
Non-resonant Anomaly Detection
with background extrapolation

Kehang Bai, Radha Mastandrea, Ben Nachman

Physics Seminar, University of Ljubljana, 12/21/2023

Based on arXiv:2311.12924

https://arxiv.org/abs/2311.12924


Kehang Bai

The need for signal-agnostic searches in hadronic final states

ATLAS hadronic resonance search summary.

● Only an interpretation in a specific Z’ model.

● There are many more models, each with a large 

parameter space. 

It is impossible to scan all models and phase space.

Model-independent searches are complementary, 

➔ but also necessary!

ML-based Anomaly Detection (AD) provides us with 

more sophisticated tools for model-independent searches.
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ATLAS exotics results

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CombinedSummaryPlots/EXOTICS/
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AD in particle physics  looks for “outliers” or “overdensities” in the SM background without model assumptions.

Requirements for complete anomaly detection 
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Successful background estimation Sensitive to signal

Overdensity AD example:

Classifying Anomalies THrough Outer Density 
Estimation (CATHODE) [2109.00546]

Weakly-supervised.

https://arxiv.org/abs/2109.00546
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Many proposals and all data results have targeted resonant signals by interpolating background from a sideband.

Existing methods for background interpolation: 

● MC-to-data reweighting (SALAD [2001.05001] )
● Density estimation using generative models (CATHODE [2109.00546])
● MC-to-data feature morphing (FETA [2212.11285])
● Other variations…

Background interpolation
from sideband Resonant signal

Current landscape of overdensity anomaly detection
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https://arxiv.org/abs/2001.05001
https://arxiv.org/abs/2109.00546
https://arxiv.org/abs/2212.11285
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➔ A binary classifier for reweighting

Neural networks (  f(x)  ) can learn to approximate the likelihood ratio.

Available technologies
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➔ A binary classifier for reweighting

Neural networks (  f(x)  ) can learn to approximate the likelihood ratio.

➔ Normalizing flow for generating and morphing

Available technologies
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Normalizing direction 
Generative direction 

Z = f(Y)

Y = f -1 (Z)

Class 1

Class 0
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Background extrapolation
from one side non-resonant signal

This proposal

7

control region 
(CR)

signal region 
(SR)

m

a.u.



Kehang Bai

Non–resonant signals

Case 1: large missing energy in the final states of a resonant production. Example here: semi-visible jets from Z’.

Case 2: off-shell effects from heavy particles. Example: modifications to SMEFT coefficients, but not explored here.
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mZ’ = 4 TeV

mdark-quark = 250 GeV

diagram: 2006.08639

Missing energy

rinv= stable/total #hadrons

mdark-meson = 500 GeV

https://arxiv.org/pdf/2006.08639.pdf
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➔ Why don’t we just extrapolate with existing methods? 

In principle we could directly use MC-to-data reweighting.

However, density estimation with generative models are less robust without a sideband.

The idea
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m m m

➊ Learn P(x|m) in CR. ➋ Predict P(x) in SR. ➌ Classification in 
SR
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➔ Combine generative models and ML reweighting!

Reweight conditional variables from MC to data in SR.

m m m

The idea
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➊ Learn P(x|m) in CR. ➋ Predict P(x) in SR
      with reweighting.

➌ Classification in 
SR
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Extrapolate the background using Reweight, Generate, and Morph methods.

First, let’s take a look at a toy example

Context variables m1 and m2, used to define SR & CR.
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Signal Region (SR)

Control Region (CR)

A feature variable x.
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Anomaly detection methods

● Reweight
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Assumption:

MC → data in CR

MC → data in SR

* This plot is used for illustration purpose only, not the final result.

Reweighted MC vs data for the toy background
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Anomaly detection methods

● Generate/Morph
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➌ Apply the weight function w(m) .

True vs predicted toy background

➊ Learn P(x|m) in CR.

➋ Predict P(x) in SR 
using P(m) from MC.

* This plot is used for illustration purpose only, not the final result.

Generate: 
sampling data-like background events 
from a random distribution.

Morph: 
sampling data-like background events 
form a simulation of background 
distribution (MC).



Kehang Bai

Physics example

Context variables: HT &MET

14

SR

Feature variables: mjj & N-subjettiness



Kehang Bai

We see closures in CR, and agreements in SR 
for the 5 feature variables.

➔ Prediction matched truth.
➔ Minimum mis-modeling and 

false-positives.

Background estimation results (no signal)

15

Receiver Operating Characteristic (ROC)
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AD performance with injected signal events
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m

Signal 

Background

BackgroundData

Classification without labels (CWoLa) 
[1708.02949]

➌ Classification in SR

https://arxiv.org/abs/1708.02949
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AD performance with injected signal events

17

m

Signal 

Background

➌ Classification in SR Significance Improvement Characteristic (SIC)

* This plot is used for illustration purpose only, 
not the final result.
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AD performance over increasing signal injections
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Maximum significance 
improvement

signal-to-background ratio

Signal significance
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AD performance over increasing signal injections
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Discovery threshold

➔ A 1-2 sigma signal significance is enhanced to reach the discover threshold of 5 sigma.
➔ Many caveats still!
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How robust is this performance?

One needs to test these AD methods against many different signal models.

● Tested on lower Z’ mass (2 and 3 TeV).

● Found that the performance is worse for lower mass Z’ signals.

Did we make the problem easier by choosing a background simulation that looks similar to the “real” background?

● Repeated the analysis with a hand-tuned simulation daset.

● Found that the performance are compatible with the current simulation.

* This discussion will be included in the V2 paper. Stay tuned!
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A few words on extensions to RPV SUSY

A full Run2 ATLAS search for R-parity-violating Supersymmetry (RPV SUSY) in hadronic final states is public! 

➔ My first analysis as a graduate student :)
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A few words on extensions to RPV SUSY

The analysis reconstructs the gluino mass with a jet-matching NN, additional to a cut & count approach.

The signal is however not so resonant! What about a non-resonant AD for a multi-jet search? ;)
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Conclusions

● This is the first proposal of non-resonant anomaly detection using extrapolation methods!

● There are many interesting problems associated with extrapolation that are worth exploring in the future.

● We encourage future work to make it possible to look for non-resonant BSM signals!

Get in touch: kbai@uoregon.edu
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Thank you!
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Back up
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Zero-signal injection

SIC and ROC AUCs at zero-signal injection, showing a non-biased background estimation.

➔ Low false-positives.
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ROC AUCs (area-under-curves)
compared with true random
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Other signal parameters

Lower Z’ masses:

● mZ′ = 2 TeV, mπD = mρD = ΛD = 200 GeV, and mqD = 100 GeV.
● mZ′ = 3 TeV, mπD = mρD = ΛD = 300 GeV, and mqD = 150 GeV.
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Other signal parameters

Lower Z’ masses:

● mZ′ = 2 TeV, mπD = mρD = ΛD = 200 GeV, and mqD = 100 GeV.
● mZ′ = 3 TeV, mπD = mρD = ΛD = 300 GeV, and mqD = 150 GeV.
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A hand-tuned background simulation

Change the simulation shape to look more different from the data.
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A hand-tuned background simulation

Change the simulation shape to look more different from the data.
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SIC evaluated at a rejection of 103
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