From vacuum decay to gravitational waves

Based on: A. Ivanov, MM, M. Nemevšek, L. Ubaldi: <u>10.1007/JHEP03(2022)209</u> MM, M. Nemevšek, Y. Shoji, L. Ubaldi: <u>2404.17632</u> work in progress with V. Brdar, M.Finetti, A. Morais, M. Nemevšek

MARCO MATTEINI

2ND TRAINING SCHOOL

COST ACTION COSMIC WISPERS (CA21106)

LJUBLJANA, 10-14 JUNE 2024

marco.matteini@ijs.si

BASICS OF VACUUM DECAY

- Easiest example in field theory: single scalar ϕ
- Metastability of the false vacuum
- Decay to the true vacuum (tunneling under the barrier)
- 1° order phase transition: Bubble nucleation
- Bubble expansion: conversion of false vacuum to true vacuum

[Hindmarsh, Lüben, Lumma, Pauly, 2008.09136]

• 1-loop decay rate (per unit volume) for Euclidean dimension D

$$\frac{\Gamma}{\mathcal{V}} = \left(\frac{S_R}{2\pi\hbar} \right)^{\frac{D}{2}} \left| \frac{\det'\mathcal{O}}{\det\mathcal{O}_{\rm FV}} \right|^{-\frac{1}{2}} e^{-\frac{S_R}{\hbar} - S_{\rm ct}} (1 + \mathcal{O}(\hbar))$$
fluctuations
classical solution («bounce»)

GWs FROM PHASE TRANSITIONS

- Early universe: 1° order cosmological PT is a sign of BSM physics!
- Signature: Gravitational Waves. Stochastic background: many uncorrelated, unresolved sources

GWs FROM PHASE TRANSITIONS

- Early universe: 1° order cosmological PT is a sign of BSM physics!
- Signature: Gravitational Waves. Stochastic background: many uncorrelated, unresolved sources
- Sources of GWs from PTs:
 - Bubble collisions
 - Sound waves in the plasma
 - Turbulence in the plasma

[Weir, <u>1705.01783</u>]

GWs FROM PHASE TRANSITIONS

- Early universe: 1° order cosmological PT is a sign of BSM physics!
- Signature: Gravitational Waves. Stochastic background: many uncorrelated, unresolved sources
- Sources of GWs from PTs:
 - Bubble collisions
 - Sound waves in the plasma
 - Turbulence in the plasma
- Relevant temperatures:
 - Nucleation: 1 bubble per Hubble volume
 - Percolation: connected region of TV phase
- Phase transition parameters:
 - Strength: energy released by the vacuum transition normalized to the radiation energy density
 - Duration: time derivative of $\boldsymbol{\Gamma}$ at percolation

[Weir, <u>1705.01783</u>]

• Very early universe opaque to light, but transparent to GWs!

THIN & THICK WALL

• Dimensionless quantities
$$\varphi_C \equiv \frac{2\eta}{m^2} \phi_C$$
 , $\varepsilon_{\alpha} \equiv 1 - \lambda_C \frac{m^2}{4n^2}$

THIN & THICK WALL

EUCLIDEAN ACTION

Works well away from thin wall!

EARLY UNIVERSE APPLICATION

• Example: cosmic fluid - order parameter field model (often adopted for numerical simulations)

$$V(\phi, T) = \frac{1}{2}\gamma(T^2 - T_0^2)\phi^2 - \frac{1}{3}AT\phi^3 + \frac{1}{4}\lambda\phi^4$$

• Phase structure: Degenerate minima at $T_C = \frac{\sqrt{9\gamma\lambda}}{\sqrt{9\gamma\lambda - 2A^2}} T_0$, inflection point at T_0

EARLY UNIVERSE APPLICATION

• Example: cosmic fluid - order parameter field model (often adopted for numerical simulations)

$$V(\phi,T) = \frac{1}{2}\gamma(T^2 - T_0^2)\phi^2 - \frac{1}{3}AT\phi^3 + \frac{1}{4}\lambda\phi^4$$

• Phase structure: Degenerate minima at $T_C = \frac{\sqrt{9\gamma\lambda}}{\sqrt{9\gamma\lambda - 2A^2}} T_0$, inflection point at T_0

- Obtain nucleation & percolation temperatures
- Obtain PT parameters

From <u>1504.03291</u> :

ndBounce	γ	A	λ	$T_0 \; [\text{GeV}]$	$T_c \; [\text{GeV}]$	T_N [GeV]	α_{T_N}
Analytics	1/18	$\sqrt{10}/72$	10/648	140	$\sqrt{2}T_0 = 197.99$	$0.86 T_C = 170.27$	$\alpha_N = 0.01$

From our analytical action:

γ	A	λ	$T_0 [{ m GeV}]$	$T_c \; [\text{GeV}]$	$T_N^{(S/T)}$ [GeV]	$T_N^{(\Gamma/H)}$ [GeV]	α_{T_N}
1/18	$\sqrt{10}/72$	10/648	140	197.99	170.04	170.22	0.0104

SUMMARY AND OUTLOOK

- Detection of gravitational waves opens up a new window to study the very early universe
- Cosmological phase transitions are a source of GWs and a clear sign of BSM physics
- The thin wall approximation works in a wider range of parameter space than previously thought
- Analytical results can be used for phenomenologically relevant scenarios
- Apply our results to phase transitions e.g. in dark sectors

Thank you!

MARCO MATTEINI

2ND TRAINING SCHOOL

Jožef Stefan Institute University of Ljubljana Faculty of Mathematics and Physics COST ACTION COSMIC WISPERS (CA21106)

LJUBLJANA, 10-14 JUNE 2024

marco.matteini@ijs.si

DIFFERENT ORDERS OF THE EUCLIDEAN ACTION

FIG. 2. Absolute values of each term of $S_C^{(10)}(\varepsilon_{\alpha})$ in (22) for $\varepsilon_{\alpha} = 0.7, 0.8, 0.9, 1$. The left panel is for D = 3, the right for D = 4. The horizontal lines indicate the minimum values.

NUCLEATION AND PERCOLATION

• Nulceation temperature T_n

$$\int_{t_c}^{t_n} dt \, \frac{\Gamma(t)}{H(t)^3} = \int_{T_n}^{T_c} \frac{dT}{T} \frac{\Gamma(T)}{H(T)^4} = 1$$

Approximate criterion for fast transitions

$$\frac{S_3}{T_n} \approx 4 \log\left(\frac{T_n}{H}\right)$$

• Percolation temperature T_p (at least 34% of the comoving volume has been converted to the TV)

$$I(t) = \frac{4\pi}{3} \int_{t_c}^t \mathrm{d}t' \,\Gamma(t') \,a(t')^3 \,r(t,t')^3 \longrightarrow I(T) = \frac{4\pi v_w}{3} \int_T^{T_c} \mathrm{d}T' \,\frac{\Gamma(T')}{H(T') \,T'^4} \left(\int_T^{T'} \frac{\mathrm{d}T''}{H(T'')}\right)^3$$

Stronger requirement: decreasing FV volume

$$\frac{1}{V_{\text{false}}} \frac{\mathrm{d}V_{\text{false}}}{\mathrm{d}t} = 3H(t) - \frac{\mathrm{d}I(t)}{\mathrm{d}t} = H(T)\left(3 + T\frac{\mathrm{d}I(T)}{\mathrm{d}T}\right) < 0$$

PT STRENGTH AND DURATION

• Different possible definitions for the strength Given $\epsilon(\phi, T) = 3aT^4 + V(\phi, T) - T\frac{\partial V}{\partial T}, \quad p = aT^4 - V(\phi, T), \quad \theta = \frac{\epsilon - 3p}{4}, \quad w = \epsilon + p$ $\alpha_{\theta} = \frac{\theta(\phi_s, T) - \theta(\phi_b, T)}{3aT^4} \Big|_{T_N} \qquad \alpha_N = \frac{w(\phi_s, T) - w(\phi_b, T)}{3aT^4} \Big|_{T_N}$ Latent heat density $\left[V(\phi_{\rm FV}, T) - V(\phi_{\rm TV}, T) - \frac{T}{4} \left(\frac{\partial V}{\partial T}(\phi_{\rm FV}, T) - \frac{\partial V}{\partial T}(\phi_{\rm TV}, T)\right)\right]$

• Inverse duration
$$\beta = \frac{\mathrm{d}}{\mathrm{d}T} \left[\log \Gamma(T)\right]_{T=T_p}$$

GW PRODUCTION FROM PTs

- Simulations for bubble expansion and collision. 3 stages of GW production:
- Bubbles collision and merger: short duration (usually subdominant, unless there is supercooling);
- Acoustic stage: shells of fluid kinetic energy continue to expand into the plasma as sound waves, overlap and source gravitational waves (believed to be dominant);
- Turbulent phase: non-linearity in the fluid equations becomes important, the previous phases might produce turbulence (not well-understood).
- Example of simulation:

[Weir, <u>1705.01783</u>]

GRAVITATIONAL WAVES POWER SPECTRUM

[LISA Cosmology Working Group, <u>1910.13125</u>]

• Potential & eq. of state:
$$V(\phi, T) = \frac{1}{2} \left(T^2 - T_0^2\right) \gamma \phi^2 - \frac{1}{3} AT \phi^3 + \frac{1}{4} \lambda \phi^4$$
, $\epsilon(T, \phi) = 3aT^4 + V(\phi, T) - T \frac{\partial V}{\partial T}$
• Energy-momentum tensor: $p(T, \phi) = aT^4 - V(\phi, T)$

• Energy-momentum tensor:

$$T^{\mu\nu} = \partial^{\mu}\phi\partial^{\nu}\phi - \frac{1}{2}g^{\mu\nu}(\partial\phi)^{2} + [\epsilon+p]U^{\mu}U^{\nu} + g^{\mu\nu}p$$

$$\begin{bmatrix} [\partial_{\mu}T^{\mu\nu}]_{\text{field}} = (\partial_{\mu}\partial^{\mu}\phi)\partial^{\nu}\phi - \frac{\partial V}{\partial\phi}\partial^{\nu}\phi = \delta^{\nu} \\ [\partial_{\mu}T^{\mu\nu}]_{\text{fluid}} = \partial_{\mu}[(\epsilon+p)U^{\mu}U^{\nu}] - \partial^{\nu}p + \frac{\partial V}{\partial\phi}\partial^{\nu}\phi = -\delta^{\nu} \end{bmatrix} \longleftarrow \delta^{\nu} = \eta U^{\mu}\partial_{\mu}\phi\partial^{\nu}\phi$$

• Numerical simulations:
$$U^{i} = WV^{i}$$
, $E = W\epsilon$, $Z_{i} = W(\epsilon + p)U_{i}$

$$\begin{bmatrix}
-\ddot{\phi} + \nabla^{2}\phi - \frac{\partial V}{\partial \phi} = \eta W(\dot{\phi} + V^{i}\partial_{i}\phi) & \text{GWs:} \\
\dot{E} + \partial_{i}(EV^{i}) + p[\dot{W} + \partial_{i}(WV^{i})] - \frac{\partial V}{\partial \phi}W(\dot{\phi} + V^{i}\partial_{i}\phi) & \longrightarrow \\
= \eta W^{2}(\dot{\phi} + V^{i}\partial_{i}\phi)^{2} & \mu_{ij}(\mathbf{k}, t) = (16\pi G)\lambda_{ij,kl}(\mathbf{k}) \int_{0}^{t} dt' \frac{\sin[k(t - t')]}{k} \tau_{kl}(\mathbf{k}, t') \\
\dot{Z}_{i} + \partial_{j}(Z_{i}V^{j}) + \partial_{i}p + \frac{\partial V}{\partial \phi}\partial_{i}\phi = -\eta W(\dot{\phi} + V^{j}\partial_{j}\phi)\partial_{i}\phi
\end{bmatrix}$$

LISA MISSION

- Laser Interferometer Space Antenna
- ESA expected to launch in 2030s
- 3 satellites orbiting Earth, arms of 2.5M km
- Lasers and photodetectors which detect small changes in separation through time delays of signals
- Most sensitive in the range $10^{-3} 10^{-2} Hz$

[[]Amaro-Seoane et al., <u>1702.00786</u>]

DECIGO MISSION

- Deci-hertz Interferometer Gravitational Wave Observatory
- Japanese project expected to launch in 2030s
- Four clusters of observatories placed in the heliocentric orbit.
- Each cluster: three spacecraft, which form three Fabry-Perot Michelson interferometers with an arm length of 1,000 km
- Most sensitive in the range 0.1 10 Hz

Thruster-

Drag-free spacecraft

AN EXAMPLE OF SIGNAL

2ND TRAINING SCHOOL CA21106 - LJUBLJANA, 10-14 JUNE 2024