Jozef Stephan Institute, “International workshop on functional determinants”,
Jan 30, 2024

Lorentzian approach
to the path integral

Naritaka Oshita

Kyoto Univ., Yukawa Inst., Hakubi Center, RIKEN iTHEMS

Takumi Hayashi, Kohei Kamada, N.O., Jun’ichi Yokoyama, arXiv: 2112.09284

RIKEN Interdisciplinary
YUKAWA INSTITUTE FOR Th'eore'ricql and Mathematical

Sciences Program —
THEORETICAL PHYSICS Rl |/|= N




Vacuum phase transition

quantum tunneling or thermal transition of matter fields
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Higgs metastability in (thermal) early Universe picture: 1. Hayashi

Vacuum decay seeded by black holes — constraints on PBH parameters or
the parameters of Higgs potential
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Figure 1: Left: SM RG evolution of the gauge couplings g, = \,‘»"/.’),,‘"."i_(/'. 92 = ¢, g3 = (s, of the
top and bottom Yukawa couplings (yi.yp). and of the Higgs quartic coupling X. All couplings are
defined in the MS scheme. The thickness indicates the +10 uncertainty. Right: RG evolution of
A varying My, My, and ag by +30.

Degrassi et al. (2013) (spectral index) Dai+ (2019)




Euclidean v.s. Lorentzian

Lorentzian path integral is oscillatory. NOT absolutely convergent.

Euclidean path integral enable us to have a finite result in the
amplitude.

Can the Euclidean path integral be applicable to a general metric?
In the existence of gravity, there is the “conformal factor problem”.
Euclidean path integral is easy to use. (Can be wrong.)

Lorentzian path integral is technical but important. (May be true.)



Lorentzian path integral?
-application to quantum cosmology-

What’s the probability of the birth of the de Sitter universe out of “nothing”?

/s : cosmological const.

Hartle and Hawking
t— —T

Hawking (1982); Hartle (1983)
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Euclidean path integral

Vilenkin 1272 /A Wheeler-DeWitt+
F ~ € WKB approximation
Vilenkin (1982)

Linde 2 Euclid h |
. _ uclidean path integra
 — —I—’LT F ~ @ 127 /A + inverse Wick rotation

Linde (1984)

Feldbrugge, Lehners, Turok

Feldbrugge, Lehners, Turok(2017)
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Lorentzian path integral



Let’s apply the Lorentzian path integral to
Vacuum decay process.



Standard
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Coleman (1977)

Callan and Coleman (1977)

Set a bubble of arbitrary size
as the final state



Standard formulation of vacuum bubbles

| orentzian

< turning point

How ca we justify the junction?



Setup

1. Assumption (for simplification)

e thin wall
details of a potential barrier = energy density of bubble surface

e spherical symmetry
dvnamics of a bubble wall = 1-dim dynamics

* NO gravity
To perform analytic computation

picture: T. Hayashi



Setup

2. Formalism

e action of a thin wall bubble (Polyakov action)

Sp[XH#, "] = —0a / d>z\/— [ “bc?aX“(?bX“ — 1] + AV / d*X+\/—g
85’

bubble WaII bqu (bubble mterlor)

e spherical bubble
(X2} = {T(7), R(7),0, ¢} Yapdzdz’ = —N?dr? + R*(7)dS)?

T :proper time on the wall gauge fixing : AN /dT = 0

dr

Sp [TRN]—47TJ/
2T
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@) R(T=1)= 1
G(R=0,R= Ry) :/ dN DTDRexp(:Sp|T, R, N|)
0 R(7=0)=0

take into account every proper duration  quantum-mechanical amplitude from a zero-size bubble to finite one

Completed!

dN.exp iSp[T', R, N|)

quantum corrections leading contribution T
+zero modes (exponential suppression)

oscillatory integrand
N ] e mmon T=Tad R=R
Vst At — NAT Solution of the E.O.M.
AT =1

Nothing
happens.




Picard-Lefschetz theory

/RdNexp(iS(N)) - /@dNexp (2S(N))

absolutely convergent!!
(No oscillatory integrand!!)

Im(N)

j ‘ Re(iS(N))

steepest descent

/

Im(¢S(N)) = const:

steepest ascend

| will show this with an easy example -> my PDF notes



Picard-Lefschetz theory
[ doexplis@) — [ doexp(is(o)

absolutely convergent!!
(No oscillatory integrand!!)
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Picard-Lefschetz theory -example-

3
Ai(x) = / dN exp|iSeg (N, x) St (N, x) = N? + N
R

VT 27

~ 2307 d|z| —
~ -1 exp | — 37 or |arg(:v)|<?an x 00
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== descent
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/ N AN A(N)exp (iSp[T, R, N])
T

l oscillatory integrand

/ AN A(N)exp (iSp|T, R, NJ)
C
"\

Lefschetz thimbles T .
~ Gaussian!!



exp (iSp@N])

Integrated E.O.M.

. . T R
—210 R? (N_2 fT? — f~'1R?) — 1) —H AroR*f(R) | — — =F
( ) f N pof(R) f
Integration constant bubble’s total energy
fix H so that B.C. is satisfied set to zero

fboundary conditionon R=R (and T =T) \

Coleman’s bubble R(7=0) =0 and R(1) = pp
large bubble R(0) =0 and R(1) > pp
N v

boundary condition changes the structure of Sp(T, R, N)
e.g. position of the saddle points in N-space

small bubble R(0) =0 and 'R(1) <




Coleman’s bubble

NINX
ANV V4 4\

== descent

— ascend

== Original
relevant

e irrelevant

0 2 4 6
Deformed: Cpew

2mop; [ N N }

coth — — —

SP [Ta Ra N] — b b

(1+ pv/po)?

G(R=0,R = pp) ~ /OOO dN exp (1Sp(IN)) = /c dN exp (iSp(IV)) ~ exp (— 1 Ipaj,booP)

PDecay ‘G( — 07 R = Pb)‘2 ~ €XP (_BColeman) BColeman/
consistent with the standard result! 2




small bubble

Original: Ry

G(R =0, R = Ryubble)
Ryubble < Pb

== Original ~ / dN exp (ZSP (N)) ~ €XP (—Bsmall/2)
0

== descent

— ascent

— branch cut Bsmall < BColeman

relevant
A small bubble may have a chance to expand due to the external source

* frelevant e.g. thermal radiation inside the bubble, external gravitational force etc..

False Vac

picture: T. Hayashi R1,sman Rl,large

: [iSeff(N)]

large bub

G(R =0, R = Ryubble)

== oOriginal Rbubble > Pb

== descent -~ / dN exp (ZSP (N)) ~ exp (_Blarge/2 + Z@(pb; Rbubble>)
0

— descent /
~saddle — branch cut

relevant Bla,rge — BColeman

e irrelevant

- phase rotation caused by the classical bubble expansion

| Deformed: C,,,

R = py — R = Ryubble




Lorentzian
path integral

initial

picture: T. Hayashi

coincides!
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Summary

We formulated the nucleation of a vacuum bubble in the Lorentzian path integral.
We demonstrated the nucleation of a bubble of arbitrary size and found:

exponent of the nucleation rate of a bubble of standard size
agrees with the Coleman’s result.

large bubble nucleation can be interpreted as
nucleation of standard-size bubble + classical expansion

® small bubble nucleates with higher probability

Our strategy is useful to search for other vacuum decay processes
that are more probable than the known process.

An arbitrary vacuum bubble can be set as the final state unlike the
bounce calculation.

Still, some restrictions are imposed: no gravity and thin wall approximation.



