad Zaragoza

If time allows

ongoing project(s) with J. Redondo, I. Y. Rybak and A. Drew

String Dynamics

• (Local) String dynamics governed by the **Nambu-Goto** action:

$$S_{
m NG}=\mu_0\int{
m d}^2\sigma\sqrt{-h}~~{
m with}~h={
m det}~(h)$$
Nambu (1970), Goto (1971)

• For **Global Strings**, couple to antisymmetric **Kalb-Ramond** field:

$$S_{
m KR} = S_{
m NG} - rac{1}{6}\int {
m d}^4 x F^{\mulphaeta} F_{\mulphaeta} + 2\pi f_a \int {
m d}^2 \sigma B_{lphaeta} \partial_a X^lpha \partial_b X^eta \epsilon^{ab}$$

Kalb & Ramond (1974), Dabholkhar & Quashnock (1990)

$$f_A \partial_\mu heta = rac{1}{6} \epsilon_{\mu
ulphaeta} F^{
ulphaeta}$$

2nd Cosmic WISPers School @ Ljubljana, 12.06.24

• Can be used to compute the axion field around strings (in close analogy to EM):

e.g. Fleury & Moore [1509.00026]

Constructing the Axion Field around Strings

• Contribution of a short, straight section of the string to the "axionic B-field": $abla heta = K \int d\sigma \cdot$

• Calculate links to construct the axion field in the full plane:

$$heta_{\mathbf{x}+\mathbf{d}x} - heta_{\mathbf{x}} = \int_{x}^{x+dx} d^3 \mathbf{x} \cdot
abla heta = -rac{1}{2} \int_{x}^{x+dx} d^3 \mathbf{x} \cdot \int d\sigma rac{(\mathbf{x}-\mathbf{X}(\sigma)) imes \mathbf{X}'}{|\mathbf{x}-\mathbf{X}(\sigma)|^3}$$

2nd Cosmic WISPers School @ Ljubljana, 12.06.24

$$\frac{(\mathbf{x} - \mathbf{X}(\sigma)) \times \mathbf{X}'}{|\mathbf{x} - \mathbf{X}(\sigma)|^3}$$

Biot-Savard law (Link)

Towards the Continuum Limit

2nd Cosmic WISPers School @ Ljubljana, 12.06.24

Towards the Continuum Limit

2nd Cosmic WISPers School @ Ljubljana, 12.06.24

• Perform many simulations, test convergence

Towards the Radiation Spectrum of Individual Strings

2nd Cosmic WISPers School @ Ljubljana, 12.06.24

$$= R/L = 0.24, m_s a = 2. \\ R/L = 0.20, m_s a = 1. \\ R/L = 0.17, m_s a = 1. \\ R/L = 0.15, m_s a = 1. \\ R/L = 0.14, m_s a = 1. \\ R/L = 0.13, m_s a = 1. \\ R/L = 0.12, m_s a = 1. \\ R/L = 0.12, m_s a = 0. \\ R/L = 0.11, m_s a = 0. \\ R/L = 0.10, m_s a = 0. \\ R/L = 0.10, m_s a = 0. \\ R/L = 0.09, m_s a = 0. \\ R/L = 0.06, m_s a = 0. \\ R/L = 0.06, m_s a = 0. \\ \end{bmatrix}$$

New Insights into the Network Spectrum?

- try to obtain their radiation spectrum.
- (STSM with Amelia Drew in Cambridge)
- in more detail.

Jaxions ICs in Chombo

2nd Cosmic WISPers School @ Ljubljana, 12.06.24

• We are running lots of simulations with different individual string configurations and

• We use both static-grid and Adaptive Mesh Refinement simulations and try to directly sync and compare results from different codes to better understand the discrepancies.

• The goal is to understand the contributions from the constituents of the string network

Visualisation with ParaView

axioNyx AMR Code

New Insights into the Network Spectrum?

- try to obtain their radiation spectrum.
- (STSM with Amelia Drew in Cambridge)
- in more detail.

2nd Cosmic WISPers School @ Ljubljana, 12.06.24

• We are running lots of simulations with different individual string configurations and

• We use both static-grid and Adaptive Mesh Refinement simulations and try to directly sync and compare results from different codes to better understand the discrepancies.

• The goal is to understand the contributions from the constituents of the string network

Backup Slides

Departamento de Física Teórica Universidad Zaragoza

Centro de Astropartículas y Física de Altas Energías **Universidad** Zaragoza

Departamento de Física Teórica Universidad Zaragoza

Centro de Astropartículas y Física de Altas Energías Universidad Zaragoza

General

N_{DW} > 1: Axion Domain Wall Problem

- Axion cycles around $N_{\rm DW}$ times between $(-\pi, \pi)$
- In general we get more axions from wall decay, so preferred m_a is higher.
- Phenomenologically difficult. Domain wall network gets stuck and overwhelms the cosmic energy density.
- Must have some preferred minimum!

$$V(heta) pprox -\chi(T)\cos(N_{
m DW} heta)$$

2nd Cosmic WISPers School @ Ljubljana, 12.06.24

(e) $N_{\rm DW} = 6$ Hiramatsu+ [1207.3166]

More details on the recent Paper

Departamento de Física Teórica Universidad Zaragoza

Centro de Astropartículas y Física de Altas Energías Universidad Zaragoza

Simulation Overview

- More than 1500 simulations performed at
 - RAVEN and COBRA supercomputers at Max Planck Computing and Data Facility (MPCDF)
 - SQUID supercomputer at Cybermedia Center, Osaka University
- Box sizes of up to 11.264³ (256 CPU nodes)

$\overline{\text{Type}^a}$	Grid size	Laplacian	Final time	$\ln(m_r/H)$	Parameter	Numb
51	(N^3)	1	$({ au_f}/L)$	at $ au_f$		simula
Physical	11264^3	4-neighbours	0.625	9.08	$\bar{\lambda} = 195799$	20
Physical	4096^{3}	1-neighbour	0.625	8.07	$ar{\lambda}=25890.8$	30
Physical	4096^{3}	2-neighbours	0.625	8.07	$ar{\lambda}=25890.8$	30
Physical	4096^{3}	3-neighbours	0.625	8.07	$ar{\lambda}=25890.8$	30
Physical	4096^{3}	4-neighbours	0.625	8.07	$ar{\lambda}=25890.8$	30
Physical	3072^{3}	4-neighbours	0.5	7.34	$\bar{\lambda} = 14563.6$	30
Physical	3072^{3}	4-neighbours	0.5	7.74	$ar{\lambda} = 32768$	30
Physical	3072^{3}	4-neighbours	0.5	8.08	$ar{\lambda}=64225.3$	30
Physical	3072^{3}	4-neighbours	0.5	8.37	$\bar{\lambda} = 114178$	30
Physical	2048^{3}	4-neighbours	0.55	7.12	$ar{\lambda} = 6400$	30×30
Physical	1024^{3}	4-neighbours	0.5	6.23	$ar{\lambda} = 1600$	$30{ imes}4^c$
Physical	3072^{3}	4-neighbours	0.458367	7.5	$ar{\lambda}=28571.2$	30
Physical	2560^{3}	4-neighbours	0.550042	7.5	$ar{\lambda} = 13778.5$	30
Physical	2048^{3}	4-neighbours	0.687552	7.5	$ar{\lambda}=5643.68$	30
Physical	1536^{3}	4-neighbours	0.916735	7.5	$ar{\lambda}=1785.69$	30
Physical	1024^{3}	4-neighbours	1.3751	7.5	$ar{\lambda} = 352.73$	30
PRS	8192^{3}	4-neighbours	0.55	6.80	$m_r a = 0.2$	20
PRS	8192^{3}	4-neighbours	0.55	7.21	$m_r a = 0.3$	20
PRS	8192^{3}	4-neighbours	0.55	7.72	$m_r a = 0.5$	20
PRS	8192^{3}	4-neighbours	0.55	8.06	$m_r a = 0.7$	20
PRS	8192^{3}	4-neighbours	0.55	8.41	$m_r a = 1.0$	20
PRS	8192^3	4-neighbours	0.55	8.82	$m_r a = 1.5$	20
PRS	4096^{3}	4-neighbours	0.55	7.72	$m_r a = 1.0$	30
PRS	2048^{3}	4-neighbours	0.55	7.03	$m_r a = 1.0$	30
PRS	1024^{3}	4-neighbours	0.55	6.33	$m_r a = 1.0$	30
PRS	2048^{3}	4-neighbours	0.5	6.93	$m_{r}a = 1.0$	1

Logarithmic Growth of String Density

• String density parametrised as $\xi = \frac{l_{\rm string} t^2}{\gamma} = \frac{\rho_{\rm string} t^2}{\gamma}$

• Most recent simulations observe increase in ξ .

Kawasaki+ [1806.05566]

2nd Cosmic WISPers School @ Ljubljana, 12.06.24

Gorghetto+ [2007.04990]

Hindmarsh+ [1908.03522]

Evolution of String Density

2nd Cosmic WISPers School @ Ljubljana, 12.06.24

• Model evolution of string network density: $\frac{d\xi}{dt} = \frac{C(x)}{t}(\xi_c(\ell(t)) - \xi(t))$ Klaer & Moore [1912.08058]

Two reasonable fits to the data:

 $\xi^{
m lin} = -0.19(3) + 0.205(7) \log(m_r/H)$ $\xi^{
m sat} = rac{2.5(1.4) + 0.23(6) \log(m_r/H)}{1 + 0.02(4) \log(m_r/H)}$

with

 $\xi^{
m lin}(
m log=70) \sim 13.8(5)$ $\xi^{
m sat}(\log=70)\sim 7(3)$

Existence of an Attractor?

- Convergence behaviour is best observed in radial field spectra.
- Saxions are produced at $k/R \sim m_r$
- Look for point that is least sensitive to ICs.

2nd Cosmic WISPers School @ Ljubljana, 12.06.24

Evolution of String Density

Logarithmic growth and "attractor" behaviour compatible with previous findings.

2nd Cosmic WISPers School @ Ljubljana, 12.06.24

Fleury & Moore [1509.00026] Gorghetto+ [1806.04677; 2007.04990] Kawasaki+ [1806.05566] Hindmarsh+ [1908.03522] Buschmann+ [2108.05368]

Axion Mode Evolution

$$\mathcal{F} = rac{1}{\left(f_a H
ight)^2} rac{1}{R^3} rac{\partial}{\partial t} \left(R^4 rac{\partial
ho_a}{\partial k}
ight)$$

• Contains oscillating components with frequency $\sim 2k$, interpreted as axion field oscillations after the horizon entry or production from the radial field.

2nd Cosmic WISPers School @ Ljubljana, 12.06.24

• To calculate the differential spectrum, we need to know the time evolution of one mode:

Calculation of the Instantaneous Spectrum

- mode evolution data.

2nd Cosmic WISPers School @ Ljubljana, 12.06.24

• Simple finite difference leads to a lot of contaminations from axion field oscillations.

• One can reduce them by applying a filter to remove high frequency components in the

Axion Field Oscillations

- The oscillations in the IR modes have an impact on the measurement of *q*.
- The effect can be alleviated by taking a broader range for the fit.

2nd Cosmic WISPers School @ Ljubljana, 12.06.24

Initial Conditions

- Differences in the initial string density affect the slope of the radiation spectrum.

2nd Cosmic WISPers School @ Ljubljana, 12.06.24

• Overdense (underdense) initial conditions could bias the estimation of *q* towards lower (higher) values.

Finite Volume Effects

- Fix $m_r a = 1.0$ and vary ratio of phys. box size *RL* to Hubble radius H^{-1} at $\ln(m_r/H) = 7$
- Results converge for $HRL \gtrsim 1.4$ (or $\tau/L \lesssim 0.7$)
- We terminate the simulations at $\tau/L \leq 0.625$

Should **not** be a problem!

Departamento de Física Teórica Universidad Zaragoza

Centro de Astropartículas y Física de Altas Energías **Universidad** Zaragoza

Technicalities

Try to mitigate the contamination masks to to compute derivatives:

$$\dot{X}^{ ext{mask}}\left(oldsymbol{x}
ight)=$$

Simple choice is to use the fact the inside the core.

$$M(x) = \left(\cdot \right)$$

2nd Cosmic WISPers School @ Ljubljana, 12.06.24

• Try to mitigate the contamination from the string core, we can introduce

 $M(\boldsymbol{x})\dot{X}(\boldsymbol{x})$

• Simple choice is to use the fact that the value of the radial field $|\phi|$ is zero

 $\left(\frac{|\phi(x)|}{f_a} \right)^{\kappa}$

2nd Cosmic WISPers School @ Ljubljana, 12.06.24

2nd Cosmic WISPers School @ Ljubljana, 12.06.24

Mathieu Kaltschmidt (CAPA & U. Zaragoza)

42

2nd Cosmic WISPers School @ Ljubljana, 12.06.24

Discretisation of the Laplacian

$$\left(
abla^2 \phi
ight)_{m{i}} = rac{1}{\delta^2} \sum_{u=x,y,z} \sum_{n=1}^{N_g} C_n (\phi_{m{i}+nm{n}_u} + \phi_{m{i}-nm{n}_u} - 2\phi_{m{i}}) egin{smallmatrix} & & & \ & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ &$$

- Spectrum **underestimated** at intermediate momenta for smaller N_{g}
- Observation of peak-like structure in the UV, height related to N_{g}

2nd Cosmic WISPers School @ Ljubljana, 12.06.24

Mathieu Kaltschmidt (CAPA & U. Zaragoza)

 $\ln(m_r/H) = 7.0$

Departamento de Física Teórica **Universidad** Zaragoza

Centro de Astropartículas y Física de Altas Energías **Universidad** Zaragoza

Dynamical Range (AMR)

How can we reach a larger dynamical range?

- Brute Force: Larger simulations on more powerful supercomputers
- **Better:** Use the given computational power more efficiently: **AMR!**
- In addition: Study effective models that allow us to study the network dynamics at high tension (Moore strings) with 2+3 extra degrees of freedom (two additional complex scalars + one vector field)

2nd Cosmic WISPers School @ Ljubljana, 12.06.24

Klaer, Moore [1707.05566, 1708.07521, 1912.08058]

Adaptive Mesh Refinement (AMR)

- Idea: Focus computational power on specific parts of the grid
- Nowadays widely used in cosmological simulation codes, numerical relativity and in axion string simulations
- Current codes mostly based on AMReX: https://amrex-codes.github.io/amrex/

Drew & Shellard [<u>1910.01718</u>] "GRChombo"

2nd Cosmic WISPers School @ Ljubljana, 12.06.24

Schwabe+ [2007.08256] "axioNyx"

Adaptive Mesh Refinement (AMR)

- Movie not available in PDF format -

Drew & Shellard [1910.01718] "GRChombo"

2nd Cosmic WISPers School @ Ljubljana, 12.06.24

 $3D \rightarrow 2D$ projection of axion energy density a^2 scale separation $\log m_r/H \sim 0.3$ conformal time $\eta \sim 1$

des,

he grid

200.0 Hubble lengths

"sledgehamr"

Mathieu Kaltschmidt (CAPA & U. Zaragoza)

Buschmann [2404.02950]

Schwabe+ [2007.08256]

Potential Improvement with AMR

- - $RAM = 2 \times 2 \times 4 bytes \times$
- to balance the RAM between the root and the refined grids
- Suggests time-dependent number of refinement levels:.
 - $\ell+7\simeq \log_2(N_0^3/(\pi N_p$
- Results in log ~ 13,16,18 for base grids of $N_0 = 2048$, 4096, 8192 with $\ell = 9, 11, 13$. In practice not so trivial ...

• We can estimate the RAM needed to perform an AMR complex scalar simulation:

$$imes \left(N_0^3 + rac{\pi n_c n_r^2}{4} rac{r^\ell - 1}{r-1} N_p
ight) \quad {N_p = K_p - 1 \over \mathsf{Fle}}$$

 $= oldsymbol{\xi} imes 6 {\left(L/(N_0 au)
ight)}^2 imes N_0^3 \, .$ ury & Moore [1509.00026]

• This takes into account, that we refine only around the strings and that we want

$$(p_0)) = \log_2(N_0^2 \tau^2 / (\pi 6 \xi L^2))$$

Potential Improvement with AMR

2nd Cosmic WISPers School @ Ljubljana, 12.06.24

