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Using anonymized mobility data from Facebook users and publicly available information on the
Italian population, we model the circulation of people in Italy before and during the early phase
of the SARS-CoV-2 pandemic (COVID-19). We perform a spatial and temporal clustering of the
movement network at the level of fluxes across provinces on a daily basis. The resulting partition
in time successfully identifies the first two lockdowns without any prior information. Similarly,
the spatial clustering returns 11 to 23 clusters depending on the period (“standard” mobility vs.
lockdown) using the greedy modularity communities clustering method, and 16 to 30 clusters using
the critical variable selection method. Fascinatingly, the spatial clusters obtained with both methods
are strongly reminiscent of the 11 regions into which emperor Augustus had divided Italy according
to Pliny the Elder. This work introduces and validates a data analysis pipeline that enables us: i) to
assess the reliability of data obtained from a partial and potentially biased sample of the population
in performing estimates of population mobility nationwide; ii) to identify areas of a Country with
well-defined mobility patterns, and iii) to distinguish different patterns from one another, resolve
them in time and find their optimal spatial extent. The proposed method is generic and can be
applied to other countries, with different geographical scales, and also to similar networks (e.g.
biological networks). The results can thus represent a relevant step forward in the development of
methods and strategies for the containment of future epidemic phenomena.

In order to minimize the impact of epidemics such as
the recent SARS-CoV-2 pandemic [1] on society, govern-
ments must take far-reaching decisions that considerably
affect the lives of their citizens. Some common measures
deployed during the pandemic were the adoption of per-
sonal protection devices such as face masks [2, 3], contact
tracing aimed at identifying and confining infectious sub-
jects [4–9], and the use of various forms of lockdown to
dampen large-scale contagion [10–15].

Italy was the first European country to impose a na-
tional lockdown and has seen the implementation of three
nationwide lockdowns: between March and April 2020, in
January 2021, and in April 2021. Detailed studies have
been carried out on the initial propagation of the epi-
demic in Italy [16, 17], on the first confinement [18], and
the relaxation of the latter [19], discussing the necessity
and the implementation of such restrictive measures.

While lockdowns are certainly effective in curbing the
rise of infections, their imposition severely affects the life
and health of citizens [20–22]. The extent of their de-
ployment needs to be optimized both in space and time
to minimize the number of people affected while guar-
anteeing the safety of the population. For this reason,
after the first phase of the pandemic, the Italian govern-
ment delegated part of the responsibility of restrictions
to regional governments, which were forced to curb the
movements of their citizens whenever the effective repro-
duction number Rt (i.e. the average number of new in-
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fections caused by a single infected individual at time t)
went above 1 [23–25]. Imposing regional lockdowns in-
stead of national ones is a sensible strategy. However,
it is not guaranteed that existing administrative regions
correspond to the best subdivisions of a state to control
the spread of epidemics.

In general, a diffusion process in human society de-
pends on the complex structure of the underlying net-
work of interactions. At the individual scale, several
studies make use of social experiments in recording the
contacts of a group of people via special devices; this was
done e.g. in a summer camp for children in Italy [26] or
with primary and high-school students in France [27–29].
Such data can then be used to generate a time-dependent
network of contacts that can be later used to simulate the
diffusion of an epidemic and see how it develops at the
scale of the single individual [30, 31]. At larger scales,
privacy concerns and pragmatic necessities can make it
preferable to turn towards the usage of meta-population
network models [32, 33]. This can be done for example at
a national [34] or international level [35, 36], or at multi-
ple levels through the usage of multiscale information on
mobility [37]. These and other studies can be informed
by anonymized data such as airplane traffic [35, 36] or
social network location data [38].

Here, by analyzing the mobility of the Italian popula-
tion in the period between January 2020 and May 2022,
we show how a data-driven meta-population approach
can be used to identify the optimal spatial subdivision
of a state to control an epidemics, as well as to verify
a posteriori the effectiveness of lockdowns. To do so,
we first estimate the mobility of the Italian population
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at the level of provinces (small administrative regions
between municipalities and regions) thanks to Facebook
(FB) data obtained through META’s Data for Good pro-
gram [39]. To check the reliability of these data, we com-
pute the population density vector (i.e. the normalized
vector of relative populations in the Italian provinces) ob-
tained from META’s data against the one derived from
the independent data set of the Italian National Institute
of Statistics (Istat [40]), containing the official projected
census for January 1st, 2020 [41]. The good agreement
between these vectors shows that the data collected by
META through the FB geolocalisation service provide a
good estimate of the distribution of the Italian popula-
tion. Then, we show how a clustering in time is able to
correctly identify the first two national lockdowns, which
were strictly enforced by the Italian state. Finally, we
use the most characteristic mobility matrices for con-
fined and non-confined phases to find the optimal spa-
tial clustering of Italian provinces. To do so, we employ
two different clustering methods that partition Italy into
clusters of provinces matching with areas having cultural,
social, and commercial affinities during ’ordinary’ times,
and into smaller clusters during confinement times. Ap-
plications of this approach to other Countries, scales, and
other complex networks are discussed.

I. RESULTS

Our approach to characterize the behavior of the
Italian population is based on movement data between
provinces. These are administrative entities in between
regions and municipalities, usually containing between
one and three hundred thousand people, with those cor-
responding to major cities such as Rome, Naples, Milan,
Turin, and Palermo having more than a million inhabi-
tants [40].

As explained in detail in the Methods section, we con-
sider 106 provinces and extrapolate the movement of
their respective populations from FB users’ data provided
by META’s data for good program [39]. The dataset we
used provides the number of FB users in each province
i, ni, as well as the number of users moving between two
provinces (or within a province), nij(t), every 8 hours in
the period between January 2020 and May 2022.

A. Transition matrices

The data from META allow us to compute the 8-hours
transition rate between two provinces i and j, defined as
follows:

Πij(t) =
nij(t)∑
j nij(t)

. (1)

Note that the denominator ensures that, for every
province i,

∑
j Πij = 1, thereby guaranteeing that Π can

be used as a stochastic matrix.

To get an idea of what the data look like, the time
evolution of one link Πij , reporting the mobility from
the province of Agrigento (i = AG) to that of Caltanis-
setta (j = CL), is plotted in Fig. 1a). Daily averaged
values are reported in blue, weekly averaged ones in red,
and the corresponding entry in the mean matrix of Eq. 6
(see materials and methods) in a black dashed line. The
lockdown periods are indicated by grey-shaded vertical
bars. Seasonal effects are clearly visible from the com-
parison of the daily data and the corresponding weekly
averaged ones.

To remove seasonal fluctuations in Π (day vs night,
weekdays vs weekends) we redefine Π as the daily transi-
tion rate between provinces averaged over the three days
before and three days after, see Materials and Methods
section. Finally, it is convenient to consider the mean
transition matrix over the whole period, Π. The directed
graph associated with Π is displayed in Fig. 1b).
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FIG. 1. a) AG→CL (Agrigento to Caltanissetta provinces)
link vs time. Daily average probability (blue) and 7-day
rolled-average probability (red), and overall probability av-
eraged in time (black dashed line). b) Representation of the
directed graph defined by the Matrix Π (Eq.6). Arrows repre-
sent the mean probability links, Πij , between Italian provinces
i and j, and are scaled in size and color according to the value
of the link (from light yellow to dark red). The size of the
nodes is proportional to the population (vector ρ∗ of Fig. 2).
Self-links Πii are not shown as they have a much bigger value
(∼ ×102) than the non-diagonal links, as most people do not
move out of their province.
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B. Homogeneity and representativeness of FB data

We assume that the FB users in the database are ho-
mogeneously distributed across provinces, and move in a
manner that is on average similar to that of the rest of the
population. To validate these assumptions we proceed as
follows.

First, we monitor the fraction of FB users over the total
population of the province according to Istat; this ratio
is defined as ni/n

Istat
i , where ni =

〈
nh
i

〉
is the number

of FB users in province i averaged over the whole time
series. The results, reported in Fig. 2a), show that in
all provinces this fraction remains between 3% and 7%,
and that FB users are roughly homogeneously distributed
across the country (Fig.S2 of supporting information dis-
plays the vectors with all provinces two-letter codes).

A more quantitative validation of both assumptions
can be obtained by considering the population density
vectors obtained both from the official census of Istat
in 2020 and from FB users’ data. These are defined as
follows:

ρ =

(
n1

ntot
, . . . ,

nN

ntot

)T

(2)

where n1, . . . nN are the populations of the N provinces,

and ntot =
∑N

i=1 ni is the total population. The popula-
tions ni can be obtained from either:

• Istat data, ρIstat,

• the FB population dataset, ρFB,

The above normalization, Eq. 2, sets |ρ| = 1 and allows
us to compare the different vectors. In addition, our ap-
proach makes it possible to compare another population
density vector, ρ∗, obtained from the mean transition
matrix Π extracted from the FB movement dataset.
In the graph described by Π there is a non-zero prob-

ability to reach any node from any other one in a finite
number of steps, that is, the graph is strongly connected
and aperiodic, and random walks over it are ergodic. The
Perron-Frobenius theorem then ensures that Π has a non-
degenerate highest eigenvalue. With our normalisation of
Π this is λ∗ = 1, and its associated left eigenvalue ρ∗ is
the only stationary state of the system, satisfying:

ρ∗iΠij = Πjiρ
∗
j .

Therefore, any non-trivial distribution vector over the
nodes of our network will converge to ρ∗ after a suffi-
ciently long time (see supporting information: section 3)

If the movements described by Π are consistent with
the Istat population data, the stationary density vector
ρ∗ must be in good agreement with the Istat density
vector ρIstat. This is indeed the case, as shown in Fig. 2b)
and c).

Fig. 2, panel b) displays the population density vec-
tors ρFB and ρ∗, on a log-log scale against ρIstat. The

provinces are sorted from least to most populated accord-
ing to Istat data. We see a good agreement within the
FB data themselves, which is also a benchmark of our
extraction and preparation of the data.
Moreover, the standard deviations of ρFB and ρ∗ from

the Istat vector (panel c of Fig. 2) are in very good quanti-
tative agreement with the Istat data. However, we notice
that the most populated provinces, Rome, Milan, Naples,
Turin, (RM, MI, NA, TO) are slightly overestimated and
that the less populated provinces are slightly underesti-
mated especially by the ρ∗ vector. This can be explained
by the fact that all links with less than 10 people are
ignored for privacy reasons.

C. Transition matrices time series

Having validated the FB data, we proceed to extract
the information contained in the time series of weekly-
averaged daily transition matrices. First of all, we notice
that diagonal elements Πii ≥ 0.9, meaning that most
movements happen within provinces. Second, and most
notably, we find that while the time series of the proba-
bility to move between different provinces can vary by an
order of magnitude, as shown in Fig. 3a), the movement
pattern of single provinces can be brought to collapse
on two master curves with an appropriate rescaling, see
Fig. 3b)-e). Specifically, this can be done by considering
the normalized probability to move out of a province,

P i
out(t)

/
Pout = (1−Πii(t)/ (1−Πii), (3)

shown in Fig. 3b), c) and the normalized probability to
move into a province,

P i
in(t)

/
Pin =

∑
j ̸=i

Πji(t)

/∑
j ̸=i

Πji, (4)

reported in Fig. 3d), e). As can be seen from panels c),
e) all provinces display a similar behavior in these two
quantities, and the first two lockdowns become apparent
as periods of low mobility. The Z-score, i.e. the time av-
erage of the fluctuation of P i

in(t) and P i
out(t) with respect

to the mean over provinces, is defined and displayed in
supporting information (Fig.S6).
Interestingly, we also note that some provinces show

a large deviation in both quantities in correspondence of
summer and winter months. To rationalize this, we look
at the provinces showing peaks of mobility in those peri-
ods, and found them to correspond with those having a
high touristic vocation, as for example Belluno (BL) and
Trento (TN), near the Dolomites, and Sicilian provinces,
see Fig. 3b), d). While at first the fact that Rome and
Venice (VE) do not show these peaks might be unex-
pected, we recall that our data only follow the movement
of Italian citizens, and that during Covid there was a
strong push to take holidays outside of cities.
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FIG. 2. a) Fraction of FB users that have shared their location over the official province population obtained from the Istat
2020 census, ni/n

Istat
i , for each province i. b) Comparison of the different population density vectors from FB and Istat data:

ρFB and ρ∗ are plotted against ρIstat. c) Standard deviation of the vectors ρFB and ρ∗ from the ρIstat vector.

D. Temporal Clustering

In order to reach our goal, that is to use movement data
to identify spatial communities, we first need to ensure
that the information contained in the transition matri-
ces Π(t) is sufficient to identify the national lockdown
periods.

To do this, we cluster the daily movement matrices
into two groups based on the distance induced by the
matrix-matrix scalar product, as described in the Mate-
rials and Methods section. The results are reported in
the top panel of Fig. 4, where each matrix is represented
by the average probability for people to move out of their
province at time t:

⟨Pout⟩ (t) =
1

N

N∑
i=1

1−Πii(t) = 1− 1

N
Tr(Π(t)). (5)

The two temporal clusters C0 and C1 are represented
by light blue dots and dark red stars, respectively, and
the latter clearly identifies the first two national lock-
downs periods, delimited by the vertical shaded areas.
Although the third lockdown period is not identified by
the clustering, we argue that this is because it has not
been strictly imposed, nor was it effectively respected, as
can also be seen from the mobility plots of Fig. 4, and
Fig. 3b)-e).

While in order to fully understand the behaviour of
the new infections and hospitalization curves, one would
need to take into account a number of factors, such as
for example population density and temperature varia-
tions [42], the repercussions of the confinements on the
evolution of the epidemics are clearly visible in Fig. 4: the
lockdowns are all followed by a decrease in the number of
new cases and new hospitalizations, as expected [12, 13].
Furthermore, we can notice that the curves for ⟨Pout(t)⟩,
new cases, and new hospitalizations, are in general anti-
correlated, with mobility decreasing in correspondence to
increases in the other two curves, which then reach a peak

and decrease. The reduction in mobility outside of na-
tional lockdowns is arguably due to individual decisions
and even more to local movement restrictions applied by
regions; the fact that a lower mobility leads to a decrease
in the number of infections is a standard prediction of
epidemic models.
FB data thus entail mobility features that are in agree-

ment with the history of the Italian government’s de-
cisions and their repercussions on the population’s be-
haviour, validating their usage in modeling epidemics and
social phenomena more in general.

E. Optimal Spatial Clustering

We can now perform a spatial clustering of the most
representative matrices of the two temporal clusters ob-
tained for the confined and unconfined situations.
To this aim, we define for each temporal cluster (Ck, k =
0, 1):

• the mean transition matrices Π
Ck

,

• the most representative transition matrices Π̃Ck ,

• the most representative current matrices JCk =

Π̃CkρIstat.

We then use two different methods to perform the clus-
terization itself:

• the Greedy Modularity Communities (GMC)
method, which uses JCk , i.e. the flux of people
moving, and finds the number of clusters that max-
imizes modularity, a concept from graph theory.
This algorithm optimizes the clustering such that
the inner links of clusters are stronger than the
outer ones.

• the critical variable selection (CVS) method, which

makes use of Π̃Ck , i.e. the probability of a sin-
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FIG. 3. a) Examples of some representative transition proba-
bility links. b) and c) Probability of going out of the province
versus time b) for i =BL, MI, NA, RM, TN, and VE and c)
for the mean over the province in black and the whole distri-
bution of grey. d) and e) Probability of going in the province
versus time d) for i =BL, MI, NA, RM, TN, and VE and e)
for the mean over the province in black and the whole distri-
bution of grey. All probability distributions have been plotted
and re-scaled by their temporal average to obtain a collapse
of the curves. Gray shaded areas represent national lockdown
periods.

gle person to move, and finds the number of clus-
ters that maximizes the relevance, a quantity intro-
duced in information theory. This method searches
for the clustering that minimizes information loss
with respect to a full description of the dataset [43].

The details of both strategies are reported in the Ma-
terials and Methods section and graph representation of
the most representative matrix in each case can be found
Fig.S9 and Fig.S10 of supporting information. We ob-
serve here that, although in principle geographically dis-
tant provinces could be grouped together (e.g. in the
case of highly-connected cities such as Rome, Naples, Mi-
lan, and Turin), the clusters found by both methods are
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FIG. 4. Top panel: Mean mobility ⟨P out⟩(t) versus time. The
light blue dots and dark red stars illustrate the two temporal
clusters of transition matrices series. Gray-shaded areas rep-
resent national confinement periods. Center panel: Number
of new cases of COVID-19 per day in the whole of Italy versus
time. Bottom panel: Number of new hospitalized cases due
to COVID-19 in Italy per day.

composed of physically proximal provinces, which can be
reached one from the another without having to cross
other clusters. This is a non-trivial result, as neither
method relies on the notion of geographical distance.

Non confined

Fig. 5a),c) represent the clustering of the most repre-
sentative matrix of the unconfined temporal cluster (C0

in blue in the top panel of Fig. 4), corresponding to an
‘ordinary’ Italian mobility situation; the top map is ob-
tained employing the greedy modularity method, while
the bottom one makes use of the CVS approach.
The two methods return slightly different partitions:

for the greedy modularity (top), the Italian provinces are
grouped in 11 clusters corresponding to well-defined geo-
graphical areas, while 16 groups are found using the CVS
scheme. Moreover, apart from a few border cases, the
clusterings almost perfectly reproduce well-known cul-
tural and commercial ‘blocks’ within the Country. For
example, the green cluster corresponds to the Triveneto
area (that is Veneto, Friuli-Venezia Giulia, and Trentino-
Alto Adige), while Sardinian provinces are fully grouped
in their own cluster. The time series of outward and in-
ward probabilities for each province are also displayed in
the supporting information (Fig.S7 and Fig.S8) with a
highlight for each optimal spatial cluster obtained with
the greedy modularity method.
It is interesting to observe that the 11 clusters found

through modularity resemble quite strongly those re-
ported by Pliny the Elder [44, 45], according to whom
Emperor Augustus divided Italy into 11 regions around
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Grey lines represent the borders of the provinces while bold black lines delimit administrative regions.

7 BC. The comparison is reported in the supporting in-
formation (Fig.S3-S4).

Confined

Things change dramatically when the matrix repre-
senting the confined case (C1: cluster 1, in red in the top
panel of Fig. 4) is considered. Fig. 5b), d) display the cor-
responding clustering, in the top panel using the greedy
modularity method and in the bottom one using CVS.
In this case, the optimal clustering produces 23 spatial
clusters with the former approach and 30 with the latter.
Both of them predict more clusters, as expected when
mobility is reduced. By analyzing the most represen-
tative matrices as directed graphs, one can also see that
the one for the confined case presents fewer links than the
one for non-confined mobility, and that some provinces
become singletons in the optimal spatial clustering, see
supporting information (Fig.S9 and Fig.S10).

Also in this case both clustering methods provide com-
parable results: most of the north of Italy is partitioned

similarly with both methods; the singletons (off-white)
are essentially the same; also Trento (TN) and Bolzano
(BZ), Sassari (SS) and Nuoro (NU), as well as Pescara
(PE) and Chieti (CH) are clustered together by pairs
with both methods.

II. CONCLUSIONS

Picking the period 2020-2022 in Italy as a test-case,
we introduced a method to assess the main patterns
and the most representative movements in a state by us-
ing anonymized data from social networks, and showed
how this information can be used to identify tempo-
ral patterns and spatial communities. The temporal
links of the network were inferred from the movement
dataset of Facebook users provided by META through
its Data for good program, combined with publicly avail-
able databases from Istat and ISS.
We showed how movement data from social networks

can be validated by considering the associated average
transition matrix between provinces as the generator of
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a Markov jump process, and comparing the correspond-
ing stationary density vector with the population density
vector obtained from the official census.

By analyzing the transition matrices time series, we
then showed how the normalized probabilities of people
moving out of or into provinces collapse on the same aver-
age curves, irrespective of the resident populations. De-
viations from these two curves can be used to identify
particular fluxes due e.g. to tourism.

By considering the distance between transition matri-
ces, we were then able to perform a temporal clustering
to distinguish the lockdown periods from the rest. This
successfully identifies the first two national lockdowns,
which were strictly enforced by the Italian Government.
Finally, we picked the most representative transition ma-
trices from the confined (lockdown) and non-confined pe-
riods, and used two different methods to identify spatial
communities: greedy modularity communities and criti-
cal variable selection. The first one finds the communi-
ties whose populations move more within a cluster than
between clusters; the latter defines clusters to reduce the
distance traveled by individuals based on an information-
theoretical approach. Both methods return an optimal
scale at which actions on circulation in a country could
be enforced, and their results are consistent with one an-
other.

As our methodology is completely general, these
strategies can be applied to other countries or other
scales, as well as different problems relying on a similar
kind of data, such as optimizing a transportation network
in a city [46], or the analysis of the interaction network
between residues to identify coherent or persistent struc-
ture in protein dynamics [47].

Finally, we point out that our strategy could also be
used to compare the current socio-economical communi-
ties in a country to historical data. This can be particu-
larly interesting in regions with a long record of historical
documents and whose borders changed significantly over
time, of which Italy is a prime example. In this respect, it
is noteworthy to observe that the non-confined communi-
ties found by modularity bear a strong resemblance with
those reported by Pliny the Elder in its Naturalis Histo-
ria [44], suggesting that the current social, economical,
and mobility pattern of Italian communities still echoes
its roots dating back by almost two millennia.

III. MATERIALS AND METHODS

A. Datasets

Facebook movement data

The Facebook (FB) movement data were taken from
META’s Data for good program. The database records
the number of people going from province i to province
j, updated every 8 hour, for Italian users who allowed
FB to share such information with the app on their

device; the time frame covered goes from March 1st,
2020 to May 22nd, 2022 (811 days). The database
has been completely anonymized by META [48]. In
particular, all links between two provinces containing
less than 10 people are ignored.

The FB movement data are available both on a grid
with cells of roughly 600 × 600 meters at the equator,
which is the minimum tile size allowed for privacy pro-
tections (Bing tile level 16 [49]), and at the scale of Italian
provinces, administrative entities in between municipal-
ities and regions. In this study we concentrate on the
province level: the list of 106 provinces used was the offi-
cial one in 2016 except for the provinces of Sud Sardinia
(SU) and Cagliari (CA) which were merged into one node
(CA), in order to get inter-compatibility of administra-
tive regions between datasets from FB, Istat, and ISS. A
map (Fig.S1) and a table of these provinces can be found
in the section 1. of supporting information. In section 2.
of section of supporting information describes in detail
the workflow of the data preparation.
In this database the FB data reports for each 8 hour

period (labeled by h):

• The number of FB users moving from province i
to province j at time h, nh

ij (called ncrisis in the
original dataset).

• The total number of FB users in province i at time
h, nh

i .

Istat and ISS data

The FB data cover only a fraction of the Italian popu-
lation (namely those individuals who employ the FB app
on mobile devices and enabled location sharing) and does
not provide direct information on the population of each
province, the amount of COVID cases registered there,
or the duration of confinement periods. The population
of each province i, nIstat

i , was obtained from Istat [40],
the Italian National Institute of Statistics. We used the
most recent database available before the pandemic, re-
leased on January 1st, 2020. For simplicity, we assumed
that the population remained constant during the period
of study: this is an acceptable approximation, given that
the global growth rate of the Italian population for that
period is roughly −0.4% [50] and this fluctuation is neg-
ligible for our analysis.
The amount of new COVID cases between February

1st, 2020, and October 7, 2022, reported in the bottom
panel of Fig. 4, was obtained from ISS [51]. Data were
accumulated as a rolling average over one week.
The dates of the national confinements implemented

by the Italian government are the following [25, 52, 53]:

1. from 10/03/2020 to 16/05/2020;

2. from 21/12/2020 to 06/01/2021;
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3. from 15/03/2021 to 05/04/2021.

The three periods are indicated by the grey-shaded
areas in Figs. 4 and 3. The confinement and de-
confinement were progressive processes e.g. at first not
all provinces were confined: only two days after the ini-
tial, local lockdown the measure was applied to the whole
Country. Hence, we chose the temporal boundary of the
lockdowns such that the periods correspond to the situa-
tion where the whole Country was confined, particularly
periods in which any movement between provinces was
prohibited.

At smaller scales, national confinements were charac-
terized by rigid restrictions on mobility: in particular,
the Italian government provided sanctions of up to three
months in prison for those who violated the lockdown,
and all non-essential facilities and shops were closed,
gyms, swimming pools, spas, wellness centers, museums,
cultural centers, ski resorts, cinemas, theatres, pubs,
dance schools, game rooms, betting rooms, and bingo
halls, discos and similar places in the entire country were
suspended. All organized events were also suspended, as
well as events in public or private places, counting those
of cultural, recreational, sporting, civil, and religious cer-
emonies, including funeral ceremonies [25].

B. Stochastic transition matrices

Using the data described in Sec. III A, we built the
transition matrices between provinces. As described be-
low, these are averaged daily and over the whole period.

Mean transition matrix over the whole period

FB data allowed us to define a mean transition matrix
Π between nodes as follows:

Πij =

∑
h n

h
ij∑

j

∑
h n

h
ij

(6)

where
∑

h is the sum over all 8-hour-slots during the
whole data period. The denominator in Eq.6 normalizes
the matrix such that the elements in each row sum to
one:

∑N
j Πij = 1,∀i, thus ensuring that Π is a stochastic

matrix.

Daily transition matrix

FB data were used to generate a daily transition ma-
trix representing the link between provinces for each day,
indexed by t. The time evolution of the mobility network
was monitored by constructing a time series of transition
matrices as follows:

Πij(t) =

∑
h∈[t−ϵ,t+δ] n

h
ij∑

j

∑
h∈[t−ϵ,t+δ] n

h
ij

(7)

where
∑

h∈[t−ϵ,t+δ] is the sum over all 8-hours-slots in

[t− ϵ, t+ δ].
Using Eq. 7 we constructed two different daily time

series, one averaged every 24 hours, ϵ = 0, and δ = 24h,
and one based on a weekly rolling average, ϵ = 72h days,
δ = 96h (in between 3 days before and 3 days after day
t). The weekly averaged one correspond to the average
of data provided by ISS.

C. Temporal Clustering method

To perform the temporal clustering of the transition
matrices Π(t), we used the standard Frobenius matrix
norm:

∥Π(t)∥ = Tr(Π(t).Π(t)T ) =

√√√√ N∑
i=1

N∑
j=1

|Π(t)ij |2, (8)

where N is the number of rows and columns in the tran-
sition matrices.
Using this norm we constructed a distance matrix D,

whose elements are the distances between the matrices
of the series Π(t0),Π(t1), . . . ,Π(tT ). In other words, for
any (i, j) ∈ J0, T K2 an element of D reads:

Dij = ∥Π(ti)−Π(tj)∥. (9)

We then proceeded to perform an agglomerating clus-
tering with a ward linkage method using the function
sklearn.cluster.AgglomerativeClustering, available in the
sklearn Python library [54]. In this bottom-up algo-
rithm, pairs of nodes and then pairs of clusters are re-
cursively merged such that the variance of the distances
within the clusters have, for each step, the least possible
increase.
The clustering process can be represented in a tree

(dendrogram) in which the child branches at each step
represent the pairs of clusters that merge into a parent
branch. We report this hierarchical clustering dendro-
gram in Fig. 6. The length of the branches (y-axis)
corresponds to the cophenetic distance, a distance which
measures the level of similarity between two merged
clusters [55].

The top panel of 6 displays the full dendrogram from
individual nodes to one unique cluster. On the bottom
panel, this dendrogram is cut at the level of 5 clusters, af-
ter which the cophenetic distance increases significantly;
the numbers in parentheses (in the x-axis) are the num-
ber of nodes belonging to each cluster.

D. Spatial Clustering

Spatial clustering into communities are obtained start-
ing from the most representative matrices of the two main
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FIG. 6. Hierarchical clustering dendrogram of the day-by-day
transition matrices

temporal clusters C0 and C1; these correspond to the un-
confined and confined periods respectively, and are rep-
resented in Fig. 4.

Most representative current matrices

We computed the mean matrices Π
C0

and Π
C1

and the
matrices belonging to the unconfined (C0) and confined
(C1) temporal clusters. From the mean transition ma-
trices, we selected the most representative ones of each
cluster by taking the daily (weekly rolled-average) tran-
sition matrix closest to the mean:

Π̃Ck = min
t∈Ck

∥Π(t)−Π
Ck∥, k ∈ {0, 1}, (10)

where Ck is the set of days ti within the temporal cluster
k.

The transition matrices defined above provide the daily
probability of going from one province to another, but the
weights do not contain any information on the population
of each province. Hence, using the most representative
transition matrices of the two principal temporal clusters
and the Istat vector ρIstat, we defined the most represen-
tative current matrix JCk as follow:

JCk
ij = Π̃Ck

ij ρIstat
i , k ∈ 0, 1, (11)

subject to the normalization condition:

N∑
i,j

JCk
ij = 1. (12)

We specify here that we do not define the current ma-
trix using the stationary (Perron-Frobenius) population
vector ρ∗ but with the one computed from Istat data
which is comparable up to a few fluctuation, as can be
seen in Fig. 2. While this means that the detailed balance
is not exactly verified, the detailed balance condition is
not used in the clustering and the population data of Is-
tat is more accurate, thus ensuring that the computed
currents are more representative of the real fluxes.

Greedy Modularity Communities method (GMC)

The greedy modularity communities algorithm
is provided by the networkx Python library
(greedy modularity communities). This algorithm,
developed in [56] and refined in [57, 58], relies on the
optimization of the modularity Q. Let Wij be a weighted
matrix, without self-loops, of the associated graph; for a
given clustering c, the modularity is defined as [58]:

Q =
1

2m

∑
ij

Wij −
kikj
2m

δ(ci, cj) (13)

where m = 1
2

∑
i,j Wij generalises what would be the

number of edges in a binary graph, ki =
∑

j Wij is the
generalised degree of the node i, and ci labels the cluster
to which node i belongs.
To understand its meaning, consider the simpler case of

an unweighted graph, where Wij = Aij is the adjacency
matrix. If connections are made at random but respect-
ing the degrees ki and kj of the nodes i and j, then the
probability of an existing link between these two nodes is
kikj/2m. This means that the modularity measures the
difference between the linkage of the node within a com-
munity cluster and what is expected from a random net-
work. With increasing values of Q, one has an increasing
deviation from a random choice of linkage. Also, looking
at Eq.13, we see that if there is only one cluster, then
δ(ci, cj) ≡ 1, and it is straightforward to see that in this
case Q = 0. In the opposite situation, where the cluster-
ing is made only of singleton then δ(ci, cj) = δij ; in this
case as well, we see that Q = 0. It is possible to show
[59] that, in between these extreme cases, there exists
an optimal clustering corresponding to maximal modu-
larity. The algorithm tests different levels of resolution
through an agglomerative clustering method similar to
the one presented in section III C, aiming at finding the
clustering of the network with maximal modularity.

Effective distance matrix between nodes

Following ref [60], we define the effective distance be-
tween two adjacent nodes i and j as:

dij = 1− lnΠij . (14)

If there exists a path going from i to j with l steps

Γij = {(k0 = i, k1), (k1, k2), . . . , (kl−1, kl = j)},

the direct length of a path is the sum of the effective
distances along its steps:

λ(Γij) =

l−1∑
n=0

dkn,kn+1 . (15)

We defined the effective distance as the minimal distance
among all the existing paths from i to j:

Dij = min
Γij

λ(Γij) (16)
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Then for any two nodes i, j of the network defined by Π,
the effective distance matrix is the symmetric part,

∆S = (∆+∆t)/2, (17)

of the matrix ∆, whose elements are defined as follows:

∆ij =



0 if i = j
dij if Πij ̸= 0
dji if Πij = 0andΠji ̸= 0
Dij if ∃Γij

Dji if ∄Γij and∃Γji

+∞ elsewhere.

(18)

This definition is valid for any weighted directed graph.
In particular, the last line is not needed if the graph is
weakly connected (∀(i, j), ∃Γij or∃Γji). Similarly, the
two last lines are not needed if it is strongly connected
(∀(i, j), ∃Γij).
In our case, the most representative transition matrix of

the non-confined period, Π
C0

is strongly connected while

Π
C1

, the graph associated with the most representative
transition matrix for the confinement period is not even
weakly connected, and its connected components are not
always strongly connected.
We add that, on a computer, ‘infinite’ must be repre-
sented as a large number; this value was defined as 100
times the maximum of the well-defined elements of ∆.
The effective distance matrix was normalized by its mean

value: ∆S ← ∆S/∆S where ∆S = 1
N2

∑N
i,j ∆

S
ij . In this

way, the agglomerative clustering operations on the dis-
tance matrix do not depend on the large-scale cutoff.

Critical Variable Selection method (CVS)

The resolution-relevance method [61–66] has been suc-
cessful in identifying optimal clustering for the reduction
of complexity in the representation of biomolecules [67]
or for a protein conformational landscape [68].

Considering a set of N objects and a given clustering of
them, we labeled theK clusters by s ∈ J1,KK and defined
ks to be the number of objects in cluster s. ks/N is the
empirical probability for an object to belong to cluster s.
The resolution is defined as the Shannon entropy of this
probability distribution:

H[s] = −
K∑
s=1

ks
N

logN
ks
N

(19)

where logN is the logarithm in base N such that
logN N = 1. H[s] = 0 when all objects belong to only
one cluster, and H[s] = 1 at the other extreme, when
each object has its own separate cluster.
Resolution alone, however, is not sufficient to identify

an optimal level of informativeness of a given clustering.
A second quantity, the relevance H[k], is defined based
on the number of clusters containing k objects, mk [43]:

mk =

K∑
s=1

δk,ks
. (20)

The relevance is defined as follows:

H[k] = −
N∑

k=1

kmk

N
logN

kmk

N
. (21)

In the latter expression, the factor kmk

N is the empirical
probability that a randomly chosen object in the collec-
tion belongs to the cluster with k elements in it. The
relevance is the Shannon entropy associated with this
second empirical probability.
For both limit cases of 1 and N clusters, H[k] = 0,

the relevance being non-negative otherwise [43, 68]. The
maximum relevance thus corresponds to an optimal clus-
tering, i.e. to the most informative partition of the col-
lection of objects.
We performed an agglomerative clustering of the nodes

representing provinces using the distance introduced
above, and computed for each number of clusters from
1 to N the corresponding values of resolution and rele-
vance (see Fig. 7 ). The optimal partition of provinces
was defined as the clustering with the maximum rele-
vance value.
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FIG. 7. Resolution versus relevance for agglomerative spatial
clustering of temporal cluster C0 (confined, top) and C1 (un-
confined, bottom).
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1. Supplementary Information

2. List of Provinces used in the study

node Provinces Car plate ITTER107 Population
index name code code 01 Jan 2020
0 Agrigento AG ITG14 412427.0
1 Alessandria AL ITC18 407049.0
2 Ancona AN ITE32 461745.0
3 Aosta AO ITC20 123337.0
4 Ascoli Piceno AP ITE34 202317.0
5 L’Aquila AQ ITF11 288439.0
6 Arezzo AR ITE18 334634.0
7 Asti AT ITC17 207939.0
8 Avellino AV ITF34 399623.0
9 Bari BA ITF42 1224756.0
10 Bergamo BG ITC46 1102670.0
11 Biella BI ITC13 169560.0
12 Belluno BL ITD33 198518.0
13 Benevento BN ITF32 263460.0
14 Bologna BO ITD55 1015701.0
15 Brindisi BR ITF44 379851.0
16 Brescia BS ITC47 1254322.0
17 Barletta-Andria-Trani BT IT110 379251.0
18 Bolzano BZ ITD10 535774.0
19 Cagliari—Sud Sardegna CA ITG27—IT111 754878.0
20 Campobasso CB ITF22 210599.0
21 Caserta CE ITF31 900293.0
22 Chieti CH ITF14 372473.0
23 Caltanissetta CL ITG15 250550.0
24 Cuneo CN ITC16 580789.0
25 Como CO ITC42 594657.0
26 Cremona CR ITC4A 351287.0
27 Cosenza CS ITF61 671171.0
28 Catania CT ITG17 1068835.0
29 Catanzaro CZ ITF63 341991.0
30 Enna EN ITG16 155982.0
31 Forl̀ı-Cesena FC ITD58 391524.0
32 Ferrara FE ITD56 340755.0
33 Foggia FG ITF41 597902.0
34 Firenze FI ITE14 994717.0
35 Fermo FM IT109 168485.0
36 Frosinone FR ITE45 468438.0
37 Genova GE ITC33 816250.0
38 Gorizia GO ITD43 138666.0
39 Grosseto GR ITE1A 216989.0
40 Imperia IM ITC31 208561.0
41 Isernia IS ITF21 80170.0
42 Crotone KR ITF62 161744.0
43 Lecco LC ITC43 332435.0
44 Lecce LE ITF45 772276.0
45 Livorno LI ITE16 326716.0
46 Lodi LO ITC49 227064.0
47 Latina LT ITE44 565840.0
48 Lucca LU ITE12 381890.0
49 Monza e Brianza MB IT108 870112.0
50 Macerata MC ITE33 305249.0
51 Messina ME ITG13 599990.0
52 Milano MI ITC45 3237101.0

node Provinces Car plate ITTER107 Population
index name code code 01 Jan 2020
53 Mantova MN ITC4B 404440.0
54 Modena MO ITD54 702787.0
55 Massa-Carrara MS ITE11 188395.0
56 Matera MT ITF52 191663.0
57 Napoli NA ITF33 2967117.0
58 Novara NO ITC15 361845.0
59 Nuoro—Ogliastra NU ITG26 199349.0
60 Oristano OR ITG28 150812.0
61 Palermo PA ITG12 1199626.0
62 Piacenza PC ITD51 283889.0
63 Padova PD ITD36 930898.0
64 Pescara PE ITF13 313346.0
65 Perugia PG ITE21 641318.0
66 Pisa PI ITE17 417245.0
67 Pordenone PN ITD41 310158.0
68 Prato PO ITE15 264397.0
69 Parma PR ITD52 450044.0
70 Pistoia PT ITE13 289256.0
71 Pesaro e Urbino PU ITE31 351993.0
72 Pavia PV ITC48 534691.0
73 Potenza PZ ITF51 348336.0
74 Ravenna RA ITD57 386007.0
75 Reggio di Calabria RC ITF65 518978.0
76 Reggio nell’Emilia RE ITD53 524193.0
77 Ragusa RG ITG18 315082.0
78 Rieti RI ITE42 150689.0
79 Roma RM ITE43 4222631.0
80 Rimini RN ITD59 336916.0
81 Rovigo RO ITD37 229097.0
82 Salerno SA ITF35 1060188.0
83 Siena SI ITE19 262046.0
84 Sondrio SO ITC44 178208.0
85 La Spezia SP ITC34 214879.0
86 Siracusa SR ITG19 383743.0
87 Sassari—Olbia-Tempio SS ITG25 474142.0
88 Savona SV ITC32 267748.0
89 Taranto TA ITF43 558130.0
90 Teramo TE ITF12 299402.0
91 Trento TN ITD20 542158.0
92 Torino TO ITC11 2205104.0
93 Trapani TP ITG11 415233.0
94 Terni TR ITE22 218254.0
95 Trieste TS ITD44 230623.0
96 Treviso TV ITD34 876755.0
97 Udine UD ITD42 517848.0
98 Varese VA ITC41 878059.0
99 Verbano-Cusio-Ossola VB ITC14 154233.0
100 Vercelli VC ITC12 165760.0
101 Venezia VE ITD35 839396.0
102 Vicenza VI ITD32 852861.0
103 Verona VR ITD31 927108.0
104 Viterbo VT ITE41 307592.0
105 Vibo Valentia VV ITF64 150702.0
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FIG. SI.1. Administrative borders of the provinces of Italy considered in the study (black lines) and of the regions (in colors)
as there are defined now.

RM M
I

NA TO BS BA PA BG CT SA BO FI PD VR CE VA TV M
B VI VE GE LE CA M
O CS PG M
E FG CO CN LT TA TN BZ PV RE RC UD SS FR AN PR PI TP AG AL M
N AV FC RA SR LU BR BT CH NO PU CR PZ CZ FE RN AR LC LI RG PE PN VT M
C TE PT AQ PC SV PO BN SI CL TS RO LO TR GR SP CB IM AT AP NU BL M
T

M
S SO BI FM VC KR EN VB OR VV RI GO AO IS

10 3

10 2

10 1

i

Istat

*

FB

RM M
I

NA TO BS BA PA BG CT SA BO FI PD VR CE VA TV M
B VI VE GE LE CA M
O CS PG M
E FG CO CN LT TA TN BZ PV RE RC UD SS FR AN PR PI TP AG AL M
N AV FC RA SR LU BR BT CH NO PU CR PZ CZ FE RN AR LC LI RG PE PN VT M
C TE PT AQ PC SV PO BN SI CL TS RO LO TR GR SP CB IM AT AP NU BL M
T

M
S SO BI FM VC KR EN VB OR VV RI GO AO IS

10 3

10 2

10 1

(
i

Is
ta

t )2 /(
Is

ta
t )2

FIG. SI.2. Top Panel: Comparison of the different population density vector from Facebook and Istat data: ρIstat, ρFB and ρ∗

against provinces order by Istat population. Bottom Panel: Standard deviation of the Facebook data vectors from the Istat
data vector is displayed showing a good agreement between datasets.
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3. Region of Italy organized by Emperor Augustus

FIG. SI.3. The proposed partition of Emperor Augustus, together with the optimal spatial clus-
tering for the non-confided periods (left with GMC, right with CVS). Source central map :
https://it.wikipedia.org/wiki/Regioni dell%27Italia augustea#/media/File:Regioni dell’Italia Augustea.svg

https://it.wikipedia.org/wiki/Regioni_dell%27Italia_augustea#/media/File:Regioni_dell'Italia_Augustea.svg
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4. Data Preparation

5. Data Sources

Mainly two data sources were used for our analysis: the Facebook Data for Good Italy Coronavirus Disease
Prevention Map data and the COVID-19 data published by the ISS (Istituto Superiore di Sanità - National Insti-
tute of Health) - INFN (Istituto Nazionale di Fisica Nucleare - National Institute for Nuclear Physics) collaboration.

Respectively, the two data sources contained the following datasets that were of interest to us:

• The Movements Between Administrative Regions dataset describes the number of Facebook users that
move between two NUTS-3 administrative regions (aka province). The temporal aggregation of the dataset is of
8 hours, meaning that if a person is checked-in in region A in a certain time frame, and the same person is found
to be checked-in in another region B in the subsequent time frame, then a movement between regions A and
B are counted. A 24-hour the day is divided into three time frames: 00:00-08:00, 08:00-16:00 and 16:00-24:00.
Two types of data are considered: the baseline, which is computed by taking the average on the same weekday
for the same weekdays, and the people during the crisis, which is the actual number of people detected in the
specified DateTime. Only users of the Facebook app that have the Location History option enabled are counted,
and also if the aggregation yields counts under 10 units then the datum is discarded.

• The New Positive Cases By Date dataset describes the number of new positive SARS-CoV-2 cases, ag-
gregated by date and province of detection. This dataset does not suffer from the lag between detection and
publication, unlike the Dipartimento della Protezione Civile (Department for Civil Defense) data. The number
of cases is the result of a window average over a week, where the final result is the day in the middle of the week
(the fourth day of the week).

6. The choice of the stack

In order to perform the extraction, loading, and transformation of the data various paths have been explored, but
our choice fell on the current technological stack.

• Python is the main scripting language and piece of software used throughout the whole pipeline. Its user-
friendliness, its widespread use among both the industry and researchers, and the availability of great libraries
for data science and visualization made it our natural choice for our purposes. In particular, the libraries mainly
used by us are Selenium (web browser automation) and Pandas (data analysis and manipulation).

• Miller is a toolkit for data munging. It allows quick CSV manipulations and it contains several powerful
commands, that can also be chained one after the other.

• Bash is used for integrating and preprocessing various data sources. It is extremely flexible and compatible
with most of Unix-like systems, and for certain types of data science workloads it can quickly and efficiently get
the work done.

• DuckDB is an embeddable analytical database. It is similar to SQLite, in that the database system runs within
a host process, but it is optimized for analytical (OLAP) workloads. It allows for manipulations à la Pandas but
also has full-query optimization and transactional storage. It is a good choice for our purposes since it allows
faster queries to be made, it does not require the maintenance of a DB stack and it integrates very well with
Python thanks to the DuckDB Python API.

7. Gathering the data

The Facebook Data for Good data can only be downloaded by using an online interface, and each transaction
is size-capped (i.e. Movements Between Administrative Regions data for more than a two-weeks period would not be
downloaded). In order to facilitate and speed up the sourcing of the data, a bulk download tool was developed. The
tool makes use of Selenium, a Python library for browser automation, that allows automated workflows that simulate
human interaction with a browser. The resulting raw data are available as zip archives containing many CSV files.
The COVID-19 data by ISS/INFN is published as a single zip archive containing many CSV files, one for each
aggregation, data type and province/region.
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Reference tables are also essential for the analysis, as they allow data integration between incoherent definitions (in
particular, concerning spatial aggregation units) between different datasets. Some of them are manually compiled,
and others are aggregate data extracted from the original datasets:

• The provinces identifications conversion table has been created manually. It contains the correspondence
between IDs for provinces in the Facebook dataset, the ISS/INFN dataset, and the “car number plate code”
two letters characters).

• The locations reference table contains the latitude and longitude for each province.

8. Cleaning and loading the data

The raw data is then loaded into our database for further analysis.

First of all, the archives are unpacked and the data is cleaned for our purposes with the use of Miller. The following
operations are performed:

• The data is filtered in order to get only data for Italian provinces (generally Facebook uses rectangular bounding
boxes to get subsets of data).

• Minor changes in data formats are operated (such as missing date-time imputation and format correction for
date-time strings).

• Null entries are discarded.

• Only columns of our interest are selected.

Then the data are piped through an SQL COPY command, that loads it in a DuckDB database.

9. Transforming the data

This is the last step of our data preparation pipeline.

In this step, we transform the raw data contained in the database into SQL tables with SQL views, in such a
way that they can be accessed easily and are expressed in a manner that is optimal for the analysis purposes of our
research.

The Movements Between Administrative Regions dataset has rows aggregated and summed over with the new
definitions of provinces as defined in the reference table.

Starting from this table, then multiple views are created:

• total number of people moving from each origin place by date;

• total number of people moving between places summed over by each day;

• daily probability that a movement between places happens (aka transition matrix );

• total probability that a movement between places happens;

• weekly rolling average of the daily probability of movement between places.

The COVID-19 ISS row dataset is also aggregated and summed over the province using the new definitions as
defined in the reference table. 2.
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10. About Perron-Frobenius (PF) theorem for stochastic matrix

In the graph identified by the mean matrix Π there is a non-zero probability to reach any node from any other
node in a finite number of steps, that is, the graph is strongly connected and aperiodic. (To say a graph is aperiodic
is equivalent to saying that its representative matrix is irreducible or saying that the random walk on the graph is
ergodic.) Then, the transition matrix representing the graph is non-negative and irreducible.

For a general non-negative irreducible matrix, Π, the PF theorem then ensures that the highest eigenvalue λ∗ of
Π is not degenerate. It is often called the PF eigenvalue and we name PF left eigenvector l∗ (and right eigenvector
r∗) its associated eigenvectors.

A consequence of the theorem in this case is also that any distribution on which we apply the matrix successively,
will concentrate, in the long time (long path limit), to the stationary density vector ρ∗i = l∗i .r

∗
i .

We explain it here in our specific case where the matrix is stochastic.
The normalization of Π is such that it is stochastic, i.e. each its raws sum to 1, i.e 1 is eigenvalue of Π and is

associated with the right eigenvector r∗ = 1np = (1, 1, . . . , 1)T and l∗ :

l∗ = l∗Π (22)

Moreover, one can also show that in this case, 1 is the maximum eigenvalue possible and the PF theorem ensure it is
unique, as well as its associated eigenvectors.

Therefore, for stochastic matrix, we commonly identify ρ∗ = l∗ as the stationary density vector but in general, r∗i
may be something else than the 1 and the PF eigenvalue different than 1.
In the following, we show the long-time limit convergence in our case.
Because the PF left eigenvector of Π is the unique invariant, it ensures the detail balance of the associated Markov

process:

ρ∗iΠij = Πjiρ
∗
j

. Multiplying the left and the right by ρ
∗−1/2
i and ρ

∗−1/2
j , we obtain that

ρ
∗1/2
i Πijρ

∗−1/2
j = ρ

∗−1/2
i Πjiρ

∗1/2
j = (ρ

∗−1/2
j Πijρ

∗1/2
i )T . (23)

Hence the matrix S defined by the elements

Sij = ρ
∗1/2
i Πijρ

∗−1/2
j , (24)

is equal to its own transposed, and so is symmetric.

Defining the transformation U = diag(ρ
∗1/2
i ) we have:

S = U−1ΠU, (25)

then S have the same eigenvalues (for S, left and right eigenvector are the same) and is symmetric, so diagonalizable
in real space, so Π itself is diagonalizable.
So there exists a mapping, i.e. a base of the vector space, O such that :

Π = O−1ΛO

with Λ = diag(λ∗, λ1, ...., λN ).

The PF theorem ensures that for our stochastic matrix λ∗ = 1 > |λi| ≥ 0, i = 1, .., N ,
Hence, in the long time limit (or long path limit).

Λt ∼ diag(1, 0, 0, 0, ..., 0)

The principal (or Perron-Frobenius) eigenvalue λ∗ = 1 will dominate and any non-trivial distribution ρ over the nodes
will converge to the unique stationary density vector:

ρΠt ∼ ρ∗.



19

11. Clustering of the mean current Matrix

In Fig.SI.4, on the top is displayed a representation of the mean current matrix sorted by clusters and by weight,
one sees that the method is satisfactory giving well-defined blocks corresponding to each community. On the bottom
panel, we see that the clusters correspond, apart from very few border cases,(and Umbria is split apart) to a group
of regions in Italy. In detail, for the ten clusters found, we have:

• The green cluster corresponds perfectly to the “Triveneto” region (that is, Veneto, Friuli-Venezia-Giulia, and
the provinces of Trento and Bolzano).

• The red one to Lombardia with the exception of Mantova plus the two provinces of Verbano/Cusio/Ossola and
Novara (belonging to Piemonte) and Piacenza (belonging to Emilia-Romagna).

• The dark purple corresponds to the region of Valle d’Aosta and Piemonte (minus VB and NO) and Liguria, at
the exception of Spezia.

• The yellow cluster is Toscana plus the provinces of Spezia (Liguria) and Perugia (Umbria)

• The orange one corresponds to the region of Emilia-Romagna at the exception of Piacenza (PC) and adds the
provinces of Pesaro/Urbino (Marche) and Mantova (Lombardia).

• The grey cluster is the regions of Marche (minus PU), Abruzzo (minus AQ) and Molise (minus IS)

• The teal one matches with the regions of Lazio and Sardegna (plus TE (Umbria) and AQ (Abruzzo))

• The light purple corresponds to the region of Campania plus the province of Isernia belonging to Molise.

• The light blue cluster corresponds perfectly o the regions of Puglia and Basilicata

• Finally, the blue cluster perfectly to the regions of Calabria and Sicilia.
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FIG. SI.4. Italian provinces clustered using GMC by communities using the all time-averaged matrix.
Top panel: Representation of the clustered mean current matrix, for visualization the shades are in log10 of the mean proba-
bilities of going from one province to another.
Bottom: Graph representation of the community clustering with colors corresponding to the different clusters, the widths of
the links are proportional to the logarithm of the transition probability. At the exception of Sardinia that is in Rome cluster
here, the clustering is the same than non-confined most representative matrix using GMC.
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12. Z-score of the probability of going in and out of provinces

To better see which provinces differ the most from the mean trend we compute the Z-score, which is defined for
the time series Xi(t) of province i as:

Zi =
1

T

T∑
t=0

|Xi(t)− µ(t)|
σ(t)

(26)

with µ(t) = ⟨Xi(t)⟩ being the average over provinces and σ(t) =
√
⟨Xi(t)− µ(t)⟩ the standard deviation at time t.

In Fig. SI.5, we show at the top a map with the Z score for the outgoing probabilities, and on the bottom one for
ingoing probabilities for each province.
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FIG. SI.5. Map of the 2-year average Z score by province. The Z scores defined Eq. 26 are the average fluctuations by provinces
of the probability of moving in (Z score IN) and out (Z score OUT) of the province.
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13. In and outgoing probability for each spatial cluster
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FIG. SI.6. Outgoing probability for each cluster, the colors correspond to the clusters of the non-confined case using GMC.



23

01/04/20 01/07/20 01/10/20 01/01/21 01/04/21 01/07/21 01/10/21 01/01/22 01/04/22
0

1

2

3

Pi in
(t)

/P
in

Sicily Cluster
"Triveneto" Cluster
Mean

01/04/20 01/07/20 01/10/20 01/01/21 01/04/21 01/07/21 01/10/21 01/01/22 01/04/22
0

1

2

Pi in
(t)

/P
in

"Lombardian" Cluster
"Toscanien" Cluster
Mean

01/04/20 01/07/20 01/10/20 01/01/21 01/04/21 01/07/21 01/10/21 01/01/22 01/04/22
0

2

4

Pi in
(t)

/P
in

"Bologna" Cluster
"Torino" Cluster
Mean

01/04/20 01/07/20 01/10/20 01/01/21 01/04/21 01/07/21 01/10/21 01/01/22 01/04/22
0

1

2

Pi in
(t)

/P
in

"Napolitan" Cluster
"Roman" Cluster
Mean

01/04/20 01/07/20 01/10/20 01/01/21 01/04/21 01/07/21 01/10/21 01/01/22 01/04/22
0

1

2

3

Pi in
(t)

/P
in

"Bari" Cluster
"Sardanian" Cluster
"MC" Cluster
Mean

FIG. SI.7. Ingoing probability for each cluster the colors correspond to the clusters of the non-confined case using GMC .
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14. Network representation of the spatial partition with the two clustering methods

We display here the full network visualization of the two most representatives obtained for the two temporal clusters,
the widths of the links are proportional to the logarithm of the transition probability.

AG

AL

AN

AO

AP

AQ

AR

AT

AV BA

BG
BI

BL

BN

BO

BR

BS

BT

BZ

CA

CB

CE

CH

CL

CN

CO

CR

CS

CT

CZ

EN

FC

FE

FG

FI

FM

FR

GE

GO

GR

IM

IS

KR

LC

LE

LI

LO

LT

LU

MB

MC

ME

MI
MN

MO
MS

MT
NA

NO

NUOR

PA

PC

PD

PE

PG
PI

PN

PO

PR

PT
PU

PV

PZ

RA

RC

RE

RG

RI

RM

RN

RO

SA

SI

SO

SP

SR

SS

SV

TA

TE

TN

TO

TP

TR

TSTV
UD

VA
VB

VC VE
VI

VR

VT

VV

Temporal Cluster n°0 :
 11 spatial clusters
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Temporal Cluster n°1 :
 23 spatial clusters

FIG. SI.8. Directed graph representation of the most representative matrices for non-confined cluster C0 (top) and confined
one C1 (bottom) the optimal clustering in using the greedy modularity method.
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Temporal Cluster n°0 :
 16 spatial clusters
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Temporal Cluster n°1 :
 30 spatial clusters

FIG. SI.9. Directed graph representation of the most representative matrices for non-confined cluster C0 (top) and confined
one C1 (bottom) the optimal clustering in using the critical variable selection method.
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