Lepton number violation via heavy neutrino-antineutrino oscillations

Jan Hajer

Centro de Física Teórica de Partículas, Instituto Superior Técnico, Universidade de Lisboa Work in collaboration with Stefan Antusch, Johannes Rosskopp, and Bruno Oliveira

BLED 2024 — Breaking Lepton Number in High Energy Direct Searches

Neutrino flavour oscillations and seesaw mechanism

Right-handed Majorana neutrino N $\mathcal{L}_m = \begin{pmatrix} \vec{\nu} \\ N \end{pmatrix}^{\mathsf{L}} \begin{pmatrix} 0 & \vec{m}_D \\ \vec{m}_D^{\mathsf{T}} & m_M \end{pmatrix} \begin{pmatrix} \vec{\nu} \\ N \end{pmatrix}$ Interaction governed by mixing parameter Dirac mass $\vec{\theta} = \frac{\vec{m}_D}{m_M}$ Majorana mass Neutrino masses $M_{\nu} = \frac{\vec{m}_D \vec{m}_D^{\mathsf{T}}}{m_M} = \frac{\vec{\theta} \vec{\theta}^{\mathsf{T}}}{m_M}$ Tiny neutrino masses are ensured for large m_M High scale seesaw small \vec{m}_D Small coupling seesaw Sterile neutrinos/Heavy neutral leptons (HNLs) Inaccessibly heavy or

Tiny interactions

Experimental searches

Inaccessible: • Small coupling seesaw • High scale seesaw (at the GUT scale)

Symmetry-protected low-scale seesaw

Special cases captured by the symmetry protected seesaw scenario [2210.10738]

	Linear seesaw $\vec{\mu}_D$	Inverse seesaw μ_M		Seesaw independent μ_M'		
$M_n =$	$ \begin{pmatrix} 0 & \vec{m}_D & \vec{\mu}_D \\ \vec{m}_D^{T} & 0 & m_M \\ \vec{\mu}_D^{T} & m_M & 0 \end{pmatrix} $	$\left(\bar{n} \right)$	$ \begin{array}{ccc} 0 & \vec{m}_D & 0 \\ \vec{n}_D^{T} & 0 & m_M \\ 0 & m_M & \mu_M \end{array} $	$ \begin{pmatrix} 0 & \vec{m}_D & 0 \\ \vec{m}_D^T & \boldsymbol{\mu}_M' & \boldsymbol{m}_M \\ 0 & \boldsymbol{m}_M & 0 \end{pmatrix} $		
$M_{ u} =$	${ar \mu}_D \otimes {ar heta}$	$\mu_M ec{ heta} \otimes ec{ heta}$		0 (at tree level)		
$\Delta m =$	$\Delta m_{ u}$	$m_ u ec{ heta} ^{-2}$		$ \mu'_M $		
Benchmark models (BMs)			10^8 Inverse seesaw Linear seesaw 10^{-8}			
Seesaw	Hierarchy BM		$-5 \cdot 10^{-2} \text{ eV}$ Normal			
Linear	Normal Inverted $\Delta m_{\nu} = 42.3 \mathrm{meV}$ $\Delta m_{\nu} = 748 \mu\mathrm{eV}$ $m_{\nu} = 0.5 \mathrm{meV}$ $m_{\nu} = 5 \mathrm{meV}$ $m_{\nu} = 50 \mathrm{meV}$		$3 = 10^{2} - 5 \cdot 10^{2}$	4 eV 10^{-2} T 10^{-2} T		
Inverse						
Generic seesaw			10^{-4} 10^{-6} 10^{-5} 10^{-4} 10^{-3} 10^{-2} 10^{-1} 10^{0}			
All small parameter μ are nonzero			$ \vec{\theta} ^2$			

Naive lepton number violation in the BMs

Are HNLs Dirac or Majorana fermions?

Dirac vs. Majorana

Correct BMs contain pseudo-Dirac HNLs

With care some properties can be correctly approximated by simpler BMs

Dirac BM	Majorana BM		
 ✓ Correct production cross section ✓ Correct decay width ✓ No lepton number violation (LNV) ✓ No neutrino masses 	 ✓ Correct production cross section ♦ Wrong decay width ✓ LNV ♦ Generically too much LNV 		
Displaced vertex searches for Dirac HNLs	Prompt searches for LNV with Majorana HNLs		
Generically correct	 Generically the bounds are too strong In many cases no bounds can be extracted Can be correct for some parameter points → Model depended reinterpretation necessary 		
Distinguishing Dirac from Majorana HNI			

is not a well posed research question/goal

Particle content of BM candidates

[pSPSS]

Good BM			Minimal parameter set for single pseudo-Dirac		
Reproduces neutrino mass scaleCaptures dominant collider effectsMinimal possible number of parameters			• Mass m • Coupling vector $\vec{\theta}$ • Mass splitting Δm		
Numb	er of N	Najorana degree of freedoms	(D	OFs)	
•	DOF	Particles	Pr	roperties	
	1	Majorana	One massive light neutrino / Γ wrong 4		4
	2	Dirac pseudo-Dirac 2 Majorana	No M Li	o massive light neutrino inimal linear seesaw / pSPSS ght neutrinos too heavy	4 √ 4
	3	pseudo-Dirac + Majorana	ν MSM (Dark Matter) \checkmark Majorana active (no Dark Matter) \checkmark		
	4	2 pseudo-Dirac	Minimal inverse seesaw \checkmark		
	5	2 pseudo-Dirac + Majorana			
	6	3 pseudo-Dirac			

The symmetry protected seesaw scenario is the minimal viable model; The phenomenological symmetry protected seesaw scenario (pSPSS) is its most minimal implementation

Heavy neutrino-antineutrino oscillations $(N\overline{N}Os)$

[2210.10738]

Decaying oscillations

[2210.10738]

1.

Problems measuring R_{II}

Oscillating particles in quantum field theory (QFT)

[2307.06208

Decoherence at the LHC

[2307.06208]

Measuring LNV at the HL-LHC

[pSPSS, 2212.00562]

During the Z-pole run of the FCC-ee

Probability of measuring charged leptons

- linked to forward backward asymmetry of neutrino production (see 'Dirac BM'-like)
- I^- from non-oscillating N or from oscillating \overline{N} (similar for I^+)

Time and angular integrated observable

LNV in distributions at future lepton colliders

To appear]

LNV in distributions at future lepton colliders

[To appear]

Opening angle asymmetry is sensitive to LNV

Significance for different mass splittings

5σ discovery reach

Maximal significance

Significance dependents on the vertex reconstruction error

Testable values of the LNV ratio

24

- Collider testable Type I seesaw models predict pseudo-Dirac HNLs
- Collider testable single Majorana or Dirac HNLs cannot explain neutrino masses
- Pseudo-Dirac HNLs can oscillate between LNC and LNV events
- In the absence of countable LNV these NNOs are the only unambiguous measurement of LNV
- Theses NNOs are detectable at the HL-LHC and future lepton colliders
- Decoherence of $N\overline{N}$ Os are extremely relevant

References

[2210.10738]	DOI: 10.1007/JHEP03(2023)110. In: JHEP 03 (2023), p. 110			
S. Antusch, J. Hajer, and J. Rosskopp. antineutrino oscillations at colliders'.	'Simulating lepton number violation induced by heavy neutrino-			
[pSPSS]	DOI: 10.5281/zenodo.7268418 (Oct. 2022)			
S. Antusch, J. Hajer, B. M. S. Oliveira, seesaw scenario'. FeynRules model file	and J. Rosskopp. 'pSPSS: Phenomenological symmetry protected . URL: feynrules.irmp.ucl.ac.be/wiki/pSPSS			
[2307.06208]	DOI: 10.1007/JHEP11(2023)235. In: JHEP 11 (2023), p. 235			
S. Antusch, J. Hajer, and J. Rosskopp neutrino-antineutrino oscillations'.	o. 'Decoherence effects on lepton number violation from heavy			
[2212.00562]	DOI: 10.1007/JHEP09(2023)170. In: <i>JHEP</i> 09 (2023), p. 170			
S. Antusch, J. Hajer, and J. Rosskopp. 'Beyond lepton number violation at the HL-LHC: resolving heavy neutrino-antineutrino oscillations'.				
[2308.07297]	DOI: 10.1007/JHEP10(2023)129. In: JHEP 10 (2023), p. 129			
S. Antusch, J. Hajer, and B. M. S. Oliv	veira. 'Heavy neutrino-antineutrino oscillations at the FCC- <i>ee</i> '.			
[To appear]	(June 2024)			
S. Antusch, J. Hajer, and B. M. S. at future lepton colliders'	Oliveira. 'Discovering lepton number violation in distributions			