

Exploring Alternative Left-Right Model: Phenomenological and Cosmological Imprints

and the second states which is

Based on : Phys.Rev.D 102, 075020 (2020), JHEP03(2022)065, JHEP12(2022)032

Collaborators : M. Frank, P. Poulose, S. Senapati and U. A. Yajnik

22nd June, 2024

Faculty of Mathematics and Physics

Chayan Majumdar

University College London

Plan of the talk

- Motivation to Alternative Left-Right Model (ALRM)
- Neutrinoless double beta $(0\nu\beta\beta)$ decay in ALRM
- Leptogenesis and Dark matter in ALRM
- Collider Signatures of ALRM
- Summary and conclusion

The Standard Model (SM) and beyond

- Theoretical predictions of the Standard Model match experimental searches with great accuracy.
- Gauge Structure : $\mathscr{G}_{SM} \equiv SU(3)_C \times SU(2)_L \times U(1)_Y$.

The Standard Model (SM) and beyond

- Theoretical predictions of the Standard Model match experimental searches with great accuracy.
- Gauge Structure : $\mathscr{G}_{SM} \equiv SU(3)_C \times SU(2)_L \times U(1)_Y$.
- There remains unresolved issues within the SM that cannot be adequately addressed :

(a) Origin of small neutrino masses

(b) Parity violation in low-energy weak interactions

(c) Baryon asymmetry of the universe (BAU)

(d) Dark matter and dark energy and so on...

₩

Indicate the existence of the Beyond SM (BSM) frameworks.

Neutrinos

Unknowns ↓

- A. Dirac or Majorana
- B. "Correct" mass generation mechanism
- C. Absolute mass scale
- D. Mass Hierarchy (normal or inverted)

Courtesy : Frank F. Deppisch, A modern introduction to neutrino physics

 Experiments like T2K, NOvA, and DUNE are dedicated to study neutrino oscillations and the determination of the neutrino mass hierarchies.

Neutrino mass generation

- In SM, Dirac mass term for neutrinos i.e., $m_D \bar{\nu_L} N_R$ is not possible as there is no right-handed neutrinos.
- Majorana mass terms i.e., $m_M \bar{\nu_L^c} \nu_L$ is not possible as it violates gauge symmetry.
- Only non-renormalizable dimension-5 operator in BSM paradigm (constructed out of SM fields) : Weinberg operator $\sim \frac{\kappa}{\Lambda} LLHH$ (S. Weinberg '79).

Neutrino mass generation

- In SM, Dirac mass term for neutrinos i.e., $m_D \bar{\nu_L} N_R$ is not possible as there is no right-handed neutrinos.
- Majorana mass terms i.e., $m_M \bar{\nu_L^c} \nu_L$ is not possible as it violates gauge symmetry.
- Only non-renormalizable dimension-5 operator in BSM paradigm (constructed out of SM fields) : Weinberg operator $\sim \frac{\kappa}{\Lambda} LLHH$ (S. Weinberg '79).

Type-I Seesaw : SM + fermion singlet

$$m_{\nu} = -M_D M_R^{-1} M_D^T \sim \frac{v^2}{M_R}$$

Other types of Seesaw : Type-II and III. SM + scalar triplet SM + fermion triplet

Naturally suppressed by large scale !!!

High Scale Seesaw !!!

Neutrinoless double beta $(0\nu\beta\beta)$ decay

• In order to probe Majorana nature of massive neutrinos and LNV signatures, we need to study $0\nu\beta\beta$ decay : $(A, Z) \rightarrow (A, Z + 2) + 2e^{-}$.

Standard Mechanism

$$(T_{1/2}^{0\nu})^{-1} = G_{0\nu} |M_{0\nu}|^2 \left(\frac{\langle m_{\beta\beta}\rangle}{m_e}\right)^2$$

$$\langle m_{\beta\beta} \rangle = \left| \sum U_{ei}^2 m_i \right|$$

Neutrinoless double beta $(0\nu\beta\beta)$ decay

• In order to probe Majorana nature of massive neutrinos and LNV signatures, we need to study $0\nu\beta\beta$ decay : $(A, Z) \rightarrow (A, Z + 2) + 2e^{-}$.

Left-Right Symmetric Model (LRSM)

- Left-Right Symmetric Model (LRSM) is one of the promising approaches as BSM scenario.
- Gauge Group : $\mathscr{G}_{LR} \equiv SU(3)_C \times SU(2)_L \times SU(2)_R \times U(1)_{B-L}$.
- Particle Content : $Q_L \equiv (3,2,1,1/3), Q_R \equiv (3,1,2,1/3),$ $\ell_L \equiv (1,2,1,-1), \ell_R \equiv (1,1,2,-1),$ $\Phi \equiv (1,2,2,0), \Delta_L \equiv (1,3,1,2), \Delta_R \equiv (1,1,3,2).$
- The right-handed neutrino is the natural new ingredient of LRSM (Pati & Salam'74, Mohapatra & Senjanovic'75 and others).
- Left-right (LR) parity breaking scale is related to the generation of neutrino masses.
- The light neutrino masses can be generated via type-I+II seesaw formula.

A very high right-handed breaking scale (> 10^{14} GeV).

Chayan Majumdar

University College London

Motivation to ALRM

- LRSM, while quite successful as a BSM scenario, unfortunately suffers from unavoidable flavorchanging neutral current (FCNC) constraints.
- Unavoidable FCNCs in fermion-neutral Higgs couplings in conventional LRSMs (Ecker et al.'83, Y. Zhang et al.' 2008).

$$\lambda_{ijk}^{H\bar{U}U} = \frac{(v_u(Z_S)_{1k} - v_d(Z_S)_{2k})}{v_u^2 - v_d^2} M_{u_i} \delta_{ij} + \frac{(-v_d(Z_S)_{1k} + v_u(Z_S)_{2k})}{v_u^2 - v_d^2} \sum_{\ell=1}^3 V_{i\ell}^L M_{d_\ell} V_{j\ell}^{R*}$$

Motivation to ALRM

- LRSM, while quite successful as a BSM scenario, unfortunately suffers from unavoidable flavorchanging neutral current (FCNC) constraints.
- Unavoidable FCNCs in fermion-neutral Higgs couplings in conventional LRSMs (Ecker et al.'83, Y. Zhang et al.' 2008).

$$\lambda_{ijk}^{H\bar{U}U} = \frac{(v_u(Z_S)_{1k} - v_d(Z_S)_{2k})}{v_u^2 - v_d^2} M_{u_i} \delta_{ij} + \frac{(-v_d(Z_S)_{1k} + v_u(Z_S)_{2k})}{v_u^2 - v_d^2} \sum_{\ell=1}^3 V_{i\ell}^L M_{d_\ell} V_{j\ell}^{R*}$$

- Possible remedy : High scale LR breaking \Rightarrow makes framework less interesting phenomenologically !!!
- Need some alternative approach : Low energy fermions belong to 27-representation of E₆ ⇒ fermion structure should be rearranged as compared to conventional LRSM ⇒ Alternative Left-Right Model (ALRM) proposed by Ernest Ma (1987).
- Gauge Group : $\mathscr{G}_{ALRM} \equiv SU(3)_C \otimes SU(2)_L \otimes SU(2)_{R'} \otimes U(1)_{B-L} \otimes U(1)_S$.

Particle Content :
Quark sector :
$$Q_L \equiv \begin{pmatrix} u_L \\ d_L \end{pmatrix}$$
 : (3,2,1,1/6,0), $Q_R \equiv \begin{pmatrix} u_R \\ d_R' \end{pmatrix}$: (3,1,2,1/6, - 1/2),
 d'_L : (3,1,1, - 1/3, - 1), d_R : (3,1,1, - 1/3,0).
Lepton sector : $\ell_L \equiv \begin{pmatrix} \nu_L \\ e_L \end{pmatrix}$: (1,2,1, - 1/2,0), $\ell_R \equiv \begin{pmatrix} n_R \\ e_R \end{pmatrix}$: (1,1,2, - 1/2,1/2),
 n_L : (1,1,1,0,1), ν_R : (1,1,1,0,0).

Scalar sector : Φ : (1,2,2,0, -1/2), χ_L : (1,2,1,1/2,0), χ_R : (1,1,2,1/2,1/2).

Particle Content :
Quark sector :
$$Q_L \equiv \begin{pmatrix} u_L \\ d_L \end{pmatrix}$$
 : (3,2,1,1/6,0), $Q_R \equiv \begin{pmatrix} u_R \\ d_R' \end{pmatrix}$: (3,1,2,1/6, - 1/2),
 d'_L : (3,1,1, - 1/3, - 1), d_R : (3,1,1, - 1/3,0).
Lepton sector : $\ell_L \equiv \begin{pmatrix} \nu_L \\ e_L \end{pmatrix}$: (1,2,1, - 1/2,0), $\ell_R \equiv \begin{pmatrix} n_R \\ e_R \end{pmatrix}$: (1,1,2, - 1/2,1/2),
 n_L : (1,1,1,0,1), ν_R : (1,1,1,0,0).
Scalar sector : Φ : (1,2,2,0, - 1/2), χ_L : (1,2,1,1/2,0), χ_R : (1,1,2,1/2,1/2).

• Two step symmetry breaking :

1. The *vev* acquired by the neutral component of χ_R breaks the $SU(2)_{R'} \otimes U(1)_{B-L}$ symmetry down to $U(1)_{Y'}$,

2. $SU(2)_L \otimes U(1)_Y$ is further broken to the electromagnetic gauge symmetry by the *vevs* of the bidoublet and left-handed doublet fields.

$$vevs: \langle \Phi \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 0 \\ 0 & v_2 \end{pmatrix}, \quad \langle \chi_{L,R} \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v_{L,R} \end{pmatrix}.$$

Advantages :

- This model permits an accessible right-handed breaking scale of a few TeV.
- ALRM can be embedded in complex rank 6 Lie group E_6 . It has two maximal subgroups : $SO(10) \otimes U(1)$ and $SU(3) \otimes SU(3) \otimes SU(3)$.
- Without invoking supersymmetry, model can provide two scenarios of DMs with generalised lepton number defined either by $L = S T_{3R'}$ (Dark LR model : DLRM) (S. Khalil *et al.* '2009) or by $L = S + T_{3R'}$ (Dark LR model 2 : DLRM2) (S. Khalil *et al.* '2010).
- No FCNC in the Higgs sector \Rightarrow the scalar masses can be light.

Stability of scalar potential

Scalar Potential :

$$V_{H} = -\mu_{1}^{2} \operatorname{Tr} \left[\Phi^{\dagger} \Phi \right] - \mu_{2}^{2} \left(\chi_{L}^{\dagger} \chi_{L} + \chi_{R}^{\dagger} \chi_{R} \right) + \lambda_{1} \left(\operatorname{Tr} \left[\Phi^{\dagger} \Phi \right] \right)^{2} + \lambda_{2} \operatorname{Tr} \left[\tilde{\Phi}^{\dagger} \Phi \right] \operatorname{Tr} \left[\Phi^{\dagger} \tilde{\Phi} \right] + \rho_{1} \left[\left(\chi_{L}^{\dagger} \chi_{L} \right)^{2} + \left(\chi_{R}^{\dagger} \chi_{R} \right)^{2} \right] \\ + 2\rho_{2} \left(\chi_{L}^{\dagger} \chi_{L} \right) \left(\chi_{R}^{\dagger} \chi_{R} \right) + 2\alpha_{1} \operatorname{Tr} \left[\Phi^{\dagger} \Phi \right] \left(\chi_{L}^{\dagger} \chi_{L} + \chi_{R}^{\dagger} \chi_{R} \right) + 2\alpha_{2} \left[\chi_{L}^{\dagger} \Phi \Phi^{\dagger} \chi_{L} + \chi_{R}^{\dagger} \Phi^{\dagger} \Phi \chi_{R} \right] \\ + 2\alpha_{3} \left[\chi_{L}^{\dagger} \tilde{\Phi} \tilde{\Phi}^{\dagger} \chi_{L} + \chi_{R}^{\dagger} \tilde{\Phi}^{\dagger} \tilde{\Phi} \chi_{R} \right] + \mu_{3} \left[\chi_{L}^{\dagger} \Phi \chi_{R} + \chi_{R}^{\dagger} \Phi^{\dagger} \chi_{L} \right]$$

Stability of scalar potential

Scalar Potential :

$$\begin{split} V_{H} &= -\mu_{1}^{2} \mathrm{Tr} \left[\Phi^{\dagger} \Phi \right] - \mu_{2}^{2} \left(\chi_{L}^{\dagger} \chi_{L} + \chi_{R}^{\dagger} \chi_{R} \right) + \lambda_{1} \left(\mathrm{Tr} \left[\Phi^{\dagger} \Phi \right] \right)^{2} + \lambda_{2} \mathrm{Tr} \left[\tilde{\Phi}^{\dagger} \Phi \right] \mathrm{Tr} \left[\Phi^{\dagger} \tilde{\Phi} \right] + \rho_{1} \left[\left(\chi_{L}^{\dagger} \chi_{L} \right)^{2} + \left(\chi_{R}^{\dagger} \chi_{R} \right)^{2} \right] \\ &+ 2\rho_{2} \left(\chi_{L}^{\dagger} \chi_{L} \right) \left(\chi_{R}^{\dagger} \chi_{R} \right) + 2\alpha_{1} \mathrm{Tr} \left[\Phi^{\dagger} \Phi \right] \left(\chi_{L}^{\dagger} \chi_{L} + \chi_{R}^{\dagger} \chi_{R} \right) + 2\alpha_{2} \left[\chi_{L}^{\dagger} \Phi \Phi^{\dagger} \chi_{L} + \chi_{R}^{\dagger} \Phi^{\dagger} \Phi \chi_{R} \right] \\ &+ 2\alpha_{3} \left[\chi_{L}^{\dagger} \tilde{\Phi} \tilde{\Phi}^{\dagger} \chi_{L} + \chi_{R}^{\dagger} \tilde{\Phi}^{\dagger} \tilde{\Phi} \chi_{R} \right] + \mu_{3} \left[\chi_{L}^{\dagger} \Phi \chi_{R} + \chi_{R}^{\dagger} \Phi^{\dagger} \chi_{L} \right] \end{split}$$

Conditions for stability of scalar potential :

$$\begin{array}{l} \lambda \mbox{ sector} \\ \psi \\ \lambda_1 > 0, \ \lambda_1 + \lambda_2 > 0 \\ \rho \mbox{ sector} \\ \psi \\ \rho_1 > 0, \ \rho_1 + \rho_2 > 0 \end{array} \qquad \begin{array}{l} \alpha \mbox{ sector} \\ \alpha_1 + \alpha_2 + \sqrt{\lambda_1 \left(\frac{\rho_1 + \rho_2}{2}\right)} > 0 \\ \alpha_1 + \alpha_3 + \sqrt{\lambda_1 \left(\frac{\rho_1 + \rho_2}{2}\right)} > 0 \\ \alpha_1 + \alpha_2 + \sqrt{\lambda_1 \rho_1} > 0 \\ \alpha_1 + \alpha_3 + \sqrt{\lambda_1 \rho_1} > 0 \\ \alpha_1 + \alpha_3 + \sqrt{\lambda_1 \rho_1} > 0 \\ (\alpha_2 - \alpha_3) \ge 0 \end{array}$$

MF, **CM**, PP, SS, UAY; JHEP03(2022)065

Masses for the scalars :

Charged Higgs bosons :

Pseudoscalar boson :

$$m_{H_{1}^{\pm}}^{2} = -\left[v_{2}v_{L}\left(\alpha_{2} - \alpha_{3}\right) + \frac{\mu_{3}v_{R}}{\sqrt{2}}\right]\frac{v^{2}}{v_{2}v_{L}}$$
$$m_{H_{2}^{\pm}}^{2} = -\left[v_{2}v_{R}\left(\alpha_{2} - \alpha_{3}\right) + \frac{\mu_{3}v_{L}}{\sqrt{2}}\right]\frac{v^{2}}{v_{2}v_{R}}$$

 $m_{A_2}^2 = -\frac{\mu_3 v_L v_R}{\sqrt{2} v_2} \left[1 + v_2^2 \left(\frac{1}{v_L^2} + \frac{1}{v_R^2} \right) \right]$

CP-odd Higgs boson :

$$m_{A_1}^2 = 2v_2^2\lambda_2 - (\alpha_2 - \alpha_3)(v_L^2 + v_R^2) - \frac{\mu_3 v_L v_R}{\sqrt{2}v_2}$$

CP-even Higgs boson : $m_{H_1^0}^2 = m_{A_1}^2$

$$m_{H_{2,3}^{0}}^{2} = \frac{1}{2} \left[\mathfrak{a} - m_{h}^{2} \mp \sqrt{\left(\mathfrak{a} - m_{h}^{2}\right)^{2} + 4\left(\mathfrak{b} + m_{h}^{2}\left(\mathfrak{a} - m_{h}^{2}\right)\right)} \right]$$

Here $v^2 = v_2^2 + v_L^2$, $v^{'2} = v_2^2 + v_R^2$.

Requirement of non-tachyonic Higgs boson masses : $\mu_3 < 0$ and $\alpha_2 = \alpha_3$.

MF, CM, PP, SS, UAY; JHEP03(2022)065

The minimisation of the potential ensures $\langle \phi_1^0 \rangle = 0$ $\downarrow \downarrow$ 1. It avoids unwanted mixing between d, d' and ν_L, n_R . 2. It forbids mixing between $W_L - W_R$ gauge bosons.

Yukawa interactions :

 $-\mathscr{L}_{Y} = \overline{Q}_{L}Y^{q}\tilde{\Phi}Q_{R} + \overline{Q}_{L}Y^{q}_{L}\chi_{L}d_{R} + \overline{Q}_{R}Y^{q}_{R}\chi_{R}d'_{L} + \overline{L}_{L}Y^{\ell}\Phi L_{R} + \overline{L}_{L}Y^{\ell}_{L}\tilde{\chi}_{L}\nu_{R} + \overline{L}_{R}Y^{\ell}_{R}\tilde{\chi}_{R}\nu_{L} + h.c.$

Chayan Majumdar

University College London

$0 u\beta\beta$ decay in LRSM

In usual LRSM with doublet Higgs, contributing channels :

- 1. Standard $W_L W_L$ mediation,
- 2. Purely $W_R W_R$ mediation,
- 3. Mixed helicity λ and η diagrams.

Half-life :

 $(T_{1/2}^{0\nu})^{-1} = G_{01}(|\mathcal{M}_{\nu}\eta_{\nu}^{L} + \mathcal{M}_{N}'\eta_{N}^{L}|^{2} + |\mathcal{M}_{N}'\eta_{N}^{R} + \mathcal{M}_{\nu}\eta_{\nu}^{R}|^{2} + |\mathcal{M}_{\lambda}'(\eta_{\lambda}^{\nu} + \eta_{\lambda}^{N}) + \mathcal{M}_{\eta}'(\eta_{\eta}^{\nu} + \eta_{\eta}^{N})|^{2})$

Chayan Majumdar

University College London

0 uetaeta in ALRM

- W_R does not couple to usual ν_R , d_R rather connects with exotics \Rightarrow No W_R mediation contribution present.
- Absence of $W_L W_R$ mixing \Rightarrow No mixed helicity η diagram.
- Heavier charged Higgs H_1^{\pm} relevant for $0\nu\beta\beta$ decay as it connects with quarks and leptons.
- H_2^{\pm} connects with exotics \Rightarrow not relevant here.

0 uetaeta in ALRM

- W_R does not couple to usual ν_R , d_R rather connects with exotics \Rightarrow No W_R mediation contribution present.
- Absence of $W_L W_R$ mixing \Rightarrow No mixed helicity η diagram.
- Heavier charged Higgs H_1^{\pm} relevant for $0\nu\beta\beta$ decay as it connects with quarks and leptons.
- H_2^{\pm} connects with exotics \Rightarrow not relevant here.
 - 1. Standard vector-vector mediation with $e_L e_L$ emission.
 - 2. Scalar-Scalar ($H_1 H_1$) mediation with $e_R e_R$ emission (Mohapatra'95, M. Doi *et al.*'85).

Contributions :

- 3. Scalar-Scalar $(H_1 H_1)$ mediation with $e_L e_L$ emission .
- 4. Vector-Scalar ($W_L H_1$) mediation with $e_L e_L$ emission (Mohapatra'95, K. Babu & Mohapatra'95).
- 5. Vector-Scalar ($W_L H_1$) mediation with $e_L e_R$ emission.

Half-life :

 $(T_{1/2}^{0\nu})^{-1} = G_{01} \left| \mathscr{M}_{\nu_L}^W \eta_{\nu_L}^W \right|^2 + G_{HH}^R \left| \mathscr{M}_{\nu_L}^H \eta_{\nu_L}^H \right|^2 + G_{HH}^L \left| \mathscr{M}_{\nu_R}^H \eta_{\nu_R}^H \right|^2 + G_{WH}^{LL} \left| \mathscr{M}_{\lambda}^{WH} \eta_{\lambda}^{WH} \right|^2 + G_{WH}^{LR} \left| \mathscr{M}_{\nu_L}^{WH} \eta_{\nu_L}^W \right|^2$

Chayan Majumdar

University College London

Standard Contribution

 $(H_1 - H_1)$ mediation with $e_R - e_R$ emission

Standard Contribution

 $(H_1 - H_1)$ mediation with $e_R - e_R$ emission

Chayan Majumdar

University College London

 $(H_1 - H_1)$ mediation with $e_L - e_L$ emission

Chayan Majumdar

University College London

25

• Significant contributions : Vector-scalar mediated diagrams.

$$T_{1/2}^{0\nu}(^{76}Ge) = 3.6 \times 10^{26} \left(\frac{M_{H_1}}{200 \text{ GeV}}\right)^4 \text{ yrs},$$
$$T_{1/2}^{0\nu}(^{76}Xe) = 3.0 \times 10^{26} \left(\frac{M_{H_1}}{200 \text{ GeV}}\right)^4 \text{ yrs}.$$
$$\bigcup$$

Well within the sensitivity expected by experiments.

MF, **CM**, PP, SS, UAY; PRD 102 (2020) 7, 075020

Baryon asymmetry of universe (BAU)

 Big Bang Nucleosynthesis (BBN) Deuterium abundance + WMAP data on Cosmic Microwave Background (CMB) anisotropies (Aghanim et al.'2020) :

$$\Delta B = \frac{n_B - n_{\bar{B}}}{n_{\gamma}} \sim 10^{-10}$$

• Dynamical generation of baryon asymmetry : conditions proposed by A. Sakharov (1967) \rightarrow

(i) Baryon number violation.

(ii) C and CP violation.

(iii) Departure from thermal equilibrium.

• Leptogenesis : Connecting BAU with neutrino mass generation.

Leptogenesis in ALRM

- Lepton number violation in this framework : $N_{iR} \rightarrow e_{iL}^-(H_1^+)$, $N_{iR} \rightarrow e_{iL}^+(H_1^-)$.
- CP-asymmetry is provided by complex Yukawa couplings through interference between tree and one-loop diagrams.

Leptogenesis in ALRM

- Lepton number violation in this framework : $N_{iR} \rightarrow e_{iL}^-(H_1^+)$, $N_{iR} \rightarrow e_{iL}^+(H_1^-)$.
- CP-asymmetry is provided by complex Yukawa couplings through interference between tree and one-loop diagrams.

- Strongly hierarchical scenario i.e., $m_{N_1} \ll m_{N_{2,3}} \Rightarrow \epsilon_v \sim \epsilon_s$.
- From the required out-of-equilibrium condition, the lower bound on the right-handed neutrino mass is $m_{N_1} > 10^8 \text{ GeV} \Rightarrow$ Not our scenario because we have considered $m_{N_1} = 10^4 \text{ GeV} \parallel 10^4 \text{ GeV}$

Resonant Leptogenesis

- Two lightest RHNs have almost degenerate masses ⇒ mass limits on RHNs can be significantly relaxed (A. Pilaftsis & T.E.Underwood'2004).
- Self-energy diagram will be the dominating one $\Rightarrow \epsilon_s \gg \epsilon_v$.
- Condition to achieve required BAU in ALRM :

$$\frac{Im\left[\sum_{\alpha} \left(h_{\alpha i}^{*} h_{\alpha j}\right) \sum_{\beta} \left(h_{\beta i}^{*} h_{\beta j}\right)\right]}{\left(\sum_{\alpha} |h_{\alpha i}|^{2}\right) \left(\sum_{\beta} |h_{\beta j}|^{2}\right)} \simeq 10^{-7} \text{ with } h_{\alpha i}^{*} = (Y_{L}^{\ell \alpha^{*}}) sin\beta \mathcal{V}_{\alpha i}^{NN^{*}}$$

• Unlike LRSM, right handed neutrino masses are not related to W_R masses here $\Rightarrow W_R$ mediation does not contribute to wash-out efficiency.

• We assume two right-handed neutrinos N_1 and N_2 , which are quasi-degenerate, only contributing maximally to leptogenesis.

Lepton Asymmetry :
$$\epsilon_s^{\nu N_1} \simeq \frac{S_{13}^2 C_{23} \left(S_{12}^2 S_{13} + C_{12}^2 S_{23}\right) \left[C_{23} \left(S_{12}^2 S_{13} - C_{12}^2 S_{23}\right) + S_{12} C_{12} \left(S_{23} - C_{23}^2 S_{12}\right)\right]}{\left(S_{12} S_{13} - C_{12} C_{23} S_{13}\right)^2 \left(C_{12} S_{23} + S_{12} C_{23} S_{13}\right)^2} \sin \delta_N.$$

• Thus, leptogenesis imposes limits on the phases of the mixing matrix for right-handed neutrinos.

•

• We assume two right-handed neutrinos N_1 and N_2 , which are quasi-degenerate, only contributing maximally to leptogenesis.

Lepton Asymmetry :
$$\epsilon_s^{\nu N_1} \simeq \frac{S_{13}^2 C_{23} \left(S_{12}^2 S_{13} + C_{12}^2 S_{23} \right) \left[C_{23} \left(S_{12}^2 S_{13} - C_{12}^2 S_{23} \right) + S_{12} C_{12} \left(S_{23} - C_{23}^2 S_{12} \right) \right]}{\left(S_{12} S_{13} - C_{12} C_{23} S_{13} \right)^2 \left(C_{12} S_{23} + S_{12} C_{23} S_{13} \right)^2} \sin \delta_N.$$

• Thus, leptogenesis imposes limits on the phases of the mixing matrix for right-handed neutrinos.

Different Cases :

.

(a)
$$C_{ij} \sim \mathcal{O}(1) \gg S_{kl} \sim \mathcal{O}(0.01) \Rightarrow \sin\delta_N \simeq 10^{-6}$$
, (b) $S_{ij} \sim \mathcal{O}(1) \gg C_{kl} \sim \mathcal{O}(0.01) \Rightarrow \sin\delta_N \simeq 10^{-6}$,
(c) $C_{ij}, S_{ij} \sim \mathcal{O}(0.1) \Rightarrow \sin\delta_N \simeq 10^{-5}$, (d) $S_{13} \sim S_{23} \sim \mathcal{O}(0.01), C_{12} \sim S_{12} \sim \frac{1}{\sqrt{2}} \Rightarrow \sin\delta_N \simeq 6 \times 10^{-12}$.

• We assume two right-handed neutrinos N_1 and N_2 , which are quasi-degenerate, only contributing maximally to leptogenesis.

Lepton Asymmetry :
$$\epsilon_s^{\nu N_1} \simeq \frac{S_{13}^2 C_{23} \left(S_{12}^2 S_{13} + C_{12}^2 S_{23}\right) \left[C_{23} \left(S_{12}^2 S_{13} - C_{12}^2 S_{23}\right) + S_{12} C_{12} \left(S_{23} - C_{23}^2 S_{12}\right)\right]}{\left(S_{12} S_{13} - C_{12} C_{23} S_{13}\right)^2 \left(C_{12} S_{23} + S_{12} C_{23} S_{13}\right)^2} \sin \delta_N.$$

• Thus, leptogenesis imposes limits on the phases of the mixing matrix for right-handed neutrinos.

Different Cases :

(a)
$$C_{ij} \sim \mathcal{O}(1) \gg S_{kl} \sim \mathcal{O}(0.01) \Rightarrow \sin\delta_N \simeq 10^{-6}$$
, (b) $S_{ij} \sim \mathcal{O}(1) \gg C_{kl} \sim \mathcal{O}(0.01) \Rightarrow \sin\delta_N \simeq 10^{-6}$,
(c) $C_{ij}, S_{ij} \sim \mathcal{O}(0.1) \Rightarrow \sin\delta_N \simeq 10^{-5}$, (d) $S_{13} \sim S_{23} \sim \mathcal{O}(0.01), C_{12} \sim S_{12} \sim \frac{1}{\sqrt{2}} \Rightarrow \sin\delta_N \simeq 6 \times 10^{-12}$.

Minuscule Dirac CP phase in RHN sector can generate required leptogenesis to satisfy BAU constraint.

Dark Matter (DM) in ALRM

- The ALRM augmented by the extra $U(1)_S$ symmetry allows the introduction of the generalised lepton number $L = S + T_{3R}$.
- Similarly, one can introduce a generalised R-parity, similar to the one existing in the supersymmetry, defined in a similar way as $(-1)^{3B+L+2s}$.
- The odd R-parity particles are as follows:

Scalar sector : $\chi_R^{\pm}, \phi_1^{\pm}, \Re(\phi_1^0), \Im(\phi_1^0)$

Fermion sector : the scotinos n_L , n_R , and the exotic quarks, d'_L , d'_R

Gauge sector : W_R

• The possible DM candidate is either the R-parity odd Higgs boson (scalar or pseudoscalar), or the scotino(s), or both .

Scalar Dark Matter

m_{n_e} and $m_{n_{\mu}}$					
Case (i) (degenerate)	$m_{n_e} = m_{n_{\mu}} = m_{n_{\tau}}$				
Case (ii) (small splitting)	$(m_{n_e} = m_{n_{\mu}}) - m_{n_{\tau}} = \text{Range} (10 \text{ keV} - 20 \text{ MeV})$				
Case (iii) (large splitting)	$(m_{n_e} = m_{n_{\mu}}) - m_{n_{\tau}} = \text{Range} (100 \text{MeV}-10 \text{GeV})$				

MF, **CM**, PP, SS, UAY; JHEP12(2022)032

Chayan Majumdar

University College London

Fermion Dark Matter

• We have light as well as heavy scalar DM or heavy fermion DM in ALRM depending on the mass hierarchy of the particles.

MF, **CM**, PP, SS, UAY; JHEP12(2022)032

Collider Signatures

- The scalar dark matter, H_1^0/A_1 , could be probed by the production through two exotic quarks $pp \rightarrow d'\overline{d'}$, followed by the decays into bH_1^0/A_1 .
- Even considering that the background can be much larger, this signal can be probed at LHC with 300 fb⁻¹, and would be indicative of exotic d' quarks with masses in the TeV range.

Collider Signatures

- The scalar dark matter, H_1^0/A_1 , could be probed by the production through two exotic quarks $pp \rightarrow d'\overline{d'}$, followed by the branching ratios into bH_1^0/A_1 .
- Even considering that the background can be much larger, this signal can be probed at LHC with 300 fb⁻¹, and would be indicative of exotic d' quarks with masses in the TeV range.
- The fermion dark matter, n_{τ} , could be produced through $pp \to H_2^+ H_2^- \to n_{\tau} n_{\tau} \tau^+ \tau^-$.
- Signals from the fermionic candidates imply the existence of charged Higgs bosons, all with masses in the TeV region. This signal can be probed at LHC with 300 fb⁻¹ as well as 3000 fb⁻¹ depends on the parameter choice of the models.

MF, **CM**, PP, SS, UAY; JHEP12(2022)032

- Since the right handed neutrino masses are not related to W_R masses, there will be new signatures as compared to the conventional LRSM.
- We are analyzing the possibility of discovering signals indicating the presence of a charged gauge vector boson at the HE-LHC and HL-LHC.

- Since the right handed neutrino masses are not related to W_R masses, there will be new signatures as compared to the conventional LRSM.
- We are analyzing the possibility of discovering signals indicating the presence of a charged gauge vector boson at the HE-LHC and HL-LHC.

Processes : A.
$$pp \rightarrow W_R W_R \rightarrow 4j + \tau^+ \tau^- + MET$$

B. $pp \rightarrow W_R H_2^{\pm} \rightarrow 2j + \tau^+ \tau^- + MET$
C. $pp \rightarrow W_R W_R + W_R H_2^{\pm} + H_2^+ H_2^- \rightarrow e^+ e^- + MET$
D. $pp \rightarrow W_R W_R + W_R H_2^{\pm} + H_2^+ H_2^- \rightarrow \tau^+ \tau^- + MET$
E. $pp \rightarrow W_R W_R + W_R H_2^{\pm} + H_2^+ H_2^- \rightarrow 2j + e^- + MET$
Work in Progress !!!

Summary

- The ALRM is a BSM framework with similar gauge structure of the conventional LRSM, but free from the unavoidable FCNC constraints.
- ALRM can be embedded in E_6 gauge group and allows the light scalar masses.
- This model can generate significant contributions to the $0\nu\beta\beta$ decay through vector-scalar (WH) mediation.
- Invoking the resonant leptogenesis, the required CP violation can be easily obtained, even for a small Dirac phase in the right-handed neutrino mass mixing matrix.
- Depending on the mass hierarchy, the model allows either a scalar dark matter (neutral Rparity odd scalar and pseudoscalar) or a fermion (scotino) dark matter.
- Model allows distinct and interesting detectable signatures in colliders.

Thank you for your attention! Comments, Questions, Suggestions!!!

Backup Slide 1 :

$M_{H_1^0}$ (GeV)	Annihilation Channels
$M_{H_1^0} < M_h$	$H^0_1 H^0_1 \rightarrow WW, ~ZZ,~GG,~\gamma\gamma,~b\bar{b}$
$M_h < M_{H_1^0} < m_t$	$H^0_1 H^0_1 \rightarrow WW, ~ZZ,~GG,~\gamma\gamma, b\bar{b},~hh$
$m_t < M_{H_1^0} < M_{H_1^\pm}$	$H^0_1 H^0_1 \rightarrow WW, ZZ, GG, \gamma\gamma, \ b\bar{b}, \ hh, \ t\bar{t}$
$(M_{H_1^{\pm}} + M_W) < 2M_{H_1^0}$	$H^0_1 H^0_1 \rightarrow WW, ZZ, GG, \gamma\gamma, \ b\bar{b}, \ hh, \ t\bar{t}, \ W^\pm H^\mp_1$

Parameter	Range			
$M_{H_1^0} = M_{A_1}$	(100 - 2000) GeV			
$M_{H_2^\pm}-M_{H_1^0}$	(10-60) GeV			
$m_{q'} - M_{H_1^0}$	$(200-500)\mathrm{GeV}$			
$m_{n_{\tau}} - M_{H_1^0}$	(0.001 - 1) GeV			
λ_3	(1.0 - 2.0)			
v'	$(1.9 - 35) \mathrm{TeV}$			
$ \mu_3 $	(100 - 2000) GeV			

Parameter	Range (GeV)
$m_{n_{\tau}}$	(100 - 2000)
$m_{q'} - m_{n_{\tau}}$	(200 - 500)
$M_{H_2^{\pm}} - M_{H_1^0}$	(10 - 70)
v'	(1900 - 35000)

n_τ Annihilation Channels								
$n_{\tau}\bar{n}_{\tau} \rightarrow \ell\bar{\ell},$	$\nu \bar{\nu},$	$q\bar{q},$	WW,	ZZ,	Zh,	$ZH_1^0,$	$ZA_1^0,$	hh