Lepton Number Violation searches in ATLAS

Antonio Sidoti INFN Sezione di Bologna - Italy

20/06/2024

Theory Motivations

With Mv>0, neutrino oscillations could produce Lepton Number Violation \rightarrow If the origin of LNV is **only** due to SM neutrinos oscillations, rate of LNV is extremely small at colliders (undetectable)

Lepton Number (and Flavor) is not related to a gauge symmetry=> why conserved?

 \rightarrow Any observation of LNV at colliders will be a clear signal of physics Beyond Standard Model

Lepton Number Violation is a portal to New Physics at colliders

Signatures at LHC

A "natural" way to produce neutrino masses is through SeeSaw mechanism. If neutrino is Majorana \rightarrow Lepton Number Violation

Type-II

Type-I

Weak fermion singlet (N_R) coupled with W-boson

 q_a $(W^{\pm})^*$ l^{\pm}_{α} l^{\pm}_{β} \bar{q}_b Q_c W^{\mp} \bar{q}_d

Scalar (L and R) triplet $\frac{1}{q}$ $\frac{l_{I}^{+}}{Z^{0}/\gamma} \Phi^{++} l_{I}^{+}$

Fermionic triplet

Type-III

Bled 2024

ATLAS analysis in 2 slides: 1

Identify objects, count (number of leptons/jets) and measure (momentum) Composite or global objects (MET, jet substructure)

Optimize search: Choose cut & count or advanced stat analysis (MVA), choice of the discriminating variable \rightarrow Signal Region(s) (SR)

Reducible backgrounds SM processes with fianl states different from signal Fake leptons, Fake Etmiss → Data driven estimates Method validation in Validation Regions (VR)

Irreducible Backgrounds From SM processes that mimic the process Often in peculiar phase spaces \rightarrow MC normalized to data in bkg enhanced control regions (CR) Validation in VR \rightarrow Extrapolation to SR

Combined Fit

CR + SR on the discriminating variable to get number of events for the contribution of each process

ATLAS analysis in 2 slides: 2

Exclusion limits

One fundamental ingredient in most LNV analysis

Same sign lepton pairs are generally suppressed in SM processes. However electrons have non negligible probability to be reconstructed with a "wrong" charge.

Not well modeled by simulation \rightarrow Needs to be data driven

Additional BDT selection to increase "purity" of right sign electron(positron)

ATLAS Run3

- Third year of Run3 data taking $\sqrt{s}=13.6$ TeV
- 98 fb⁻¹ already collected

PS

14

- To be added to 140 fb⁻¹ of Run2 at √s=13 TeV
- All results presented here are Run2 based

Recent LNV searches in ATLAS

- → HNL in VBS scattering \rightarrow this talk https://arxiv.org/abs/2403.15016
- HNL in tt decays (if approved)
- HNL prompt and displaced → this talk JHEP 10 (2019) 265 (Displaced + prompt) PRL 131 (2023) 061803 (Displaced)
- ▶ Right Handed Neutrino (and W_R) → this talk EPJC 83 (2023) 1164
- Double Charged Higgs (Type II Seesaw) → cf Blaz talk (Eur. Phys. J. C 83 (2023) 605)
- Type III SeeSaw cf Jernei and Lara talks (Eur. Phys. J C 81 (2021) 218 and Eur. Phys J. C 82 (2022) 988)

Additional BSM sector (Z', W_R, ...)

HNL in VBS scattering https://arxiv.org/abs/2403.15016

- HNL in tt decays (if approved)
- HNL prompt and displaced JHEP 10 (2019) 265 (Displaced + prompt) PRL 131 (2023) 061803 (Displaced)
- Right Handed Neutrino (and W_R) EPJC 83 (2023) 1164

Heavy Neutrino in Vecton Boson Scattering

Vector Boson Scattering Topology. Outgoing quarks identified as jets with large rapidity gap M_{jj} >500 GeV and $\Delta(y_iy_j)$ >2 ee, µe and µµ final states

- \rightarrow ee complementary at $0\nu\beta\beta$
- $\rightarrow \ \mu e \ and \ \mu \mu \ at \ colliders \ only$

Phenomenological type I seesaw model Mv = 50 GeV - 25 TeVIntroduces right-handed HNL

$$\sigma \propto \left| V_{eN}
ight|^4$$

$$\sigma \propto \left| V_{eN} V_{\mu N}^{*}
ight|$$

ee channel

eµ channel

Submitted to Phys Lett B https://arxiv.org/abs/2403.15016 (ee and eµ) EPJC 83 (2023) 824 (µµ)

Results interpreted also as limits on 5th order Weimberg operator

$$\mathcal{L}_5 = rac{C_5^{\ell\ell'}}{\Lambda} ig[\Phi \cdot ar{L_\ell^c} ig] ig[L_{\ell'} \cdot \Phi ig] + ext{h.c.} \,.$$

20/06/2024

Heavy Neutrino in Vecton Boson Scattering

Main background is ssWW

- ee and µµ channel SR based on MET significance (σ(MET)<4.5)
- μe channel ($\Delta \phi > 2$)

Limits on $|V_{eN}|^2$ vs M_N Limits on $|V_{eN}V_{\mu N}|$ vs M_N Limits on $|V_{eN}V_{\mu N}|$ ATLAS Observed 95% CL Limits on $|V_{eN}|^2$ ATLAS t-channel ATLAS This work s = 13 TeV. 140 fb⁻¹ ATLAS s-channel JHEP 07 (2015) 162 s = 8 TeV, 20.3 fb⁻¹ ATLAS s-channel JHEP 10 (2019) 265 Vs = 13 TeV, 36.1 fb ATLAS t-channel ರ 10⁻³ This work s = 13 TeV, 140 fb⁻¹ ATLAS displaced Observed 95% (010 PRL 131 (2023) 061803 s = 13 TeV. 139 fb CMS s-channel JHEP 01 (2019) 122 Vs = 13 TeV, 35.9 fb CMS s-channel arXiv:2403.00100 s = 13 TeV, 138 fb CMS displaced 3I JHEP 07 (2022) 08 10^{-5} vs = 13 TeV, 138 fb CMS displaced 2l arXiv:2312.07484 10-6 10^{-6} √s = 13 TeV, 138 fb⁻¹ CMS displaced low-mass arXiv:2402.18658 10 s = 13 TeV, 138 fb⁻¹ 10^{3} 10^{2} 10^{4} 10 10 10^{3} 10² 10^{4} 10 m_N [GeV] m_N [GeV] 10⁰ · ATLAS t-channel Observed 95% CL Limits on $|V_{\mu N}|^2$ ATLAS this work $L = 140 \, \text{fb}^{-1}$ 10 ATLAS s-channel JHEP 10 (2019) 265 $\mathcal{L} = 35.9 \, \text{fb}^{-1}$ 10⁻² ATLAS s-channel JHEP 07 (2015) 162 $\sqrt{s} = 8 \text{ TeV}$ 10⁻³ **VBS** Topology $\mathcal{L} = 20.3 \, \text{fb}^{-1}$ ATLAS displaced arXiv:2204.11988 $\mathcal{L} = 139 \, \text{fb}^{-1}$ 10 CMS t-channel arXiv:2206.08956 $L = 139 \, \text{fb}^{-1}$ 10⁻⁵ CMS s-channel Reaches larger masses JHEP 01 (2019) 122 $\mathcal{L} = 35.9 \, \text{fb}^{-1}$ 10⁻⁶ ' CMS displaced JHEP 07 (2021) 08 Limits on $|V_{\mu N}|^2$ vs M_N $\mathcal{L} = 139 \, \text{fb}^{-1}$ 10⁻⁷ 10² 10⁰ 10¹ 10^{3} 10^{4}

m_N [GeV]

HNL in VBS scattering https://arxiv.org/abs/2403.15016

- HNL in tt decays (if approved)
- HNL prompt and displaced JHEP 10 (2019) 265 (Displaced + prompt) PRL 131 (2023) 061803 (Displaced)
- Right Handed Neutrino (and W_R) EPJC 83 (2023) 1164

Heavy Neutral Lepton: Prompt and Displaced

JHEP 10 (2019) 265 (Displaced + prompt) PRL 131 (2023) 061803 (Displaced)

Targeting the region M_N in [3,20] GeV and $|Ua|^2$ in [10⁻²,10⁻⁷]

From J. Phys G: Nucl Part. Phys 47 (2020) 010501

Majorana

Heavy Neutral Lepton: Prompt and Displaced

Main discriminating variable: HNL mass

use $p_W = p_{l_{\alpha}} + p_{l_{\beta}} + p_{l_{\gamma}} + p_{\nu}$ to calculate $m_{HNL}^2 = (p_{l_{\beta}} + p_{l_{\gamma}} + p_{\nu})^2$

4 benchmark points (2 chosen with more realistic mixing) from Tastet, Ruchayskiy and Timiryasov (arxiv: arXiv:2107.12980)

Displaced HNL

Key ingredients:

Displaced Vertex reconstruction

Large Radius Tracking

Background Sources

20/06/2024

20/06/2024

Bled 2024

Uses data driven approach to estimate the random track crossing background (SS vs OS) \rightarrow Uses track shuffling (from different events) to increase statistics

Displaced HNL: Results

Invariant mass distribution MHNL in two out of 6(+2) channels (Signal Region and Control Region)

Displaced HNL: Results

24

Displaced HNL: Results

20/06/2024

50

m_N [GeV]

95% CL exclusion

Expected

Expected $\pm 1\sigma$ Expected $\pm 2\sigma$

Observed (prompt, LNV)

Observed (displaced, LNV)

Observed (displaced, LNC)

40

HNL in VBS scattering https://arxiv.org/abs/2403.15016

- HNL in tt decays (if approved)
- HNL prompt and displaced JHEP 10 (2019) 265 (Displaced + prompt) PRL 131 (2023) 061803 (Displaced)
- Right Handed Neutrino (and W_R) EPJC 83 (2023) 1164

Resolved Channel

Z+jet and ttbar main background

Diboson main background

100x more background events in OS wrt SS (10x for em channels)

M_{jj} reweighting

Resolved Channel

Resolved Channel

Boosted channel

Two kinematical regions

20/06/2024

µµ boosted channel

Boosted channel

Heavy Majorana: Limits

Heavy Neutrino

Nice interplay between collider physics and $0\nu\beta\beta$ (neutrinoless double beta decay searches) (For first generation only)

Biswal, Bhupal Dev Phys Rev D 95 (2017) 115031

Third Generation

So far explored only couplings with first and second generation. Tau (hadronic) final states are missing

If couplings go with mass, tau should be enhanced

Summary

LNV processes are rare ($m_v \sim 0$) and require a BSM enhancement and an efficient reconstruction to be observable at the LHC \rightarrow SeeSaw mechanism and Majorana neutrinos could give sizeable LNV at LHC

Interplay between collider physics, fixed target and neutrino physics experiments

Tau (hadronic) still unexplored in ATLAS \rightarrow Many improvements in tau id \rightarrow Investigating couplings with third generation is now possible in Run3

Bled 2024

VBS µµ analysis

Observable	SR	ssWW VR	ssWW CR (highpT VR)	WZ CR
<i>b</i> -jet veto	\checkmark	\checkmark	\checkmark	\checkmark
m_{jj}	> 300 GeV	> 300 GeV	> 300 GeV ()	> 300 GeV
ΔY_{jj}	> 4	> 4	> 4 (—)	> 4
third lepton	= 0 (baseline)	= 0 (baseline)	= 0 (baseline)	= 1 (signal)
Z cand. (OSSF only)			_	\checkmark
$E_{\rm T}^{\rm miss}$ sign.	< 4.5	∈ [4.5, 5.8]	> 5.8	< 4.5
m_{lll}			—	> 100 GeV
$p_{\mathrm{T}}^{\mu_2}$	—	< 120	< 120 (> 120) GeV	—

VBS ee

Observable	SR	CRDilep	CR3I
N b-jets	0 b-jets	0 b-jets	0 b-jets
N leptons	2	2	3
$ M_{ } - M_{Z} $	> 15 GeV	> 15 GeV	-
METsig	< 4.5	> 4.5	-
M_{jj}	> 500 GeV	> 500 GeV	> 500 GeV
ΔY _{jj}	> 2	> 2	> 2
ŋ	< 2	< 2	< 2
рТ _{I1}	-	< 250 GeV	-
рТ _{ј0} (рТ _{ј1})	> 30 (25) GeV	> 45 (30) GeV	> 30 (25) GeV
Z Candidate	-	-	1
M	-	-	> 106 GeV

VBS eµ

			Observable	SR	CRDilep	CR3I
e			N b-jets	0	0	0
II d	CF	R3I	N leptons	2	2	3
Ne			ΔPhi II	> 2	< 2	-
-			_ M _{jj}	> 500 GeV	> 500 GeV	> 500 GeV
2			ΔY _{jj}	> 2	> 2	> 2
ep =	CRDilep	SR	pT _{j0} (pT _{j1})	> 30 (25) GeV	> 45 (30) GeV	> 45 (30) GeV
Z			M _{III}	-	-	> 106 GeV
	∆ φ _{ll} < 2	$\Delta \phi_{\parallel} > 2$				

Heavy Neutrino in tt decays

Final states analyzed: ee, $\mu\mu$ Focus on SS final states $\tau_{Iep}\tau_{had}$ also analyzed with It leptonic decays In ee channel 1SR + 4 CR In $\mu\mu$ channel 1 SR + 2 CR tt and ttW dominant backgrounds

Only diagonal terms investigated

$$v_{mix} = \begin{pmatrix} V_{e,N1} & 0 & 0\\ 0 & V_{\mu,N2} & 0\\ 0 & 0 & V_{\tau,N3} \end{pmatrix}$$

Analysis uses BDT selection

Still not public To be removed if not public by the time of the talk

Heavy Neutrino in tt decays

The tightest observed upper limit on coupling parameters among [15,75] GeV are $|V_{eN}|^2 < 2.8 \ 10^{-4}$, $|V_{\mu N}|^2 < 9 \ 10^{-5}$ and $|V_{\tau N}|^2 < 5.9 \ 10^{-2}$ 20/06/2024 Bled 2024 Still not public To be removed if not public by the time of the talk

Heavy Neutrino in tt decays

Level	Selection	Value
Pre-selection	Event cleaning	Standard ATLAS event cleaning
	Trigger	Pass at least one single muon or electron trigger
	Trigger matched lepton	At least one lepton with Medium (or LHMedium) quality
	Primary Vertex	At least one (standard ATLAS selection)
	DRAW Filter	Pass any HNL filter
	Prompt lepton quality	Medium (muons) or LHMedium (electrons)
	Prompt lepton impact parameters	$d_0 < 3 \text{ mm}$ and $ z_0 \sin \theta < 0.5 \text{ mm}$
	Trigger matched lepton	At least one
	Cosmic veto	$\sqrt{(\Sigma \eta)^2 + (\pi - \Delta \phi)^2} > 0.05$
	Displaced lepton-only vertex	At least one
	Number of tracks in DV	2
	Fiducial volume	$4 < L_{xy} < 300 \text{ mm}$
SR selection	DV charge	Opposite-sign tracks
	Prompt+ disp. l charge	Opposite-sign leptons
		(one Dirac HNL single-flavour mixing model only)
	DV type	<i>ee</i> , $e\mu$ or $\mu\mu$ vertex
	Displaced lepton quality	Medium (muons), VeryVeryLoose (electrons)
	Material veto	Applied for <i>ee</i> DVs only
	B-hadron veto	$m_{DV} > 5.5 \text{ GeV} (\mu \mu \text{ DVs})$
		or Diagonal m_{DV} - L_{xy} cut (<i>ee</i> or $e\mu$ DVs)
	Z mass veto	$m_{prompt+disp.lep.} < 80 \text{ or } m_{prompt+disp.lep.} > 100 \text{ GeV}$
		if prompt and displaced leptons have same flavour and OS
	Tri-lepton mass	$40 < m_{lll} < 90 \text{GeV}$
	HNL mass	$m_{\rm HNL} < 20 { m GeV}$

		Resolved		Boosted			
Electrons		Baseline	Fake estimation	Baseline	Leading	Fake estimation	
	p _T (GeV)		> 25	> 26	> 200		
	$ \eta $		(0, 1.37] or [1	.52, 2.47]			
	Quality	Tight	Loose	Medium	Т	Tight	
	Isolation	Loose	Fail Loose or Tight	Loose	HighPtCaloOnly	Loose but fail	
						F CHighPtCaloOnly	
Muons		Baseline	Fake estimation	Baseline	Leading		
	p _T (GeV)		> 25	> 28	> 200	-	
	$ \eta $	< 2.5				-	
	Quality	High- p_T if pT > 3	300 GeV else Medium	Medium	Tight	-	
	Isolation	FixedCutTightTrackOnly	fail FixedCutTightTrackOnly	-	Tight	-	
Small-R jet	$p_{\rm T}$ (GeV)		> 20				
	$ \eta $	< 2.5					
Large-R jet	p _T (GeV)		-		> 200		
	$ \eta $	-		< 2			

Heavy Neutrino and WR (resolved)

e+e-		rCROS2e	rVROS2e			rSROS2e (binned in m _{jj} or m _{iljj})
µ+µ-		rCROS2mu	rVROS2mu			rSROS2mu (binned in m _{ij} or m _{iliji})
e±µ∓			rVROSemu			rCROSemu (binned in m _{jj} or m _{iljj})
e±e±		(Used for charge mis-id. validation) mz ± 15 GeV	rCRSS2e (binned in h⊤)		rVRSS2e	rSRSS2e (binned in h⊤)
μ±μ±			rCRSS2mu binned in h _T)		rVRSS2mu	rSRSS2mu (binned in h⊤)
12	60	D 11	0 3	30	0 40	00 m⊫[GeV]

1-electron boosted

µµ boosted

Type III SeeSaw (Heavy Leptons)

Only e and m in 2, 3 and 4 leptonic final states 2 lep final states uses Same Sign in SR

3 and 4 lep EPJC 81 (2021) 218 (2 lep) EPJC 82 (2022) 988(3 and 4 lep + comb)

20/06/2024

2 lep

20/06/2024