Dark matter detection with superconducting qubit in RADES experiment

Yikun Gu CAPA, University of Zaragoza

2nd Training School COST Action COSMIC WISPers (CA21106)

13/06/2024 Ljubljana

Haloscope

Haloscope at babyIAXO

CAST-RADES

Quantum sensing

From linear amplification (LA) to counting single photons (SPD)

Minimum detectable power vs. Temperature

Quantum sensing

Dixit et al. Searching for dark matter with a superconducting qubit, Phys. Rev. Lett. 126

6

Qubit design and measurements

Storage cavity: ~ 5 GHz Readout cavity: ~ 7 GHz

Transmons fabricated from NIST

Installation and testing on the way...

For axion detection

With magnetic field

 Magnetic field resilient superconducting quantum circuits with granular aluminium, A. Théry et al. submitted to PRL'23 (PI2)

Solenoid magnet simulation

Backup

Haloscope

Haloscope

Measurements every 0.7°

Simulation

Independent measurement with 30 parity measurements

In total 15141 independent measurements. 846 us each measurement. \rightarrow 12,81s with 65% duty cycle = 8,33 s

Q4

```
Qubit Freq = 4.574 GHz
E_J = 13.398 \text{ GHz}
E_C: 189.946 MHz
E_J/E_C: 70.538
Charge Dispersion T2: 3109.193 us
Qubit Anharmonicity = 219.42 MHz
2XChi storage = 5.899 MHz
g storage = 31.132 MHz
storage Freq = 4.974 GHz
storage Delta = 0.4 GHz
2XChi readout = 0.911 MHz
g readout = 103.189 MHz
Readout Freq = 6.951 GHz
Readout Delta = 2.377 GHz
Readout Linewidth = 0.232 MHz
Purcell T1 estimate = 364.469 us
```

Qubit antenna length 1.0mm,*0.3mm for both, gap0.24mm

12.2nH 3.5fF

Q1

```
Qubit Freq = 4.486 GHz
E_J = 12.574 \text{ GHz}
E_C: 202.675 MHz
E J/E C: 62.04
Charge Dispersion T2: 781.188 us
Qubit Anharmonicity = 227.207 MHz
2XChi storage = 4.85 MHz
g storage = 36.707 MHz
storage Freq = 4.973 GHz
storage Delta = 0.487 GHz
2XChi readout = 0.924 MHz
g readout = 105.875 MHz
Readout Freq = 6.951 GHz
Readout Delta = 2.465 GHz
Readout Linewidth = 0.232 MHz
Purcell T1 estimate = 372.238 us
```

Qubit antenna length 1.0mm,*0.3mm for both, gap0.3mm

13nH 3.5fF

*Akash V. Dixit, et.al., Phys. Rev. Lett. 126, 141302 (2021)

Multislice: Electric field norm (V/m) Arrow Volume:

ERC DarkQuantum

200-500 MHz

8-18 GHz